
Pure &App/. Chern., Vol. 67, No. 4, pp. 519-526, 1995. 
Printed in Great Britain. 
Q 1995 IUPAC 

Solubility in fluids close to their critical points 

Roberto FernAndez-Prini 

Departamento Quimica de Reactores, Comisi6n Nacional de Energia Atdmica, 
Av. Libertador 8250, CP-1429 and Instituto de Quimica Fisica de Materiales, 
Ambiente y Energia, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad 

Universitaria, CP-1428, Buenos Aires, Argentina. 

Abstract A feature of solubility in near-critical fluids is its strong dependence on 
pressure and temperature. A general thermodynamic procedure which describes 
the distribution of solutes between two coexisting phases, may be conveniently 
employed to describe solubility in near-critical fluids. Asymptotic critical rela- 
tions are a great help to evaluate data for volatile solutes, for solid solutes they 
help to separate contingent dependences of solubility from those which are es- 
sential. This analysis suggests there is no need to invoke the existence of critical 
clustering to explain the observed behaviour. 

INTRODUCTION 
In order to describe completely the gaseous and liquid states of matter, it is essential to have a 
knowledge of the thermodynamic region surrounding the critical point. Dilute multicomponent fluid 
systems in the vicinity of the solvent’s critical point exhibit a behaviour which is very different from 
that of solutions under ordinary conditions. This peculiar behaviour, due to the superposition of the 
enhanced solvent susceptibility (long range effect) with the changing fluid density which affects the 
short range intermolecular interactions, offers a challenge to the Physical Chemistry of Solutions. 
Moreover, these systems are attracting an increasing interest due to the ever more frequent use 
of supercritical fluids as suitable reaction media for many chemical processes. Solubility and its 
temperature and pressure dependences are important thermodynamic quantities to characterize the 
intermolecular interactions‘ responsible for the physicochemical behaviour of near-critical solutions. 
The experimental determination of solubilities becomes increasingly difficult when T -+ Tcl , this 
effect is particularly disturbing when the solubility of gases along the solvent liquid-vapour coexistence 
curve is being determined because at  T = Tcl the two coexisting fluid phases become identical. 

When dealing with near-critical mixtures it is necessary to establish which is the most convenient 
manner of describing their thermodynamic behaviour. The properties of these mixtures are dom- 
inated by density and solute partial molar quantities become inadequate to express the observed 
behaviour because they diverge at  infinite dilution and at the solvent’s critical temperature, Tcl; a 
feature that has often been interpreted as the result of c l u s t e r i n g  of solvent molecules around solute 
particles. It is convenient to discuss solubility in near-critical fluids as a special case of the distribu- 
tion or partition of substances between the solution and another phase, which may correspond to a 
pure solute phase, e.  g .  for solid solutes. 

SOLUBILITY MEASUREMENTS AND DISTRIBUTION CONSTANTS. 
For the case of volatile (gaseous) solutes, the dissolution process is usually described in terms of 
Henry’s constant, kg, defined by the infinte dilution ratio of the solute fugacity, f2, to its mole 
fraction, z, in the liquid, 

Icg = lim - 

In order to calculate Icg from ( p , T , z )  it is necessary [1],[2] to use an equation of state for the 
gaseous mixture, to take explicit account of the pressure dependence (Poynting effect) and of the 
solute nonideality, these corrections[2] have increasing influence in the determination of Henry’s 
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constant as T Tcl. To calculate them it is necessary to use an iterative semiempirical method, 
thus the uncertainty of k g  becomes quite significant already at 100 K from Tcl[3]. Figure 1 is a plot 
of the high temperature ln(kg/pe) for the systerii NZ-H20 as function of the temperature[3][4]. Fig. 
1 shows that the Poynting and non-ideality corrections to kg, which have opposite sign, become very 
large with increasing temperature, so that the resulting values of kg in the high temperature range 
become more uncertain. One last point to be noted is that the change of In kg with temperature along 
the coexistence curve diverges at the critical point as illustrated in Fig. 1; thus, small temperature 
fluctuations will perturb significantly the equilibrium. 
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Figure 1. ln(kg/GPa) against tem- 
perature for Nz in water close to Tcl [3]. 
0 :  final values of kg. 
Curve a: without Poynting correction. 
Curve b: without correction for liquid 
noni deali ty. 
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Figure 2. Isobaric and isothermal vol- 
umetric solubility (p2  xp;)  of I2 in 
supercritical Xe. [5] 
*:(T/Tcl) = 1,031. @:(p/pcl) = 1.23. 

We have studied the solubility of several polar and nonpolar solid solutes in near-critical solvents. 
Figure 2 shows a representative example of the isobaric and isothermal solubilities of solid I2 in 
supercritical Xe as function of T and p respectively. It is quite clear that the ( p ,  T)  dependence of 
solubility is very strong in the region where the solvent’s susceptibility or expansivity pass through 
extrema (indicated by arrows in the Fig. 2). The consequence of this behaviour is illustrated in 
Figure 3, where the solute’s partial molar volumes at  infinite dilution obtained from the pressure 
dependence of solubility are plotted against solvent density for the systems SFG-CHI~ and CHF3- 
CHI3. It has been frequently 
observed that density is a more natural variable than pressure or temperature for fluids far from 
their triple points[7][8]. However for isobaric runs the density dependence of solubility still shows an 
inflection point. It has been suggested [9] that the isobaric solubility may be understood simply by 
considering that the behaviour in the low and high fluid density regions is that characteristic of gases 
and liquids respectively, while around the critical density the behaviour of the solution is dominated 
by the enhanced susceptibility of the near-critical solvent. 

When considering the solubility of solid solutes it is important to divide the dissolution process in 
two steps. In the first step the solid is vaporized at (T,p) and in the second step the vapour is 
dissolved in the near-critical solvent. In this way it is possible to use the same scheme to analyze 
the solubility of condensed pure phases and of gases. The enhancement factor defined by the ratio 
of the actual solubility to the ideal solubility, that is, 

This behaviour is also found by direct density measurements[6]. 

is a convenient quantity which takes account of the second step in the dissolution of a solid. Due 
to the fact that the use of & eliminates the contribution of the increase of the solid solute vapour 
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pressure with temperature, which is significant a t  low density, E is a monotonous function of the 
reduced density for isobaric as well as for isotherrpal runs[9] as illustrated below. 

The concept of solubility implies that the solute in a solution is in equilibrium with that contained 
in another phase, this may be another mixture or a pure solute condensed phase, often a solid. Thus 
solubility is a particular case of the equilibrium of partition or distribution of a solute between two 
phases. The advantage of the generalization is that the same thermodynamic formalism ( v ide  infm) 
may be used to describe both processes. The distribution constant is defined as the ratio of y,  the 
concentration of solute in the second phase v, to that in the fluid phase at  infinite dilution, 

Y KO = lim - 
x-0 x (3) 

KO is related to the difference of standard chemical potential of the solute in the two coexisting 
phases, 

The enhancement factor for a solid solute may be expressed by the ratio 
R T  In I(0 = p r ( f l )  - p r ( v )  (4) 

where Kg is the distribution constant of the solute in the ideal gas state. For gaseous solutes, Henry's 
constant is related to IC ,  by,[2] 

where 
k z  = KD p ;  ( 5 )  

is the solute's fugacity coefficient a t  infinite dilution. 

Upper line, N2-H20 system; lower line 
C02-H20 system. 0: from gas solu- 
bility in ref [3] and [2]; +: from eq(8) 
using data in ref [3] and [13]; 0 :  from 
gas solubility data in ref [12]; H: same 
as previoy with nonideality correc- 

Figure 3. (V2m/V;) against ( p ; / p c l )  
for (T/TcI) = 1.014. 
0: CHIS in CHF,[10]. A: CHIS in 
SF6[11]. The vertical bars indicate the 
uncertainty of the calculated points. 

tion ( c 5  text). 

THERMODYNAMIC DESCRIPTION OF PARTITIONING AND 
ASYMPTOTIC CRITICAL BEHAVIOUR. 
The necessity of employing an iterative procedure to determine kz close to Tcl, which requires the 
use of a model, moved us to look for an alternative procedure to describe the solubility of gases 
in liquids which could lend support to  the results obtained with the iterative procedure. The use 
of the alternative procedure described in this work, together with the knowledge of the asymptotic 
critical behaviour of the system, has proved a poweful procedure. We have extended the use of the 
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asymptotic relationships to evaluate the solubility of solids in near-critical fluids, it enables a better 
choice of thermodynamic variables avoiding the use of quantities having strong ( p ,  T) dependences. 
It is usual to start the thermodynamic analysis of phase equilibria in multicomponent mixtures with 
the condition that the chemical potentials of every species is the same in all the coexisting phases. 
The expressions resulting from this procedure are usually cumbersome when the systems are close 
to a point where two fluid phases become identical[l4], e.g. azeotropes and critical points. A very 
convenient and, in many cases, powerful route to  the distribution of solutes between two fluid phases, 
is obtained from the Gibbs-Konowalow relationships[l5], 

where the subscripts 1 and 2 denote solvent and solute respectively. Writing explicitly dpi in terms 
of ( T , p , z )  and using the Gibbs-Duhem relation, it is possible to obtain the ratio of equilibrium 
concentrations at  constant temperature in terms of ( a p l d x ) ~ , ~ ,  

At infinite dilution eq ( 7 )  becomes, 

The very simple equation (8) which has the correct limit when T + Tcl, allows calculating 11‘0 from 
the change of total pressure with concentration in the liquid phase under conditions of coexistence 
of both fluid phases. When the solute is not volatile it is better to calculate the change of pressure 
with y;  thus, an expression may be obtained from eq (8) exchanging the two coexisting fluid phases. 

Levelt Sengers[lG] has shown the convenience of deriving the asymptotic critical behaviour from the 
classical Taylor expansion of the Helmholtz energy, A, and its derivatives, in this way no strong 
divergence of the first derivatives are observed. Thus, starting from,[9] 

the * superindex denotes pure substance and the subscripts indicate the variables of differentiation. 
When the path is isothermal or corresponds to the coexistence of two phases, the leading term in the 
expansion is the 6V term and an asymptotic linear dependence of p r  on solvent volume or density 
results, 

(11) 
A& 
PZ1 

P?(T,P) = P?’c - -6P 

Using this type of equations Japas and Levelt Sengers[l7] derived the asymptotic expressions for 
Herny’s constant, 

= A + B (p;(l) - pel) (12) 

and for KO, 
RTln KO = B (p;(l) - pI(g)) 

Considering the law of rectilinear diameters which is obeyed close to the solvent’s critical point,[l8] 

RT In KO = 2B (p;(l) - pc l )  (14) 

The B coefficient in eq (12) and (14) is related to the critical slope of the pressure as function of 
composition[ 151, 
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ANALYSIS OF SOME BINARY SYSTEMS 
i)  Distribution of volatile solutes The kg values for N2-H20 were determined by means of the 
iterative procedure starting from the values ( p ,  T ,  x) and using V2m and y: to correct for Poynting 
effect and solute nonideality, these two quantities were calculated with a hard-sphere perturbation 
method[2][3]. It was also possible to calculate KO with eq (8) using the 582 K and 612 K isotherms 
to obtain (ap/ax):,. Figure 4 shows the close agreement between the results of this calculation 
and the values of KO calculated from solubilities using the iterative procedure[3] and eq (5). Thus 
the results of the iterative procedure are fully supported by the distribution constants derived from 
the composition dependence of the vapour pressure. Another system of great practical interest for 
which there was some uncertainty about the solubility at high temperature is C02-H20[2]. In 1992 
Crovetto and Wood[l2] were able to determine kg very close to the critical temperature of water. 
These very valuable new data when plotted together with the rest of the available solubility data as 
T l n  Z(0 against solvent density (cf. eq (14)) did not appear to extrapolate to unity at Tcl (cf. Fig. 
4). We estimated the correction of the data of Crovetto and Wood[l2] due to C 0 2  nonideality[l5] 
and the values of li'~ were shifted towards the expected linear behaviour indicated by eq (14). This 
result, which also requires the use of the iterative procedure, was verified by the calculations of the 
distribution constant made with eq (8) using the information about the phase diagram obtained by 
Takenouchi and Kennedy[l3] as shown in Fig. 4. 

We have recently shown that it is posssible to give formulations covering the complete temperature 
range of existence of liquid water, for the distribution of ten weakly interacting gaseous solutes and 
for C02 between water and steam[l5]. These formulations were based upon the thermodynamic 
procedure described above (including the asymptotic relations) and on an expression proposed by 
Harvey and Levelt Sengers for the low temperature region[l9]. The procedure was applied only 
in the high temperature range for HC1, NH3 and H2S dissolved in water. In all the cases where 
it was possible, relationship (15) was verified within the experimental uncertainty of the involved 
quantities. The linear asymptotic range covered by eq (14) extends around 150 K from Tcl for 
the systems studied in ref([15]). This extended linear behaviour is due[9] to the great difference in 
volatility of the two components forming the binary system. In fact, the linear range is much smaller 
(only about 20 K) for the system H20-D20[14], supporting the contention that only when the term 
A$= = -(ap/ax)y' in eq (10) is very large, the linear range extends significantly. 

The generality of the alternative procedure may be judged from the fact that  it has also been applied 
successfully to the distribution of NaCl and KC1 between water and steam[l5]. 

iz) Distribution of solid solutes For the solubility of solid solutes in near-critical fluids it is also 
possible to obtain an asymptotic expresion, however its use is more limited than for the case of 
liquid-vapour distribution because no critical point between the two phases i n  equilibrium exists, 
so that only the asymptotic behaviour of the solvent may be introduced and not the condition that 
both phases become identical in some thermodynamic state. The asymptotic expressions for the 
solubility of solids in near-critical solvents which have been explored previously by Harvey[20], are 
used here mainly to choose the best way to represent the data, avoiding the use of strongly varying 
functions and thus helping to separate contingent factors from those which are essential. Using the 
condition of equilibrium between the solid and the near-critical solution, the following expression 
may be obtained,[9] 

where f,' is the fugacity and V ,  the molar volume of the solid solute. For slightly soluble substances 
deviations from nonideality may be neglected (y2 x l ) ,  then the solubility is given by, 

A:, RT In x = (p? - + RTIn (5) + [p(l) - pel] 
Pcl 
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where f ( T )  denotes a slowly varying function of temperature. Using this expression together with 
eq (2), a simple expression for R T l n E  may be obtained[9]. Figures 5 and 6 show representative 
examples of the enhancement factors of solids dissolved in near-critical solvents; it is true to say 
that some systems show more curvature than those illustrated in Fig. 5 and 6, but the majority of 
the systems we studied are well represented by the behaviour illustrated in the figures. It is quite 
notable that the curves in these figures show wide regions of linearity according to the equations 
derived above for the isobaric as well as for the isothermal solubilities. 

1400 I I 

0 

Figure 5. log& against (p;/pcl) for 
isothermal runs (T/Tcl)  = 1.03. 
.: 12 in Xe.[5]. m: CHI3 in CHF3[10]. 
FJ: I2 in CHF3[10]. 0: origin of coor- 
dinates. origin of coordinates. 

Figure 6. log & against ( p ; / p c l )  for iso- 
baric runs. 
.: 12 in Xe, (p/pcl) = 1.26.[5] 0:  
CHI3 in C2H4, (p/pcl) = 1.24[11]. 0: 

MICROSCOPIC PICTURE 
Near-critical dilute solutions exhibit some unusual features when compared to solutions near the 
solvent’s triple point, these include large enhancement factors and their (small) decrease with tem- 
perature, moreover differences in the solubility are emphasized in supercritical solvents when specific 
interactions are present[l0][21]. This behaviour has stimulated speculations about the meaning of 
partial molar solute properties diverging to plus or minus infinity ( c f ,  Fig. 3); a dramatic change 
of solvent density around the solute molecules, referred to as critical clustering, has been proposed 
to explain it. The analysis made in the present work, shows that the behaviour observed when 
the fluid density varies does not require invoking a new phenomenon. It is a consequence of the 
coupling of the strongly enhanced solvent susceptibility in this thermodynamic region, a long range 
effect, with the changes in local structure around the solute molecules introduced by the varying 
fluid density, a short range effect. This view is supported by studies of the microscopic structure 
prevailing in these fluid systems[9][22]. Many thermodynamic properties are related to integrals 
over the volume of functions which contain the pair distribution functions, gr3(r) [23], so they will 
diverge when gt3(r) has a long range tail. This is the situation which is frequently interpreted as 
a very large excess or defect of solvent molecules around the solute particle, but really there are 
no evidences of critzcal clustering around the solutes. Figure 7 shows the total correlation function 
h,z(r) = (gt2(r) - 1) for a model Lennard-Jones mixture (values of the molecular parameters are: 
( C ~ ~ / E I I )  = 2.0, (022/011) = 1.5, (ICT/e11) = 1.36) according to the Percus-Yevick approximation for 
(T/Tcl)  = 1.031 and densities which go from gas-like to liquid-like and include the critical density. It 
is evident that the number of first neighbours to the solute is not too much affected by the closeness 
of the solvent’s critical point, the long range tailing-off being its most notable feature and the reason 
for the divergence of the integral of hcZ(r) taken over all the system. For the case of gases, i . e .  
p; --t 0, the integral of h,2(r) is equal to the second (z -2) virial coefficient with changed sign. As the 
density increases, indirect interactions become more important giving rise to an incipient increase 
of h,z(r) beyond the first peak, as shown in Fig. 7. The fact that the first peak of h22(r) is higher 
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than that of h12(r)  is due to the stronger solute-solute compared to the solvent-solute interactions 
which correspond to the case of dissolution of solids in the near-critical fluids. The inset in Fig. 7 
illustrates the fact that the quantity I ( r )  = r2h12(r) has a long range tail which will cause divergence 
of those properteis involving an integral containing I ( r ) .  
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Figure 7. Total correlation functions 
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against the distance from a solute Figure 8. fi"," as function of the re- 
molecule (from [9]). Lower curves, duced density (from ref [ 9 ] ) .  Full sym- 
i = 1 ;  higher curves, i = 2. ( p T / p c l )  is bols, first neighbours; open symbols, 
0.0 -, 0.33 -*-*-.-, 1.02 - - -, second neighbours. 
1.33 - - - -. 

The relative excess fraction of particles i surrounding a central solute molecule, fie;', has been iden- 
tified as a relevant variable to establish the existence of critical clustering[9][22]. Figure 8 shows the 
effect of solvent density upon fg for first and second neighbours, this quantity passes through a 
sharper maximum for the (2-2)  case than for the (1-2);  the (1-2) interaction does not even produce 
a maximum for the excess fraction of first neighbour solvent molecules. For the excess fraction of 
solute, the maximum occurs a t  a density which is lower than the critical density, reinforcing the 
conclusion that effect of the short range microstructure is not coupled to the long-ranged critical 
fluctuations[24]. The maxima in the fi"," curves are due to indirect interactions, hence they are an 
incipient manifestation of a characteristic feature of dense fluids. Since the solute molecules have 
stronger interactions with each other than with a solvent particle, at low density it would be expected 
that f;; > f:;; as the solvent density increases, its molecules will occupy positions which on the av- 
erage are closer to the central solute. The solvent moiety surrounding the central solute particle 
provides a region where more solute or cosolvent may be preferentially attached. This may generate 
an incipient microheterogeneity and it could help to understand the importnat role of cosolvents in 
enhancing the solubility of solutes. 

CONCLUSIONS 
The general thermodynamic procedure presented to calculate and describe the distribution of solutes 
between two coexisting phases is a powerful tool which may be used over all the thermodynamic 
space, including near-critical regions. 

The procedure takes account of the asymptotic behaviour when the two coexisting phases have a 
critical point. 

Strong dependence of solute distribution or solubility on thermodynamic variables is avoided, ex- 
pressions with smooth dependence in thermodynamic parameters are produced. 
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The consequence of the analysis in the present work strongly suggest that  it is unnecessary to 
invoke the existence of phenomena like critical clustering, this is supported by microscopic structural 
calculations. 
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