
10.3.3 Data interpretation 
 
For the terms and concepts of this subsection also the corresponding general analytical 
terms and concepts in Chapter 18 and 2 should be consulted. 
 
 
10.3.3.1 General concepts 
 
10.3.3.1.1 Measures of concentration and quantity 
 
In all fields of spectrochemical analysis, a quantitative measure, x, of some characteristic 
spectral feature (e.g. a spectral band, edge, etc.) of the analyte, i.e. the analysis element, 
is observed.  The concentration, c, or the quantity, q, of a substance contained in a 
sample must be derived from the observed measure.  Random and systematic 
uncertainties in the value of x itself and in its relationship to c or q determine the 
precision and accuracy of the analysis. 
 
 
10.3.3.1.2 Sensitivity 
 
A method is said to be sensitive if a small change in concentration, c, or quantity, q, 
causes a large change in the measure, x; ie when the derivative dx/dc or dx/dq is large.  
The sensitivity, Si, for element i is defined as the slope of the analytical calibration curve 
(see Section 10.3.3.2).  Although sensitivity may vary with the magnitude of ci or qi, it is 
usually constant at low values of ci or qi.  Sensivity may also be a function of the c or q of 
other analytes present in the sample.  The use of characteristic concenctration and 
characteristic mass as a measure of (inverse) sensitivity in atomic absorption 
spectrometry is dealt with in Section 10.3.4.5.4. 
 
 
10.3.3.1.3 Relative standard deviation 
 
If the same measurement is repeated n times, the values observed for x will not be exactly 
the same each time.  A useful term describing the random variation in x is the standard 
deviation s.  The value of s is given by the expression 

2/12n

1i
i )]1n/()([ −−= ∑

=
xxs  

where xi is an individual measurement and x  the mean.  In a precise sense, the equation 
gives the correct value, σ, of the standard deviation of the whole population only if n is 
an infinitely large number.  When n is a small number, say 10, the symbol s should be 
used instead of σ to indicate that the value of standard deviation is only an estimate 
obtained from a small number of measurements. 
 
Relative standard deviation sr, is simply s divided by x .  It is preferably expressed as a 
decimal fraction but may be expressed in per cent. 
 



 
10.3.3.1.4 Variance 
 
Several factors contribute to the random uncertainty in any measurement or 
determination, e.g. random variations in the number of photons emitted or absorbed, 
variations in setting the instrument at the desired position, errors in measuring time, and 
contamination by reagents.  Each of these factors contribute to the standard deviation of 
the final result according to the rules of variance.  The total variance is given by the 
expression 
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where the subscripts refer to statistically independent factors contributing to the 
uncertainty. 
 
In particular, background or blank corrections must be made for most spectrochemical 
procedures and the background, sb, or blank, sb1 , standard deviations, are some of the 
terms contributing to sT. 
 
 
10.3.3.1.5 Precision 
 
The random uncertainty in the value for the measure, x, or the corresponding uncertainty 
in the estimate of concentration, c, or quantity, q, is represented by precision, which is 
conveniently expressed by the term standard deviation or relative standard deviation. 
 
 
10.3.3.1.6 Counting precision in X-ray measurement 
 
X-ray measurements are very easy to estimate because the photons are counted 
individually and photon emission is a random-time process for which a Poisson 
distribution can be assumed.  Therefore, the standard deviation for counting, s(N), for a 
single measurement of N counts, where N is large, is simply s(N) = √N = √It, where I is 
the intensity in counts per second, and t is the counting interval in seconds.  The rules for 
adding variance apply to the effects of other random errors introduced by subtracting 
background or taking ratios of intensities.  For example, when the signal Np in total 
counts at the line-peak position and NB at the background position are both measured, the 
value of s(N) for the characteristic line above background becomes 
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In as much as NP and NB are usually large numbers (greater than 1000) the standard 
deviation for a single measurement is a good approximation of the true standard 
deviation, σ.  The relative standard deviation, sr, can be written as 
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10.3.3.1.7 Accuracy 
 
Accuracy expresses the extent of the agreement between the measured concentration and 
the 'true value'.  The principal limitations on accuracy are: (a) random errors and (b) 
systematic errors due to bias in a given analytical procedure.  Bias represents the positive 
or negative deviation of the mean analytical result from the known or assumed true value.  
In addition, in multicomponent systems of elements, the treatment of interelement effects 
may involve some degree of approximation that leads to reproducible but incorrect 
estimates of concentrations. 
 
 
10.3.3.2 Analytical functions and curves 
 
10.3.3.2.1 Systems without interelement effects 
 
In general, the relation of the measure x to concentration c or quantity q is called the 
analytical function.  A graphical plot of the analytical function, whatever the coordinate 
axes used, is called the analytical curve. 
 
For one-component systems or multicomponent systems for which interelement effects 
can be neglected, the measure xi of element i can be expressed as a function of 
concentration ci or quantity qi, i.e. x i = g I(c i) or x i = g I(q i).  These functions are called 
the analytical calibration functions; the graphs corresponding to these functions are 
called analytical calibration curves and are determined by observations on reference 
samples of known concentrations. 
 
The analytical evaluation functions, ci = fi (xi) or qi = fi (xi) are often used; their 
corresponding graphs are called analytical evaluation curves.  These curves are derived 
from analytical calibration curves by interchanging the x and the c or q axes.  The 
distinction between analytical evaluation and analytical calibration functions may at first 
seem superfluous.  This distinction my be trivial in the case of analysis for one-
component systems, but assumes importance for multicomponent systems when the 
measures for the individual component are interdependent because of various 
interelement effects. 
 
 
10.3.3.2.2 Systems with interelement effects 
 
The measure xi for the element i may depend not only on the concentration ci (or quantity 
qi) but also on the concentration or quantities of other elements present.  The analytical 
calibration functions then take the form 
 
 xi = gi(c1,c2,c3, ... cn) 
 



and the analytical evaluation functions take the form 
 
 ci = fi(x1,x2,x3, ... xn). 
 
These functional relationships can be expressed in various approximate forms.  In the 
simplest approximation, the effect of element j on element i may be expressed as a 
constant multiplier αij to give a set of linear equations 
 
 ci = ∑jαijxj. 
 
This approximation may be valid only over a small range of variation of the values of c.  
In special cases, nonlinear analytical functions may be linearized, in good approximation, 
by introducing new sets of variables which are suitable functions of ci or xi. 
 
 
10.3.3.3 Terms related to small concentrations 
 
10.3.3.3.1 Limit of detection 
 
The limit of detection, expressed as the concentration, cL, or the quantify, qL, is derived 
from the smallest measure, xL, that can be detected with reasonable certainty for a given 
analytical procedure.  The value of xL is given by the equation 
 
 xL = x b1 + ksb1 
 
where x b1 is the mean of the blank measures and sb1 the standard deviation of the blank 
measures and k is a numerical factor chosen according to the confidence level desired.  In 
this context, blank measures xb1 refer to the measures observed on a sample that does not 
intentionally contain the analyte and has essentially the same composition as the material 
under study.  The value of sb1 must be determined from the measuring conditions to be 
used for evaluation xL and x b1.  The minimum concentration or quantity detectable is, 
therefore, the concentration or quantity corresponding to 
 
 cL = (xL - x b1)/S 
 
 qL = (xL - x b1)/S 
 
where S, (sensitivity) is assumed to be constant for low values of c or q.  The values for 
x b1 and sb1 cannot usually be determined from theory but must be found experimentally 
by making a sufficiently large number of measurements, say 20.  (When counting 
statistics are involved, as in X-ray spectroscopy, sb1 is often estimated directly from a 
single measurement of sb because xb ≈ Nb, the number of photons, and sb ≈ √Nb, if 
Poisson statistics are followed). 
 



A value of 3 for k in equation 5 is strongly recommended; for this value, a 99.6% 
confidence level applies only for a strictly one-sided Gaussian distribution.  At low 
concentrations, non-Gaussian distributions are more likely. 
 
Moreover, the values of x b1 and sb1 are themselves only estimates based on limited 
measurements.  Therefore, in a practical sense, the 3sb value usually corresponds to a 
confidence level of about 90%. 
 
 


