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Abstract 
Numerous studies have demonstrated that the folding/unfolding transitions of globular 
proteins involve very few or no thermodynamically stable intermediate structures 
between the folded and unfolded states. Recently we have developed a hierarchical 
partition function formalism aimed at gaining an understanding of the cooperative 
nature of thermal transitions in proteins. The energetic terms in the partition function 
are correlated to structural properties of the protein, namely buried surface areas and 
number of residues. Using phosphoglycerate kinase and myoglobin as examples, it is 
shown that intermediately folded states are destabilized by two features: the 
unfavorable exposure of apolar surface area on regions of the intermediate structure 
remaining folded, and a decreased gain in configurational entropy for portions of the 
polypeptide chain which are adjacent to those regions remaining folded. 

INTRODUCTION 
One of the most striking features of protein folding is its high degree of cooperativity. Cooperative 
interactions essentially reduce to zero the probability of hundreds of thousands of partially folded 
intermediates with a potential to become populated during the folding process. From a mechanistic point of 
view, the most fundamental questions deal with the molecular origin of this cooperative behavior. How is 
the probability of thermodynamically stable intermediates reduced to negligible levels? Why do single 
domain proteins undergo two-state transitions? How do different domains in multi-domain proteins 
interact with each other and define specific foldinghfolding patterns? What are the mechanisms that give 
rise to specific folding intermediates like molten globules? etc. 

From a statistical thermodynamic standpoint, the development of a complete description of the 
foldinghnfolding equilibrium in proteins requires the specification of the system partition function, Q, 
defined as the sum of the statistical weights of all the possible states of the molecule ( Q=Cexp[-AG@TI ). 
There are two central elements in calculating the foldinghnfolding partition function from the protein 
structure. First is the identification and enumeration of all accessible states of the protein; and second is the 
assignment of a Gibbs free energy function to each of those states. 

The ensemble of all accessible conformational states of the protein is astronomical (-XN where X is the 
number of configurations per residue and N is the number of residues in the protein). Obviously, a 
complete enumeration of all the states in the partition function is a computationally intractable task. A 
sensible approach is to include in the partition function only those terms that have the highest probabilities 
and to use the crystallographic structure as a template to generate this sub-ensemble. 

The strategy that we have used to formulate the folding/unfolding partition function for a protein of known 
crystallographic structure is to define hierarchical levels of cooperative folding units. At the most 
fundamental level are those structural elements that exhibit a two-state behavior as a result of purely local or 
intrinsic interactions with respect to chain sequence, whereas at higher levels are those structural motifs that 
behave in this manner as a result of longer range interactions with more distant structural elements in the 
protein chain. a-helices inside proteins are examples of low order, and in many cases fundamental, 
cooperative folding units, whereas entire domains or even whole proteins may, under some conditions, 
behave as higher order cooperative folding units. We have used interaction specific three-dimensional 
contact plots calculated from crystallographic structures in order to identify cooperative folding units within 
proteins. 

The free energy of any particular state of the protein relative to that of the native state is the sum of several 
contributions, primarily: the disruption of contacts and exposure of apolar surfaces to solvent water; the 
disruption of polar interactions (hydrogen bonds and polar van der Wads) and the exposure of the polar 
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Fig. 1. Schematic of structural thermodynamic algorithms aimed at predicting protein 

surfaces to solvent water; the change in configurational degrees of freedom of the protein, and other more 
specific changes including the protonation of ionizable groups, salt bridges, disulfide bonds, or changes in 
the number of bound ligands. In principle, the contribution of each interaction to the free energy of 
stabilization can be evaluated from the crystal structure in conjunction with the fundamental thmodynamic 
values (AH, AS, and ACp) that characterize each type of interaction. Only recently, a sufficient 
experimental understanding of the magnitude of the individual forces that determine the stability of proteins 
has been gained. 

The statistical thermodynamic dissection of protein structure, together with the calorimetrically derived set 
of fundamental thermodynamic parameters provide a solid framework for the development of structural 
thermodynamic algorithms aimed at predicting protein stability and protein folding/unfolding cooperativity 
as illustrated in Fig. 1. 

stability and protein foldinghnfolding cooperativity. 

METHODS 

The hierarchical partition function 

As mentioned above the strategy employed here is to formulate the folding/unfolding partition function for 
a protein of known crystallographic structure and to define hierarchical levels of cooperative folding units. 
The partition function, Q, for any system is simply the sum of the statistical weights of all the accessible 
states of the system: 

Q = Cexp[-AGi / RT] (1) 

= CKi (la) 

where R is the gas constant, T is the absolute temperature in kelvin, and AGi is the difference in free energy 
between state i and the reference state. Here the reference state is chosen as the folded, or native, state of 
the protein. As regards foldingjunfolding transitions in proteins, the partition function can be written as: 

Q =  1 + Cexp[-AGi/RTj +exp[-AGD/RTl (2) 

= l+CKi + KD ( W  

where the initial term is the statistical weight of the native state, the final term is the statistical weight of the 
fully denatured state, and the middle term is the sum of the statistical weights of all the intermediate species. 

For small globular proteins, the surprising observation is that the partition function for the 
foldinglunfolding transition simplifies to the two-state partition function: 

Q = 1 + exp[dGD / RTJ 

= 1 +KD 

In other words the statistical weights for all intermediate species become negligibly small. How is this 
cooperativity obtained? 

In order to understand how the population of the intermediate states are reduced to nearly zero, the partition 
function can be decomposed in a hierarchical sense by considering the protein to be composed of 
fundamental cooperative units, and then considering the interaction between these units. This can best be 
understood by considering the system illustrated in Fig. 2. Here we have a protein composed of two 
cooperative units: 1 and 2. The intrinsic free energy difference of each cooperative unit is designated as 
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AGi and has a statistical weight of Ki, while the interaction between the cooperative units gives rise to an 
additional free energy terms, Agi, having a statistical weight $i. The partition function then is written as: 

STATE FREE ENERGY RELATIVEFREE STATISTICAL 

Fig. 2. Schematic representation of the energetic states for a protein composed of two cooperative units. 
(Adapted from Freire et al. (ref. 3)) 

It should be noted that in terms of normal equilibrium constants, ~1 = K1, K2 = K2 and K3 = K1K2. The 
condition for cooperativity is that $3 # $lh. If h = $ 1 4 ~  then the partition function reduces to that for two 
independent domains: 

Q = (1+Ki) (1+K2) ( 5 )  

On the other hand, when $1 and 4Q approach zero, then the partition function reduces to that for a two-state 
transition as given in Eqs. 3 and 3a. 

In general, any protein can be considered to be composed of n cooperative units, giving rise to a partition 
function of 2" terms. 

Q = 1 + cKi$ i  + KD$D (6) 

Furthermore, each cooperative unit can, if necessary, be considered as composed of more fundamentally 
cooperative elements giving rise to a nested partition function (ref. 1 - 5). The construction of the 
hierarchical partition function thus requires specification of cooperative units and assignment of quantitative 
values for the Ki and $i terms. 

In order to clarify the origins of cooperative foldinghnfolding behavior, each interaction term, $i, can be 
further partitioned into a term arising from the exposure of surface and disruption of bonds on the 
cooperative unit@) unfolded in state i, designated $'i, and a term arising from the additional surface 
exposed on that portion of the protein remaining folded, $*i which is referred to as the complementary 
region. 

Identification of cooperative units 

In principle, cooperative units can be defined at any level, from individual amino acid residues up to entire 
proteins in many cases. Regardless of the level of detail required, it is of interest to correlate the 
assignment of cooperative units with known structural features. In order to facilitate this we have made use 
of contact plots. The contact plot is constructed by computing the accessible surface area (ref. 6)  of each 
residue in a protein in the presence and absence of all its neighbors. The amount of surface area on a given 
residue x which is buried by a given residue y is then indicated in gray scale with no interaction being 
indicated as whife and interactions of 25 A2 or greater being indicated as black. The contact plot can be 
constructed for either the apolar, polar, or total surface areas. 
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The apolar contact plot for phosphoglycerate kinase (FGK) is illustrated in Fig. 3. The two domains of 
PGK are clearly visible in the contact plot as well as the interaction of the N and C domains. The figure 
clearly suggests that the N and C terminal domains could be considered as cooperative units giving rise to a 
partition function of four states as in Eq.(4). 
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Fig. 3. Apolar contact plot for phosphoglycerate kinase. 
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In contrast, Fig. 4 illustrates the apolar contact plot for myoglobin. It can be seen from the figure that no 
clear demarcation of domains is apparent. At a more detailed level, however, the individual helices are 
readily identified as the thick regions of contacts along the diagonal. If the eight helices are each considered 
as a cooperative unit, then the partition function will have 256 (2*) states. 

Calculation of energetic parameters 

In analyzing the energetics of foldinghnfolding transitions in proteins, there are three primary contributions 
that must be considered. These are the energetics resulting from the transfer of apolar surface from the 
protein interior into solvent water, the transfer of apolar surface from the protein interior into solvent water, 
and the configurational entropy change resulting from the greater degrees of freedom which the protein 
chain has available to it in the denatured state. Additionally, specific contributions such as ligand binding, 
the presence of disulfide bonds and protonation effects must also be included as necessary. 

It should be noted that the division of energetics used here differs somewhat from the standard division into 
the hydrophobic effect, hydrogen bonding, and configurational entropy. In our usage, the apolar 
contribution includes not only the restructuring of water around apolar groups exposed to solvent, but also 
the difference in van der Waals interaction of the apolar groups between the protein interior and water. 
Likewise, the polar exposure also includes not only the disruption of internal hydrogen bonds and 
subsequent formation of hydrogen bonds with solvent, but also any differences in van der Waals 
interactions. 

The free energy change for protein stability can thus be written as: 

AG = AGap + AGpl + AGconf + AGother (7) 
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Fig. 4. Apolar contact plot for myoglobin. 
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where the subscripts indicate: ap - apolar surface exposure, pol - polar surface exposure, conf - 
configurational entropy changes, and other - case specific contributions as described above. 

The free energy change for any interaction is a function of temperature according to the standard formula: 

AG = AH(TR) - T AS(TR) + ACP[(T-TR) - T In ( T / TR )] (8) 

where AH(TR) is the enthalpy change and AS(TR) is the entropy change, at the reference temperature TR, 
and AC is the heat capacity change. For convenience, we choose the reference temperatures for AH and 
AS as tiose temperatures at which the apolar contribution to the respective quantity is zero. These 
temperatures are designated TH* and TS*. With these reference temperatures, the free energy change is 
written as: 

AG = AH* - T AS* + (ACpap + ACp,wl )[(T-TH*) - T In ( T / Ts* )] (9) 

where AH* and AS* are the enthalpy and entropy changes at TH* and TS* respectively, and the subscripts 
ap and pol designate the apolar and polar contributions to the heat capacity change. Since, by definition, 
there is no apolar contribution to the respective thermodynamic quantity at the reference temperatures AH* 
is primarily the polar contribution to AH and AS* the configurational contribution to the entropy change. 

It has been shown that the energetics associated with the transfer of apolar or polar surface area into water 
is proportional to the accessible surface area (ASA) (ref. 5,7 - 9). Analysis of model compound transfer 
data and the existing protein thermodynamic database provide a set of fundamental thermodynamic 
parameters for relating buried surface area in proteins to the terms in Eq. (9) (ref. 4,5). 

A C ~ ~ ~  = 1.9 A~ (I K-' mo1-l) 

A C ~ , ~ ~ O ~  = -1.1 A,~ (J K - ~  mo1-l) 

AH* = 146 Awl (J mol") 

(10) 

(1 1) 

(12) 
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Residue AS* 
ALA 13 
ARG 13 
ASN 22 
ASP 21 
CYS 20 
GLN 18 
GLU 19 
GLY 23 
HIS 22 
ILE 20 

Residue AS* 
LEU 14 
LYS 14 
MET 16 
PHE 18 
PRO 13 
SER 18 
THR 22 
TRP 17 
TYR 21 
VAL 21 

APPLICATION TO PHOSPHOGLYCERATE KINASE 

The procedures outlined above, along with Eqs. (9) - (16), allow for specification of the hierarchical 
partition function. As an example, consider the protein phosphoglycerate kinase (PGK). PGK is a 
globular protein of 415 residues with two clear structural domains (N and C) with a largely hydrophobic 
interface between them (ref. 12). The reversible folding/unfolding of PGK has been studied in GuHCl 
solutions (ref. 3, 13). The striking observation is that the thermal transition shows one peak in for the 
high-temperature (heat denaturation) transition at 40’C but two peaks in the low-temperature (cold 
denaturation) transition at 20’C indicating a large change in the cooperative free energy over a small 
temperature range. 

If each of the two domains is considered as a cooperative unit, then the partition function takes on the form: 

Q = 1 + K1@’1@*1+ K2@’2@*2+ K1 K2@’1@’2 (17) 

The interface between the two domains buries 1385 A2 of apolar surface area (726 A2 on the N domain and 
659 A2 on the C domain) and contains nine hydrogen bonds (ref. 5). In order to model the structural 
energetics of PGK under the experimental conditions, the effect of GuHCl must also be included. This has 
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Fig. 5. Experimental (circles) (ref. 15) and 
theoretical (bottom curve) heat capacity 
functions for the thermal foldingjunfolding 
transition of PGK at pH 6.5 in the presence of 
0.7 M GuHC1. The curves have been shifted in 60.0 

the vertical axis for display purposes. (Taken 
from (ref. 3)) 
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been done using the site binding model of Tanford (ref. 14) as previously described (ref. 3). Figure 5 
shows the calculated and experimental excess heat capacity plots for PGK in 0.7M GuHCl. It can be seen 
that the structural energetic calculations correctly predict the change in cooperativity between the heat and 
cold denaturation processes. 

The origins of this change in cooperativity over the 20'C are graphically illustrated in Fig. 6. In this figure 
the overall AG is shown as a function of temperature along with the free energy associated with the 
complementary surface exposed on either of the domains when the other is unfolded, AG*. The overall AG 
crosses zero at two points corresponding to the heat and cold denaturation temperatures. It can be seen that 
at the heat denaturation temperature the AG* terms are large and positive, while at the cold denaturation 
temperature they are nearly zero. 

The AG* terms arise from the exposure of the apolar complementary surface previously buried by the 
domain which is unfolded. While the unfolding domain is also exposing apolar surface, the unfavorable 
free energy associated with this is compensated for by the configurational entropy change gained upon 
unfolding. In contrast, there is no significant corresponding gain in configurational entropy for the 
complementary surface exposed on the remainder of the protein. This uncompensated complementary free 
energy is a primary source of cooperative foldmghnfolding behavior. 

APPLICATION TO MYOGLOBIN 

The hierarchical partition function formalism can be extended to greater detail than illustrated in the above 
case of PGK. Figure 4 shows the apolar contact plot for myoglobin. As mentioned above, the eight 
helices, generally referred to as A-H, can each be considered as cooperative folding units giving rise to 256 
states in the partition function. The terms in the partition function are determined from the crystallographic 
structure by analyzing the polar and apolar surfaces buried within each helix and between each pair of 
helices (ref. 2). This analysis leads to the excess heat capacity function in Fig. 7, which closely matches 
the experimentally determined function. 

Fig 6. Calculated overall free energy of stabiliz- 
ation (AGmtai) for PGK under the same 
conditions as Fig. 5. The curve displays two 
zeros, corresponding to the temperatures of cold 
and heat denaturation. Also shown are the 
cooperative Gibbs free energies (AG*) associated 
with the uncompensated exposure of apolar 
surfaces upon unfolding of each of the domains. 
(Taken from (ref. 3)) 
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Fig. 7. Predicted excess heat capacity function 
versus temperature for myoglobin. The curve 
simulates the experimental curve obtained at 
pH 3.83 by Privalov et al. (ref. 16). Under 
these conditions both the cold and heat 
denaturation curves can be studied experimentally. 
The predicted values are Tm,wld = 277 K, 
Tmhat = 331 K AH = 247 kJ mol-1; ACp = 10.3 
kJ K-1 mol-1. The experimental values are Tm, 

mol-1; A% = 10.5 kJ K-1 mol-1 (ref. 16). 
paken from (ref. 2)). 

cold = 276 K, Tmbat = 330.7 K, AH = 222 kJ 

* 
Temp 1 'C 

Analysis of the partition function indicates that the sum total population of the 254 intermediate states is 
never greater than 10-6 in the transition region (ref. 2) indicating that the transition is very well represented 
as two-state. This cooperativity arises, to a large extent, from the uncompensated complementary surfaces 
exposed in each of the intermediate states. It is only in the fully unfolded state that there is a corresponding 
gain in configurational entropy for all the apolar surface exposed. Additionally, cooperativity also arises 
from the fact that when a helix within the protein unfolds while the rest of the protein remains intact, the 
configurational entropy gained by those residues is less than when that region of the protein gains when the 
entire protein unfolds (ref. 2). This results from the necessity of keeping the ends of the chain fxed to the 
folded portion of the protein. The additional configurational entropy gained upon complete unfolding 
constitutes an extra source of cooperative free energy. 

CONCLUSIONS 

The hierarchical partition function analysis discussed here represents a novel approach to connecting 
structural and energetic features of proteins and utilizing these structural energetic features to address a 
specific problem in protein folding; namely, why do globular proteins undergo highly cooperative 
foldinghnfolding transitions. The examples illustrate that cooperativity has two primary sources. These 
are the uncompensated exposure of the complementary surface which accompanies all folding intermediates 
but is absent in the fully folded and unfolded states, and the additional configurational entropy gained by 
the unfolding of a region of a protein when the ends of that region are not fxed. 
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