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Preferential solvation in two- and in
three-component systems
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Department of Physical Chemistry, The Hebrew University of Jerusalem, Israel

Abstract - The concepts of local compositions around a solute and preferential
solvaton of a solute are defined in terms of the Kirkwood-Buff integrals. The
difference between the local and the bulk composition is a measure of the
preferential solvation of a solute with respect to the various components of the
solvent.

A statistical mechanical theory is developed that leads to simple relationships
between local compositions and experimentally measurable quantities. These are
applied to both two- and three-component systems.

INTRODUCTION

The problem of preferential solvation (PS) arises almost in any physical chemical study of
solutes in mixed solvents. The study could be thermodynamic, spectroscopic, or kinetic

(ref. 1). However, in order to understand how the solvent composition affects the solute
behavior, we need to know the composition that the solute "sees," i.e., the composition in

its immediate vicinity. This is, in general, different from the bulk composition of the
mixed solvent.,

The simplest approach to answer the question of how to measure PS is to follow some property
of a solute in a mixed solvent. For example, if GA is the NMR chemical shift (or other

spectroscopic quantity) characteristic of the solute § in pure solvent A and GB the

corresponding quantity for pure solvent B, then one might relate the observed chemical shift
of 8 in a mixture of A and B, &3 B, to & and & by the equation

85,5 = X(local) &, + [1-x,(local)]éy [1.1]

where X, {local) defined in Eq. 1.1. is a measure of the local composition of the solution

near the solute. This may, or may not, be different from the bulk composition x, of the
solvent mixture, xj being the mole fraction of the component A in the mixture.

Although Eq. 1.1. can serve as an operational definition of X, (local), it does not really

tell us what is the local composition in the vicinity of the solute S. We should not be
surprised to find that different properties of S, used in Eq. 1.1., will result in different
values of X, (local). The reason is that there is no theoretical support to the assumption

that GA B is an average of GA and GB as implied in Eq. 1.1. Therefore, the approximation

involved in using Eq. 1.1 will, in general, be different for different properties of S in
mixtures of A and B.

What we need is an unambiguous definition, and a method of measuring, of the local composi-
tion of the solvent, which is independent of a specific property of S.

Perhaps the first thermodynamic treatment of the problem of PS was presented by Grunwald et
al. (ref. 2), who were interested in the solvation of ions in mixtures of water and dioxane.
This approach was further developed by Covington and Newman (ref. 3). However, the ambigu-
ity in the very definition of the local composition has not been removed.

In this paper an attempt is made to define the concept of PS unambiguously and independently
of any modelistic assumptions on the system. The definition of the local composition is
presented in the next section. This is then applied to three and two-component systems.
Some illustrative results are also presented.
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26 A. BEN-NAIM

THE FORMULATION OF THE PROBLEM OF PS IN THREE-COMPONENT

SYSTEMS
Consider a mixture of two components, NA molecules of A and NB molecules of B, at some temp-
erature T and pressure P. In such a system the composition measured by the mole fraction
xp = Np/(Npg + Ng) will be the same at any point R, within the system.
We shall refer to X, 88 the bulk composition of the system. Next consider a very dilute
solution of a solute S in our two-component solvent mixture.
Qualitatively, the question we would like to ask is quite simple. What is the composition
of the liquid in the immediate vicinity around the solute 8? Clearly, since the affinity of

S toward A might be different from its affinity towards B, we should expect that the compo-
sition near the solute S will differ from the bulk composition Xy

The main question is how to define the local region in the vicinity of S in which the compo-
sition is expected to be affected by the presence of S.

Consider first a simple spherical solute, say argon, in a two-component solvent, say water

and ethanol. Let dR' = dx'dy'dz' be an element of volume at a distance R' from the center
of S. The average number densities of A and B in this element of volume will be
Pa(R") = Pa(bulk)gpg(R') [2.1]
' = t
Pg(R') = Py(bulk)gys(R') [2.2]

where PA(bulk) andl9B(bulk) are the bulk densities of A and B, respectively, and gag(R') and
gps(R') are the‘radial distribution functions for the pair of species A,S and B,S,
respectively.

Clearly, if we had the full information on these two radial distribution functions, we could
have defined the local composition at any distance R' from the center of S by

P, (R
x (R') = —B — [2.3]
Py(R') + Pg(R)

Furthermore, this local composition will be different at different distances, say R' and R"
(see Fig. 1).

We know from the general theory of liquids that the radial distribution functions normally
will tend to unity at distances of the order of magnitude of a few molecular diameters.
Thus, at these distances from the center of S, all local densities will be identical to the
bulk densities.

At short distances, however, large deviation from the bulk densities are expected. A typi-
cal form of the radial distribution function for a one-component simple liquid is depicted
in Fig. 2.
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Fig. 1. The average local density of the solvent around a spherical solute S depends only
on the distance R' and R" from the center of S.
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Unfortunately, there is no experimental data on the separate radial distribution functions
in two or more component systems. Even if we had such information, it would have been too
detailed to be useful for practical purposes. Instead, we are interested in the overall
composition in the local neighborhood of the solute, which roughly coincides with the region
in which g{(R) is significantly different from unity (Fig. 2). Fortunately, this information
may be obtained from thermodynamic quantities. The relevant quantities are the so-called
Kirkwood-Buff integrals (ref. 4,5). These are defined as follows

-}
2
G5 * ﬁgAB(R) 1]4nR%dR [2.4]
0
where gAB(R) is the radial distribution function for the pair of species A and B. The
integration is extended from zero to infinity. However, in most practical cases gAB(R)

differs from unity only at distances of the order of magnitude of a few molecular diameters.
Therefore, practically the main contribution to the integral comes from the region in which
€:p differs considerably from unity. This region can be conveniently referred to as the

correlation region around A (or B, depending on the vicinity of which molecule we are
interested in).

The significance of the quantity GAB with respect to the question of preferential solvation
is the following. FkgAs(R)unRZdR is the average number of A particles in the element of
volume 47R2dR at the distance R from the center of the solute S. On the other hand,
FQUNRZdR is the average number of A molecules in the same element of volume but taken rela-
tive to an arbitrary center in the liquid. Therefore, Palgag(R)-1147R2dR

measures the excess, or deficiency, of A molecules in the spherical shell 4xR2dR around S

relative to the same spherical shell but an arbitary location in the liquid. The quantity
F%GAS- according to the definition [2.4], is simply the overall excess or deficiency of A

molecules in the entire volume around S.

In the next section we shall use the Kirkwood-Buff theory of solution (ref. 4,5) to relate
GAB to thermodynamic quantities. It should be noted that these relationships are derived in

an open system (i.e., in the T,V,u ensemble) where the number of particles in the system are
not fixed. The normalization condition for Gap is (ref. 4,5).

r 2 A
GAB = jtgAB(R)-l]unR dR = V i__
0 A'B A

where 6AB is the Kronecker delta function.

O

- NANB AB

g [2.5]
N

|

If we were in a closed system (i.e., T,V,N ensemble), then KA and NB are fixed quantities

and NANB = NA B hence, the corresponding normalization condition is

p [(Bhp(R)-114nR%aR = - o, [2.6]
0
20t
o)
10 F
JI i 1 1 1 L

Rlo

Fig. 2. Schematic form of the pair correlation function g(R) for a pure liquid of simple

spherical particles. Note that g(R) is practically unity at distances of a few
molecular diameters o.
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Thus, if A=B, the integral in [2.6] is ~1 as it should be, since the total deficiency of A's
around a fixed A is exactly the one particle that we have placed at the center. On the
other hand, for A=B the integral is zero. Placing of, say, one A at the center does not
change the total number of particles in the entire system.

We can now exploit the fact that gAB(R) decays to unity beyond some distance R > RAB' where
RAB may be referred to as the correlation distance for any pair of species in the system.

We define the correlation volume as

= 3
Veor = (4n/3)Rc [2.7]

Since all the pailr correlation functions are practically equal to unity at R > Rc' we may
write the average number of A particles in the correlation volume around S as
R

- c 2
Ny (o) =R flgyp (R)-114nR%aR =
0

R
[ Cc
=FA/tgAS(R)-1]4uRZdR . FA/ﬁuRZdR = PG,q + AV,.n [2.8]
0 0

Eq. [2.8] simply means that the average number of A's in the correlation volume is the sum

of the average number of A's in the same region, before placing S at its center, Fkvcor plus

the change in the number of A's in the same region caused by placing S in the center of this
region, PaGa.

Using a similar definition for N, .(R_)
B,S'' ¢
Ng,s(Re) *Malps * PeVeor [2.9]
we can define the local composition in the correlation region around S as
NA,S(Rc)

Na,s(R.) * N g(R)

xA'S(local)

G x,V

*a"as * *a'cor
¥20as * *g%s * Veor

[2.10]

where Xy is the bulk composition in the system.

—_

xa,s (local)

Fig. 3. Schematic dependence of the local composition X, S(1oca1) as a function of the bulk

composition Xy The diagonal line corresponds to the case when there is no prefer-
ential solvation of S. Curves a and b correspond to positive and negative prefer-

ential solvation. In curve c the preferential solvation changes sign as xp
changes.
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The local composition Xy S(local) can now be compared with Xy to determine the preferential
. :
solvation of S. If Xy S(local) > Xy, we may say that S is preferentially solvated by A.
,
Thus, we define the preferential solvation of S with respect to A simply by the difference
%,% (G, = Grq)
8, o = %, gllocal)-x, = AR 7as © BS [2.11]
X,Gps * *g%s * Veor

Clearly, the sign and extent of preferential solvation might depend on the composition of
the solvent. Figure 3 depicts a few possible cases where there are positive, negative, or
mixed signs of preferential solvation according to whether xy S(local) is above or below the
diagonal line. ’

Note that in all cases
if Xy -->0
o5 "> 0 Jorx =1 [2.12]
or Gpg - Ggg -=> O

The quantity which is left ambiguous in [2.11] is Vcor' Clearly, if we take a very large
correlation volume, we obtain

S ==> 0 for V --> =
cor

A,S
On the other hand for too small Vcor' the approximate equality of gAS(R) ~ 1 presumed in
[2.8] (for RZRC) will not hold. In practice, we can choose, for each specific system, a
reasonable Rc (and hence Vgop) according to the behavior of the functions gjj at large
distances.

Theoretically, however, we can get rid of Vcor by taking the first order term in the expan-

sion of & in [2.11] in power series about € = V -1. thus
A,S cor

6A,S =0+ ExAxB(GAS - GBS) oo [2.13]

We define the limiting linear preferential solvation as

(o]

GA,

é
S 37a,S
S€ €=0

= xAxB(GAS - GBS) [2.14]

. . o .
Since Xy Xp > 0, the sign of GA,S is determined by the sign of GAS GBS' and this is, of

course, independent of the correlation volume.

Thus, we have defined in [2.14] a quantity that unambiguously measures the preferential
solvation of S with respect to a two-component solvent. As noted earlier (5,6), GAS
As ~ Cas
between the affinities of S toward A and B. We next turn to the question of measurability
of the quantity Gag - Gps.

measures the affinity of S toward A, Thus, the difference G measures the difference

RELATIONS BETWEEN PREFERENTIAL SOLVATION AND MEASURABLE
QUANTITIES IN THREE- AND TWO-COMPONENT SYSTEMS

In this section we shall present the relationships between preferential solvation and
measurable quantities (ref. 7-10). The detailed deviations may be found in previous
articles.

For a three-component system in which S is very dilute in a mixture of A and B the result is
(ref. 9).

: 2
SAGY kT(p, +F)
lim | —2 - %(GBS - Gyg) [3.1]
Pg==>0 8x,/ P,T
where n = PA *pPg * ’OA’%(GAA + GBB - ZGAB) [3.2]

where AG* is the solvation free energy of S in our system (ref. 6).
S
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Thus, by measuring the slope of the sovation free energy as a function of X,, we can extract
the difference GAS - GBS' As we have seen in section 2, this is a measure of the limiting
preferential solvation of S with respect to A. Next we turn to a two-component system of A
and B.

Within the realm of the traditional concept of solvation thermodynamics, only very dilute
solutions could be treated. Therefore the concept of PS could have been dealt with only for
a three- (or more-) component system; a solute and a two-component solvent.

However, the question of PS can also be asked in a two-component system, say of A and B, At
any composition X,s We may focus on one A molecule and ask what is the PS of A with respect

to the two components, A and B in its immediate vicinity. Likewise, we may focus on one

B-molecule and ask the same, but independent, question of the PS of B with respect to the
two components of A and B.

Consider an A molecule, placed at the center of a spherical volume of radius Rc' For an

arbitrary radius Rc. the average number of A and B molecules in this sphere is given by

R
- [
Foa = A [e gmbmEiaR [3.3]
0
RC
Moo = P -/gB'A(R)’-MRZdR [3.4]
0

where Fk and PB are the number densities of A and B, respectively, and gas is the angular

averaged pair correlation function for fhe pair of species a and f. In the following treat-

ment we focus on a single A molecule to which we refer to as an A-solvaton (ref. 6). A

similar treatment applies to a B-solvaton.

For any radius Rc, we define the local mole fraction of A-molecules around an A-solvaton by
x4 AR = Ny J(R)/IN, 4(R) + Ny 4(R)] [3.5

As in the three-component case we define the PS of an A-solvaton with respect to A-molecules
simply by the deviation of the local from the bulk composition, i.e.,

Sa,a = *a,a(R) %y [3.6]

Using the same arguments as in section 2 we define

Np.a - x%(Gyy - Gpy)
6, r—RA . [3.7]
Na.a * Nga %58 * *g%p * Veor
similarly for the PS of B in the same system we have
NaB % xp(Gpp - Gpp)
6AB=-_————_——-XA= [3.8]
NaB * N %20 * *8%s * Veor

Note that GAB = GBA’ and that GA A and GA g are in general independent quantities but
GA,A = -GB,A and GB,B = -éA,B which follows from the definitions [3.7] and [3.8].

Since all the GaB are computable from thermodynamic quantities, using the inversion of the

Kirkwood-Buff theory of solution (ref. 8), one can compute 6a,4 and 8j B for any choice of
Ve.

In particular the linear coefficient of the PS are defined by

S G

°A.A = xy% (Gyy - Gpp) [3.9]
(¢}
s A,B xAxA(GAB Ggg) [3.10]
Thus, besides the product X Xp the difference GAA - GAB characterizes the linear coefficient
of PS of A, and likewise GAB - GBB characterizes the linear coefficient of the PS of B.



Preferential solvation in two- and in three-component systems 31

SOME REPRESENTATIVE RESULTS

In the following we have used as our main source of data, tables of Gij that were computed

by Matteoli and Lepori (ref. 11,12)., These tables were obtained by the inversion procedure
of the Kirkwood-Buff theory (ref. 8), using experimental data for mixtures of water and an
organic liquid, and similar mixtures of carbon tetrachloride with the same organic liquids.

In order to gain some feeling for the order of magnitude of the correlation distance, we
took the values of the effective molecular diameters as used in the scaled particle theory
(ref. 13). The following values of the diameters were used in our calculations:

water - 2.88, methanol - 3.3%, ethanol - 4.28, propanol - 4.6, n-butanol - 5.1%. We also
define the distance of closest approach between two different molecules as

, ' WATERMETHANOL
WATER-METHANOL WATER-METHANO
1 2 4
XaA Y2 Xag Y4 '
2
P
0 0
[} A 1 %
X x»
1
1 WATER-ETHANOL
WATER-ETHANOL
1
2.
" "2
%A Xas % /
1
° o -85
“ “ 0 » 1
XA XA XA
' 1 2000
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2. 1500
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% % 1 %
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Fig. 4. Preferential solvation in four systems of water (component A) and an organic liquid
(component B). [All at 25 °C and atmospheric pressure]. For each system (as
indicated in the figures) we present the local mole fraction of A around A, the
lgcal mole fraction of A around B and the linear coefficients in the preferential
solvation of both A and B. The various curves of Xy p and Xy p correspond to

different values of n, defined in equation [3.12]. The larger the value of n the
closer the corresponding curve to the diagonal line.
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Opp = (UAA + oBB)/Z [3.11]

where %pa and Opp are the effective molecular diameters of A and B, respectively. With the
above definition of Opp We define a series of correlation distances.

R, = o,p(n + 1)/2 [3.12]

Thus, n = 1 corresponds roughly to the first coordination sphere. We used values
n = 2,3,4,5 to compute Xp a (Rc). These were plotted in Figure 4 as a function of the bulk

mole fraction of water, X, in the various mixtures.

In all cases we found that for n = 6 the relative deviation (xA A(Rc)-xA)/xA becomes less

than 0.01, which we consider to be an effective limit of the correlation distance. In other
words, for Rg > 6oap the local composition approaches the bulk composition.

For each of the systems reported in Figure 4 we have also calculated the linear coefficient
of the PS of both A and B.

The case of water-methanol is outstanding in the sense that the PS of both water (component
A) and of methanol (component B) are positive in the entire range of compositions. This
means that at any composition, water molecules are preferred by both water and by methanol

as solvaton. The absolute magnitude is clearly larger for the PS of water around water as
compared with water around methanol.

In the case of ethanol we observe a still positive PS of water around water (this is actual-
ly the same behavior for all the systems studied in this report). However, the PS of water
around ethanol changes sign as the composition becomes more and more rich in water.

900~
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Fig. 5. Values of G11 - G12 for CClu (component 1) and an organic liquid (compound 2). The

curves correspond to: 1 - methanol; 2 - ethanoli 3 = n-propanol; 4 - n-butanol;
5 - THF; 6 - p-dioxane. All curves are for 25 C and atmospheric pressure.



Preferential solvation in two- and in three-component systems 33

This is not unexpected. Since 6°A B " -GOB B it follows that the PS of ethanol with respect
L] +

to ethanol becomes positive, in the water-rich region. This trend becomes even more
pronounced for the cases of propanol and n-butanol.

In Figures 5 and 6 we report similar data of G11 - G12 (1 being CClu and 2 the second

12 - G22. In all of the CClq-alcohol
curves we observe a maximum of the PS of CCly around CCly in the region of 0.7 < Xcc14 < 0.9
and a minimum of the PS of CCly around the alcohol. It should be noted that the values of

organic liquid as indicated in the captions) and of G

Gio - Gpp are almost an order of magnitude larger than the corresponding values of

Gi1 - G12. In contrast, the values of both Gjp - Gp2 and Gi; - G12 are nearly zero for the
CCly-THF and CCly~dioxane system. A small value of both G132 - G22 and Gi1 - G172 in the
entire range of concentration is indicative of a symmetrical ideal behavior of the mixture,

i.e. from

it follows

Gy * Gy =26, 70
i.e., the systems CClu-THF and CClu-dioxane behave very nearly as symmetrical ideal solu-
tions.
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Fig. 6. Values of G12 - 022 for the same systems as in Figure 5.
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