CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 1998, Vol. 70, No. 4, pp. 903-910

http://dx.doi.org/10.1351/pac199870040903

Radical copper oxidases, one electron at a time

J. W. Whittaker and M. M. Whittaker

CrossRef Cited-by theme picture

CrossRef Cited-by Linking

  • Solomon Edward I., Heppner David E., Johnston Esther M., Ginsbach Jake W., Cirera Jordi, Qayyum Munzarin, Kieber-Emmons Matthew T., Kjaergaard Christian H., Hadt Ryan G., Tian Li: Copper Active Sites in Biology. Chem. Rev. 2014, 114, 3659. <http://dx.doi.org/10.1021/cr400327t>
  • Chatterjee Sudipta, Mandal Sutanuva, Samanta Subhas, Goswami Sreebrata: Bis(acetonitrile)bis(acetylacetonato)ruthenium(iii) mediated chemical transformations of coordinated 2-methylthioanilide. Dalton Trans. 2012, 41, 7057. <http://dx.doi.org/10.1039/c2dt30344b>
  • Basak Subhra, Sen Soma, Roy Partha, Gómez-García Carlos J., Hughes David L., Butcher Ray J., Garribba Eugenio, Mitra Samiran: Structural Variation and Magneto-Structural Correlation in Two New Dinuclear Bis(µ2-Phenoxo)-Bridged CuII Schiff-Base Complexes: Catalytic Potential for the Peroxidative Oxidation of Cycloalkanes. Aust J Chem 2010, 63, 479. <http://dx.doi.org/10.1071/CH09396>
  • Abad Jose M., Gass Mhairi, Bleloch Andrew, Schiffrin David J.: Direct Electron Transfer to a Metalloenzyme Redox Center Coordinated to a Monolayer-Protected Cluster. J Am Chem Soc 2009, 131, 10229. <http://dx.doi.org/10.1021/ja9026693>
  • Mathur Pavan: Activation of peroxyl and molecular oxygen usingbis-benzimidazole diamide copper (II) compounds. J Chem Sci 2006, 118, 553. <http://dx.doi.org/10.1007/BF02703953>
  • Whittaker James W.: The radical chemistry of galactose oxidase. Archives of Biochemistry and Biophysics 2005, 433, 227. <http://dx.doi.org/10.1016/j.abb.2004.08.034>
  • Shleev Sergey, Tkac Jan, Christenson Andreas, Ruzgas Tautgirdas, Yaropolov Alexander I., Whittaker James W., Gorton Lo: Direct electron transfer between copper-containing proteins and electrodes. Biosensors bioelectronics 2005, 20, 2517. <http://dx.doi.org/10.1016/j.bios.2004.10.003>
  • Neves Ademir, dos Anjos Ademir, Bortoluzzi Adailton J, Szpoganicz Bruno, Schwingel Erineu W, Mangrich Antonio S: Copper(II) complexes with {N,N′,N,N′-bis[(2-hydroxybenzyl) (2-pyridylmethyl)]-1,3-propanediamine}—H2bbppn: their suitability as models for the inactive form of galactose oxidase. Inorg Chim Ada 2003, 356, 41. <http://dx.doi.org/10.1016/S0020-1693(03)00319-0>
  • Liu Xiaoming, Barrett Simon A, Kilner Colin A, Thornton-Pett Mark, Halcrow Malcolm A: Syntheses of new hydroxy-[3.3]orthocyclophanes as models for the galactose oxidase Tyr-Cys cofactor. Tetrahedron 2002, 58, 603. <http://dx.doi.org/10.1016/S0040-4020(01)01175-9>
  • Tkac Jan, Vostiar Igor, Gemeiner Peter, Sturdik Ernest: Indirect evidence of direct electron communication between the active site of galactose oxidase and a graphite electrode. Bioelectrochem 2002, 56, 23. <http://dx.doi.org/10.1016/S1567-5394(02)00043-9>
  • Tkáč Ján, Navrátil Marián, Šturdı́k Ernest, Gemeiner Peter: Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microbiology Technology 2001, 28, 383. <http://dx.doi.org/10.1016/S0141-0229(00)00328-8>
  • OKELEY N: Novel cofactors via post-translational modifications of enzyme active sites. CHEM BIOL 2000, 7, R159. <http://dx.doi.org/10.1016/S1074-5521(00)00140-X>
  • Rothlisberger Ursula, Carloni Paolo: Ab initio molecular dynamics studies of a synthetic biomimetic model of galactose oxidase. Int J Quantum Chem 1999, 73, 209. <http://dx.doi.org/10.1002/(SICI)1097-461X(1999)73:2<209::AID-QUA14>3.0.CO;2-B>
  • McGuirl Michele A, Dooley David M: Copper-containing oxidases. Curr Opin Chem Biol 1999, 3, 138. <http://dx.doi.org/10.1016/S1367-5931(99)80025-8>