17.6.3 Recommendations for abbreviations in surface science and chemical spectroscopy

The overall list of selected techniques and their abbreviations have been subdivided under the following principal headings.

- (1) The electron, photoelectron and related spectroscopies
- (2) The proton spectroscopies resulting from the use of electromagnetic radiation
- (3) Neutron and ion scattering
- (4) Mass spectroscopy
- (5) Other spectroscopic techniques
- (6) Desorption and related techniques
- (7) Diffraction techniques
- (8) Spectroscopy/Diffraction hybrids
- (9) Microscopy techniques in Surface Science

A series of tables follows, in order of the above principal headings. Within a given table the various techniques are listed in the left-hand column, where necessary with alternative names. Three columns of abbreviations are given in the table with entries opposite each technique listed. The first one is the abbreviation that would relate to the name of the technique using the systematic procedures described above; the second lists abbreviations that have been widely used; the final entry gives the abbreviation recommended for future use from amongst those given in the previous two columns.

At this stage no attempt has been made to suggest abbreviations for other than fairly well-established techniques, but elaborations on those given can be generated by adding letters to the left of the basic abbreviation using the recommendation for descriptive adjectives or phrases given in (iii) of the section Alphabet of Symbols for Use in Spectroscopy and Surface Science, e.g. X-ray excited Auger electron spectroscopy (XAES) or angle-resolved Auger electron spectroscopy (ARAES). For this purpose it is even more important that the abbreviations for the basic techniques become well-established.

In the table those descriptions of the techniques which are in accord with the systematic principles outlined in the section on the Suggested Systems for the Generation of Abbreviations are given in italics.

TABLE 17.6.1 The Electron, Photoelectron and Related Spectroscopies

This is a major group of spectroscopies that is used in Surface Science. In some cases systematic names have been added when they differ from common usage.

	Systematic	Common Usage	Recommended
Auger Electron Spectroscopy	AES	AES	AES
Electron Energy Loss Spectroscopy Energy-loss Electron Spectroscopy	ELES	EELS	EELS
High-resolution Energy-Loss Electron Spectroscopy; Vibrational Energy-Loss Electron Spectroscopy	HRELES VELES	HREELS	HREELS or VEELS*
Inelastic Electron Tunnelling Spectroscopy Inelastic Tunnelling Electron Spectroscopy	ITES	IETS	IETS
Ultraviolet Photoelectron Spectroscopy Outer-shell Photoelectron Spectroscopy	UVPES OSPES	UPS	UPS or UPES
X-ray Photoelectron Spectroscopy Inner-shell Photoelectron Spectroscopy Electron Spectroscopy for Chemical Analys	XRPES ISPES sis ESCA	XPS XPES ESCA	XPS or XPES
Angle-resolved Photoelectron Spectroscopy Angle-dispersed Photoelectron Spectroscop		ARPS ADES	ARPS or ARPES

^{*}The EELS technique for studying vibrational spectra of adsorbed species is of low resolution in comparison with the vibrational photon (infrared) technique for obtaining such information (RAIRS in table 17.6.2). Hence, the abbreviation HR for 'high resolution' is increasingly seen as inappropriate. VEELS, although not yet well-established, has been preferred by most of the practitioners consulted about this document.

As discussed earlier (in the section on Suggested System for the Generation of Abbreviations, Note (b) the use of the word (or the symbol P) for photon, under principle (ii), is usually unnecessary in the electromagnetic spectroscopies. Also for the most part the common usage of abbreviations is long-standing and clear-cut. For these reasons only the recommended abbreviations are listed in this Table.

	Recommended
Mössbauer (γ-ray) Spectroscopy	*
X-ray Spectroscopy	**
Vacuum Ultraviolet Spectroscopy	VUV
Ultraviolet Spectroscopy	$\mathbf{U}\mathbf{V}$
Visible Spectroscopy	VIS
Near-Infrared Spectroscopy	NIR
Mid-Infrared Spectroscopy	MIR
Far-Infrared Spectroscopy	FIR
Microwave Spectroscopy	MW
Electron Paramagnetic Resonance	EPR
Electron Spin Resonance	ESR
Nuclear Magnetic Resonance	NMR
Nuclear Quadrupole Resonance	NQR
Raman Spectroscopy	RS
Resonance Raman Spectroscopy	RRS
Surface-enhanced Raman Spectroscopy	SERS

General notes:

- * No well-established abbreviation is in use for this branch of electromagnetic spectroscopy.
- ** The most commonly encountered abbreviation is XRF, standing for X-ray fluorescence. XRS for X-ray spectroscopy is also used.
- (a) S, for spectroscopy, is not usually added to the above abbreviations in the literature of general Chemical Spectroscopy. However, in Surface Science it is common to do so and the additional letter may be added where appropriate. M for 'mid' is also often omitted for the principal infrared region.
- (b) Other abbreviations in common use in infrared spectroscopy include: attenuated total (internal) reflection ATR

diffuse reflectance infrared (FT) spectroscopy
reflection/absorption infrared spectroscopy
photoacoustic spectroscopy
PAS

(c) The magnetic resonance spectroscopies have generated a particularly wide range of additional abbreviations, e.g., for free induction decay, FID; magic-angle rotation, MAR (or magic-angle spinning, MAS); cross polarization, CP; nuclear Overhauser effect, NOE; etc.

TABLE 17.6.3 Neutron and Ion Scattering (elastic, inelastic)

	Systematic	Common Usage	Recommended
Ion Neutralization Spectroscopy Neutralization Ion Spectroscopy	NIS	INS	INS*
Ion Scattering Spectroscopy	ISS	ISS	ISS
Rutherford (Ion) Back Scattering	RIBS	RBS	RBS
Inelastic Neutron Scattering	INS	INS	INS*

^{*} Both abbreviations are well-established, but the context will resolve ambiguities.

TABLE 17.6.4 Mass Spectroscopy

	Systematic	Common Usage	Recommended
Mass Spectroscopy	MS	MS	MS
Secondary Ion Mass Spectroscopy	SIMS	SIMS	SIMS
Field-Ion Mass Spectroscopy	FIMS	FIMS	FIMS
Fast-atom Bombardment (Mass Spectroscopy)	FAB(MS)	FAB	FAB(MS)

TABLE 17.6.5 Other Spectroscopic Techniques

	Systematic	Common Usage	Recommended
Metastable Deexcitation Spectroscopy* Penning Ionization (Electron) Spectroscopy	MDS PIES	MDS PIS	MDS
Inverse Photoelectron Spectroscopy Inverse Photoemission Spectroscopy IPES	IPES	IPES	
Bremsstrahlung Isochromat Spectroscopy	BIS		

^{*} This is preferred as the more general term; Penning ionization is one of two possible mechanisms.

TABLE 17.6.6 Desorption and Related Techniques

	Systematic	Common Usage	Recommended
Thermal Desorption Spectroscopy Temperature Programmed Desorption	TDS TPD	TDS TPD	TPD
Temperature Programmed Reaction Spectroscopy	TPRS	TPRS	TPRS
Electron-stimulated Desorption	ESD	ESD	ESD
Photon-stimulated Desorption	PSD		PSD

TABLE 17.6.7 Diffraction Techniques*

	Systematic	Common Usage	Recommended
Low-Energy Electron Diffraction	LEED	LEED	LEED
Transmission High-Energy Electron Diffraction	THEED	THEED	THEED
Reflection High-Energy Electron Diffraction	RHEED	RHEED	RHEED
X-Ray diffraction	XRD	XRD	XRD

^{*} The abbreviation ED for electron diffraction is rarely used in isolation.

TABLE 17.6.8 Spectroscopy/Diffraction Hybrids

	Systematic	Common Usage	Recommended
Photoelectron Diffraction	PED		PED
Extended X-Ray Absorption Fine Structure	EXAFS	EXAFS	EXAFS
Surface Extended X-Ray Absorption Fine Structure	SEXAFS	SEXAFS	SEXAFS
Near-Edge X-Ray Absorption Fine Structure	NEXAFS	NEXAFS	NEXAFS
X-Ray Absorption Near-Edge Fine Structure	e XANI	ES XANI	ES

TABLE 17.6.9 Microscopy Techniques in Surface Science

	Systematic	Common Usage	Recommended
Transmission Electron Microscopy	TEM	TEM	TEM
Reflection Electron Microscopy	REM		REM
Scanning Transmission Electron Microscopy	STEM	STEM	STEM
Scanning Reflection Electron Microscopy	SREM	SEM	SEM
Field Emission (Electron) Microscopy	FEEM	FEM	FEM
Scanning Tunnelling (Electron) Microscopy	STEM	STM	STM
Field-Ion Microscopy	FIM	FIM	FIM
X-Ray Microscopy	XRM	XRM	XRM