Air Pollution Profile of Turkey

As is the case with all environmental problems, the two primary causes of air pollution in Turkey are urbanization—which has been rapid since the 1950s—and industrialization. Before industrialization more than 80% of the population lived in rural areas; now more than 60% live in the cities and industrial complexes. Among the developments contributing to air pollution in the cities are incorrect urbanization for the topographical and meteorological conditions, incorrect division of urban land into lots, low quality fuel and improper combustion techniques, a shortage of green areas, an increase in the number of motor vehicles and inadequate disposal of wastes.

An environment law was brought into effect in 1983. Air pollution standards are determined by the Prime Ministry Environment General Directorate; the pertinent regulation was brought into effect on 2 November 1986. Emission limit values relate mainly to SO\textsubscript{2}, CO, NO\textsubscript{x}, NO, O\textsubscript{3}, total suspended particulates (TSP), hydrocarbons, lead, cadmium and thallium.

Combustion of coal and various kinds of heating oil cause excessive air pollution in Istanbul, Ankara, Bursa and Erzurum during the winter months. Cities in Turkey with significant levels of SO\textsubscript{2} and TSP in the winter months of 1990–94 are shown in Figs 1 and 2.

Table 1

<table>
<thead>
<tr>
<th>Industry</th>
<th>Particulate matter</th>
<th>SO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power plants</td>
<td>3940 000</td>
<td>1430 000</td>
</tr>
<tr>
<td>Iron & Steel</td>
<td>3330 000</td>
<td>–</td>
</tr>
<tr>
<td>Cement</td>
<td>2270 000</td>
<td>32 000</td>
</tr>
<tr>
<td>Sugar</td>
<td>290 000</td>
<td>49 000</td>
</tr>
<tr>
<td>Metal</td>
<td>5200</td>
<td>30 000</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>14 000</td>
<td>30 000</td>
</tr>
</tbody>
</table>

Fig. 1 Average concentration of total suspended matter in 1990–94 winter months in some cities (µg/m3)

Although attention has been given in recent years to the problem of air pollution created by industrial installations, only 6.3% of existing plants have installed necessary equipment to prevent environmental pollution.

Industrial sources of air pollution in Turkey are mainly the fertilizer, iron and steel, paper and cellulose, sugar, cement, textile, petrochemical, pesticide, leather and energy production industries. Average yearly levels of SO\textsubscript{2} and total suspended matter emitted by the main polluting industries are given in Table 1.

Fig. 2 Average concentration of SO\textsubscript{2} in 1990–94 winter months in some cities (ppm)

Concentrations of O\textsubscript{3}, NO\textsubscript{x}, SO\textsubscript{2} and particulate matter were measured in the Uludag National Park, well known as a ski resort and the highest mountain of west Turkey. The aims of these measurements were to track the transportation of the main air pollutants from Europe to Turkey and to investigate the influence of acid rain on the forest of the Uludag National Park (a Eurotac project).

Fig. 3 The concentration of O\textsubscript{3} between 1993–94 which is measured in Uludag National Park (ppm)
An air pollution monitoring station was set up in the Sariyalan region (40°10' N 20°08'E) of the Uludag National Park. Ozone concentrations were measured under various meteorological conditions for two years from March 1993 to 1995. During the summer months, the ozone concentrations were rather high due to the transport of photochemically produced ozone precursor gases from the urban and industrial areas. Ozone peaks observed during the night were due to stratospheric injection. Figure 3 shows the concentrations of ozone measured in the Uludag National Park between 1993 and 1994.

References

1 Environmental Profile of Turkey. Air Pollution. Environmental Problems Foundation of Turkey Publication, 1995, pp. 39–89.

Ülviye Özer, Rahmiye Aydin and Hasan Akçay
Department of Chemistry, Uludag University, Bursa, Turkey

News

Relocation of IUPAC archival material

In the previous issue of Chemistry International (September 1997, pp. 161–163), details were given of the transfer to the Chemical Heritage Foundation (CHF) in late 1996 of much of the IUPAC archival material collected at Oxford over the past nearly 30 years.

In September 1997, E.W. (Ted) Godly, Secretary (1989–93) of the Commission on Nomenclature of Organic Chemistry (CNOC), visited the IUPAC Secretariat at Oxford and deposited a set of minutes for meetings of CNOC during 1966–95, CNOC Secretarial correspondence during 1990–96, nomenclature queries during 1989–95, and draft recommendations for Revised Nomenclature for Radicals, Ions, Radical Ions and Related Species; Glossary of Class Names of Organic Compounds and Reactive Intermediates Based on Structure; and the Guide to IUPAC Nomenclature of Organic Compounds. This carefully consolidated material was passed to CHF with the final archival material from Oxford at the end of October (full details to be included in a future issue of Chemistry International).

‘White Book’ on endocrine disrupters

Retiring Officers of IUPAC Division Committees and Commissions and of Standing Committees are urged to send similar consolidated material to Elizabeth Swan, Director of Library Services, at the Chemical Heritage Foundation, 315 Chestnut Street, Philadelphia, PA 19106-2702, USA. Tel.: +1 (215) 925 2222 ext 226. E-mail: eswan@chemheritage.org.

In recent years, the hypothesis has been raised that certain chemicals in the environment originating from agricultural, domestic, industrial and natural resources might adversely affect the health of human and wildlife populations by interfering with endocrine (hormonal) systems.

Most of the evidence comes from studies with laboratory animals and observations on wild species. Evidence for effects in humans is far more controversial, or unconvincing, although some scientists have alleged that the public health may be harmed by exposure to low levels of a multitude of chemicals which mimic the function of female sex hormones called oestrogens. More research is needed to answer many questions raised by this hypothesis. However, there is yet no proof that any environmental oestrogen is impacting public health.

As IUPAC has contributed to the debate on the effect of chlorine and chlorine-containing compounds on the environment by publication of Volume 68, No 9, of Pure and Applied Chemistry, September 1996, we have begun preparation of an independent and unbiased publication on the ‘Endocrine Disrupter’ issue. Drawing upon scientific experts from around the world, and in cooperation with IUHPAR and IUTOX, we hope again to put into scientific perspective an issue which has important environmental, societal, economic and industrial implications.