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Abstract - A general overview about the usefulness of the 
theory of fuzzy sets for solving problems in the field of 
data analysis and analytical reasoning as well as for using 
neural networks for knowledge processing in analytical che- 
mistry is given. Recent results of the development of intel- 
systems for automated qualitative analysis in X-ray fluores- 
cence analysis and in ICP-atomic emission spectrosocopy are 
discussed. 

INTRODUCTION 

There is an increasing interest in Analytical Chemistry in 
developing intelligent systems that approach human analytical 
reasoning as close as possible and that enable analytical knowledge 
to be acquired automatically. 

Besides artificial intelligent techniques based on symbolic 
programming these goals can be pursued by applying the theory of 
fuzzy sets for matching the analyst’s way of reasoning and by neural 
networks to automate knowledge acquisition and interpretation. 
Although there is intensive research going on to combine techniques 
of fuzzy sets and neural networks [ l ]  the present paper will handle 
these two methods separately. 

It can be shown that basic operations of the theory of fuzzy sets 
can be used in analytical chemistry to solve problems, such as 
library searching, depth profile comparison or calibration with 
errors in signals and concentrations. The major area of applications 
for fuzzy logic, however, concerns the development of expert or 
intelligent systems, e.g. for spectra interpretation or reasoning in 
chemical data bases. An example for fuzzy reasoning is’given here 
for rule building in an expert system for automated qualitative 
analysis with X-ray fluorescence spectroscopy. 

Neural networks are studied in analytical chemistry with respect to 
pattern recognition, modeling and prediction, e.g. in multicomponent 
analysis or process control, to classification, clustering or 
pattern association. Based on the latter technique recent advances 
are reported for developing an expert system for qualitative ICP- 
atomic emission spectroscopy. 
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FUZZY LOGIC 
The theory of fuzzy sets was introduced by L.A. Zadeh [2] as an 
extension of classical set theory and Boolean logic. With common 
(crisp) set theory, an item is either a member of a set or it is 
not. For example an element is either a ’metal’ or a ’nonmetal’. In 
fuzzy set theory degrees of set membership allow to define a 
transition from membership to nonmembership. Thus, in our example 
the theory provides a tool to describe an element being both a 
’metal’ and a ’non-metal’ to a certain degree. 

Mathematically the concept of gradual membership of an item to a set 
can be formulated by a characteristic function, the membership 
function (m.f.), m(x), which assigns a value of 1 to every element x 
of the total population X (x E X )  that is a member of a subset A and 
a membership value of 0 to elements that are not members of A: 

1 if x e A  X c 0 if x c # A  X 
m(x) 

Fuzzy sets are then characterized by m.f.’s that allow values 
between 0 and 1, for example of the type: 

m(x) = [ 1 - exp[-c(x - a)2 3 (1) 

where a and c are constants that must be positive numbers (Fig.1). 

Membership functions can be based on experimental data, on experts 
knowledge or subjective aspects or they can be implemented by 
generating rules, e.g. in knowledge based systems. 

The operations on fuzzy sets can be understood as an extension of 
classical set theory. 

In Figure 2 fuzzy set operations for the union between two sets A 
and B ( A U  B), the intersection (A f l  B), the complement 71 of set A 
and the cardinality or power of a set A are demonstrated 
graphically. 
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Fig. 2 .  Operations on fuzzy sets 
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With these simple operations analytical problems have been solved 
with respect to multi-criteria decision making [3] or pattern 
matching in spectroscopy or chromatography [4]. 

Recently we applied these fundamental fuzzy set operations in an 
interpretation system for automated qualitative analysis in X-ray 
fluorescence spectroscopy [5]. The measured X-ray fluorescence 
spectrum is transfered to a line spectrum by using the 2nd 
derivative computed by a Savitzky-Golay digital filter and the 
resulting lines are fuzzified according to their variability (Fig. 
3). 

A 
Fig. 3. Comparison of a fuzzified sample spectrum with a crisp 
candidate reference spectrum by fuzzy intersection 

In the next step the membership funtions have to be unified as 
demonstrated in Fig. 3 by bold lines covering the membership 
funtions. Comparison of the measured spectrum to the library spectra 
of the elements from sodium (atomic number 11) to uranium (atomic 
number 92) is performed by fuzzy intersection. In this approach the 
library spectrum is assumed to be crisp. As the result of 
intersection discrete membership values are obtained that are 
aggregated by calculating the relative cardinality, i.e. the sum of 
the membership values normalized to the number of lines in the 
candidate reference spectrum. 

To aid analytical reasoning the theory of fuzzy sets is used in the 
sense of fuzzy logic and approximate reasoning. Fuzzy logical 
operations are defined for all the logical connectives known from 
classical (Boolean) logic, such as AND, OR, NOT or the implication . 
In most applications a fuzzy logical AND is defined by intersection, 
a fuzzy OR by the union, the NOT by the fuzzy complement and an 
implication (IF V=A THEN U=B) by the membership funtion over the 
Cartesian product A x B  represented by the minimum between the m.f.'s 
of A and B. 

Fuzzy logic has been mainly applied until now in the context of 
fuzzy control. In chemistry this idea has been used by Yamada [6] to 
control fermentation of coenzyme Q i o  based on monitoring cell mass 
with a turbidimetric sensor. In this way the very complex process 
that cannot be described by a mathematical model is controlled by 
some rules of thumb specified by fuzzy sets. 

In the above mentioned example of X-ray fluorescence analysis fuzzy 
logic can be used to specify the following types of rules: 

- The intensity ratio of Ka and KO-lines should be "about 5 " .  

- For elements with atomic numbers less than 20 the detection 
probability of KO -lines is "decreased heavily". 

- Resolution of L o 1  and Lo5 lines "decreases with increasing atomic 
numbers , 
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These rules are formalized in the usual manner as implications, e.g. 

I F  the line pair is K a , K n  THEN intesity ratio is "about 5 "  

The data "about 5" is represented here as a fuzzy number and the 
degree of membership of a measured intensity ratio is infered by 
applying Zadeh's compositional rule of inference [7]. 

Different schemes of reasoning can be applied, for example the 
theory of approximate reasoning as further developed by Yager [8]. 

Approximate reasoning has been already explored in analytical 
chemistry for reasoning about missing data/information in a data 
base on pH-indicators [ 9 ]  and is used at present for building an 
interpretation system in IR-spectroscopy. 

The concept of fuzzy theory is also used for data analysis in 
analytical chemistry. A difference to statistical data analysis can 
be understood as follows: a statistical (probabilistic) approach 
describes the set of potential outcomes on the basis of a certain 
distribution. The observation results is vague only before 
experimentation but is a determined object after sampling. In a 
fuzzy-set theoretic (possibilistic) approach the concrete 
observation is available only with a certain vagueness either due to 
the uncertainty of the data themselves or due to our description of 
the observed object by linguistic expressions. 
Because both types of observations can be specified as fuzzy sets 
data analysis can be carried out independent on the observation 
type, Up to now fuzzy data analysis has been applied to univariate 
and multivariate modeling [41, to pattern recognition problems [ l o -  
121 or to clustering of data [13]. For example, grouping of malt 
samples analysed for 9 physico-chemical parameters was performed on 
the basis of fuzzy clustering [13]. The advantage of fuzzy methods 
of clustering over conventional crisp cluster 
algorithms is the feasibility to assign a single object to more than 
one cluster simultaneously. 
By means of pattern recognition gasoline samples analysed by 
capillary gas chromatography can be matched to typical reference 
chromatograms of fuels in a library [14]. 

NEURAL NETWORKS 

Neural networks or parallel distributed processing is an alternative 
to sequential processing of knowledge as known from symbolic 
programming. In analogy to the human brain artificial neural 
networks consist of single units (neurons) that are interconnected 
by the so-called synapses. The typical network has layers of input 
and output units that are either connected directly or they are 
linked through one or several hidden layers (Fig. 4 ) .  

A i n p u t  f i e l d  F 

1. BAM layer 

2. BAM layer  

o u t p u t  f i e l d  Fg 

Fig. 4. The Bidirectional Associative Memory (BAM) as- 
an example for a neural network with two hidden layers. 
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Each unit sends its numeric output modified by inhibitory or 
excitatory weights (also called transition coefficients) to another 
unit so that the output of a unit is the input to another or to many 
other units. Usually, one single unit multiplies the inputs by the 
individual weights and sums them up. The resulting value is the 
activation value of the unit which is often modified by applying an 
appropriate transformation function. The activation value is then 
proceeded to other units by applying the appropriate weight. 

In contrast to classical AI-techniques where knowledge is 
represented explicitly in form of rules, with neural networks the 
knowledge is implicitly stored in the weights. By presenting a 
certain input pattern to the network the correct output units will 
be activated. 

Examples for applying neural networks in analytial chemistry are 
known for interpretation of IR spectra [14], for classification of 
1H NMR- [15], IR[16] or mass spectra [17,18], for identification of 
UV-spectra [191 or of odors based ln a quartz-resonator sensor array 
[203, for multicomponent analysis an the near infrared range [21] or 
with ion-selective electrodes [22]. 

These applications are based on the main feature of neural networks 
to allow (hetero-)associations to be learned between an input 
pattern, e.g. a spectrum, and an output pattern, that might contain 
structural or concentration information. Sometimes these 
associations are formulated as classification schemes where the 
output is related to the membership. to a certain class, e.g. the 
class of all aliphatic alcohols. 

Neural networks can also be used to group data in the sense of 
clustering or regularity detection, e.g. molecular spectra of 
chemically similar compounds should group into related clusters. 

The performance of the neural network heavily depends on the network 
architecture and on the implemented learning algorithm. Almost all 
of the applications use multi-layer perceptrons, i.e. networks with 
one or several hidden layers and the back-propagation algorithm as 
the learning strategy. 

An example of neural network application of a different approach is 
given here with the Bidirectional Associative Memory (BAM) [23] for 
interpretation of ICP- atomic emission spectra. 

The BAM consists of an input, an output and two BAM layers 
interconnected as given in Fig. 4. 
The ICP-spectrum is presented to the input layer and the output 
layer represents the appropriately encoded elements. Association of 
single elements with their related spectra is carried out in the 
encoding (training) phase. A feedback between the two BAM layers is 
possible so that imformation can flow in both directions. If for 
analysis of an unkown spectrum the sample spectrum is shown to the 
BAM input he output neurons representing the present elements should 
fire, 
For interpretation of ICP-spectra the original BAM was modified with 
respect to the neuron aggregation in order to account for the 
different importance of prominent and nonprominent lines. 
Aggregation is performed with the ordered weighted averaging (OWA) 
operator introduced by Yager [24] in a way that for an element at 
least two prominent lines and most of the remaining prominent lines 
should be found. By combining the qualitative results of the neural 
network output with a least squares methods based on the known 
sensitivities at the different lines a semi-quantitative analysis 
can be carried. 
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