CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2002, Vol. 74, No. 3, pp. 337-347

http://dx.doi.org/10.1351/pac200274030337

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure

Charles H. Kruger, Christophe O. Laux, Lan Yu, Denis M. Packan and Laurent Pierrot

High Temperature Gas Dynamics Laboratory, Mechanical Engineering Department, Stanford University, Stanford, CA 94305, USA

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Sainct F P, Lacoste D A, Kirkpatrick M J, Odic E, Laux C O: Temporal evolution of temperature and OH density produced by nanosecond repetitively pulsed discharges in water vapour at atmospheric pressure. J. Phys. D: Appl. Phys. 2014, 47, 075204. <http://dx.doi.org/10.1088/0022-3727/47/7/075204>
  • Soo Bak Moon, Cappelli Mark A.: Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air. J. Appl. Phys. 2013, 113, 113301. <http://dx.doi.org/10.1063/1.4795269>
  • Breden Douglas, Raja Laxminarayan L., Idicheria Cherian A., Najt Paul M., Mahadevan Shankar: A numerical study of high-pressure non-equilibrium streamers for combustion ignition application. J. Appl. Phys. 2013, 114, 083302. <http://dx.doi.org/10.1063/1.4818319>
  • Angeyo K.H., Golloch A.: Spectral excitation of dielectric matrix trace atomic and molecular species by atmospheric pressure sliding spark plasma. Eur. Phys. J. Appl. Phys. 2012, 58, 20803. <http://dx.doi.org/10.1051/epjap/2012110117>
  • Shakhatov V. A., Lebedev Yu. A.: Radiation spectroscopy in the study of the influence of a helium-nitrogen mixture composition on parameters of DC glow discharge and microwave discharge. High Temp 2012, 50, 658. <http://dx.doi.org/10.1134/S0018151X12050173>
  • Stoican O.S.: An atmospheric pressure plasma source driven by a train of monopolar high voltage pulses superimposed to a dc voltage. Eur Phys J Appl Phys 2011, 55, 30801. <http://dx.doi.org/10.1051/epjap/2011100184>
  • Bak M. S., Kim W., Cappelli M. A.: On the quenching of excited electronic states of molecular nitrogen in nanosecond pulsed discharges in atmospheric pressure air. Appl Phys Lett 2011, 98, 011502. <http://dx.doi.org/10.1063/1.3535986>
  • Pai David Z: Nanomaterials synthesis at atmospheric pressure using nanosecond discharges. J Phys D Appl Phys 2011, 44, 174024. <http://dx.doi.org/10.1088/0022-3727/44/17/174024>
  • Stancu G D, Kaddouri F, Lacoste D A, Laux C O: Atmospheric pressure plasma diagnostics by OES, CRDS and TALIF. J Phys D Appl Phys 2010, 43, 124002. <http://dx.doi.org/10.1088/0022-3727/43/12/124002>
  • Takahashi Yusuke, Kihara Hisashi, Abe Ken-ichi: The effects of radiative heat transfer in arc-heated nonequilibrium flow simulation. J Phys D Appl Phys 2010, 43, 185201. <http://dx.doi.org/10.1088/0022-3727/43/18/185201>
  • Pai David Z, Lacoste Deanna A, Laux Christophe O: Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime. Plasma Sources Sci Technol 2010, 19, 065015. <http://dx.doi.org/10.1088/0963-0252/19/6/065015>
  • Naidis G. V.: Simulation of streamer-induced pulsed discharges in atmospheric-pressure air. Eur Phys J AP 2009, 47, 22803. <http://dx.doi.org/10.1051/epjap/2009084>
  • Fang Z, Lin J, Xie X, Qiu Y, Kuffel E: Experimental study on the transition of the discharge modes in air dielectric barrier discharge. J Phys D Appl Phys 2009, 42, 085203. <http://dx.doi.org/10.1088/0022-3727/42/8/085203>
  • Luo Siqi, Denning C. Mark, Scharer John E.: Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas. J Appl Phys 2008, 104, 013301. <http://dx.doi.org/10.1063/1.2946718>
  • Naidis G V: Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses. J Phys D Appl Phys 2008, 41, 234017. <http://dx.doi.org/10.1088/0022-3727/41/23/234017>
  • Pai David, Lacoste Deanna A., Laux Christophe O.: . IEEE Trans Plasma Sci 2008, 36, 974. <http://dx.doi.org/10.1109/TPS.2008.924484>
  • Adamovich Igor V., Lempert Walter R., Rich J William, Utkin Yurii G., Nishihara Munetake: Repetitively Pulsed Nonequilibrium Plasmas for Magnetohydrodynamic Flow Control and Plasma-Assisted Combustion. Journal of Propulsion and Power 2008, 24, 1198. <http://dx.doi.org/10.2514/1.24613>
  • Messina D., Attal-Trétout B., Grisch F.: Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering. Proc Combust Inst 2007, 31, 825. <http://dx.doi.org/10.1016/j.proci.2006.07.169>
  • Nishihara Munetake, Adamovich Igor V.: . IEEE Trans Plasma Sci 2007, 35, 1312. <http://dx.doi.org/10.1109/TPS.2007.906440>
  • Lopez J.A., Echeverry D., Zambrano G., Castro L.F., Prieto P.: . IEEE Trans Plasma Sci 2006, 34, 115. <http://dx.doi.org/10.1109/TPS.2005.863123>
  • Pilla Guillaume, Galley David, Lacoste Deanna A., Lacas Franois, Veynante Denis, Laux Christophe O.: . IEEE Trans Plasma Sci 2006, 34, 2471. <http://dx.doi.org/10.1109/TPS.2006.886081>
  • Nemchinsky Valerian: Dissociation reactive thermal conductivity in a two-temperature plasma. J Phys D Appl Phys 2005, 38, 3825. <http://dx.doi.org/10.1088/0022-3727/38/20/008>
  • Rahman A, Yalin A P, Surla V, Stan O, Hoshimiya K, Yu Z, Littlefield Eric, Collins G J: Absolute UV and VUV emission in the 110–400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air. Plasma Sources Sci Technol 2004, 13, 537. <http://dx.doi.org/10.1088/0963-0252/13/3/021>