CrossRef enabled

PAC Archives

Archive →

Pure Appl. Chem., 2009, Vol. 81, No. 2, pp. 299-338

http://dx.doi.org/10.1351/PAC-REP-08-05-01

INORGANIC CHEMISTRY DIVISION

Teaching high-temperature materials chemistry at university (IUPAC Technical Report)

Giovanni Balducci1, Andrea Ciccioli1, Giovanni de Maria1, Fiqiri Hoda2 and Gerd M. Rosenblatt3

1 Department of Chemistry, University of Rome, La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma 34, Italy
2 SIMAP Laboratory, ENSEEG/LPTCM, Domaine Universitaire, B. P. 75, F-38402 Saint Martin d'Hères, France
3 Materials Science Division, Mail Stop 62B0203, E. O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720-8253, USA

References

  • 1. H. Fukuyama, Y. Waseda (Eds.). High-Temperature Measurements of Materials, Springer, Berlin (2009).
  • 2. H. L. Lukas, S. G. Fries, B. Sundman. Computational Thermodynamics: Assessing Thermodynamic Data and Creating Multicomponent Databases using the CALPHAD Method, Cambridge University Press, Cambridge (2007). See Chap. 9 for case studies.
  • 3. M. Hillert. Phase Equilibria, Phase Diagrams, and Phase Transformations: Their Thermodynamic Basis, 2nd ed., Cambridge University Press, Cambridge (2008).
  • 4. K. Hack (Ed.). The SGTE Casebook Thermodynamics at Work, 2nd ed., Woodhead Publishing, Cambridge, UK (2008). Illustrates how thermodynamic calculations can be used as a basic tool in the development and optimization of materials and processes of many types.
  • 5. B. D. Fahlman. Materials Chemistry, Springer, Dordrecht (2007).
  • 6. S. Bose. High Temperature Coatings, Butterworths-Heinemann, Oxford (2007).
  • 7. N. Birks, F. S. Pettit, G. H. Meier. Introduction to High Temperature Oxidation of Metals, Cambridge University Press, Cambridge (2006). Introduction to high-temperature oxidation of metals and alloys for students and professional engineers whose works demand familiarity with the subject. The emphasis is on understanding the fundamental processes involved in oxidation. Examples of the application of principles described are given.
  • 8. D. R. Gaskell. Introduction to the Thermodynamics of Materials, 4th ed., Taylor & Francis Kumar, New York (2003). Introductory text for students of materials science and engineering with underlying principles, their applicability, and worked examples. In particular, Chaps. 9–13 are relevant to the high-temperature thermodynamics of materials.
  • 9. G. Chiranjib. Chemical Metallurgy, Wiley-VCH, Weinheim (2003). Particularly relevant are Chaps. 2 and 4 dealing with mineral processing and pyrometallurgy.
  • 10. M. N. Rahaman. Ceramic Processing and Sintering, 2nd ed., Marcel Dekker, New York (2003).
  • 11. A. S. Khanna. Introduction to High Temperature Oxidation and Corrosion, ASM International (2002). For graduate and postgraduate courses on high-temperature corrosion, dealing with the basics and applications of high-temperature oxidation of metals and alloys in various environments.
  • 12. M. W. Barsoum. Fundamentals of Ceramics, revised ed., McGraw-Hill, Taylor & Francis/CRC Press, Boca Raton (2002).
  • 13. C. B. Alcock. Thermochemical Processes: Principles and Models, Elsevier Science & Technology Books (Publisher: Butterworth-Heinemann), Oxford (2001). A companion to Kubaschewski et al., Materials Thermochemistry, deals primarily with the kinetics and transport theory of high-temperature chemical reactions for students who have already absorbed basic courses in classical thermodynamics. It describes the application of physical and chemical concepts to processing and degrading metals, ceramics, semiconductors, plastics, and composites, from the atomic scale to that of industrial processes.
  • 14. M. H Van de Voorde, G. W. Meetham. Materials for High Temperature Engineering Applications (Engineering Materials), Springer Verlag, Berlin (2000). A survey describing requirements on materials operating in high-temperature environments and the processes capable of increasing the performance and the temperature limits in use of metals, ceramics, and composites. The major part deals with materials and their specific properties. For engineering and science students, researchers, and managers in industries. Good overview of high-temperature metals giving some of the background for how these materials came into common use. A good introduction for someone who is starting in this area.
  • 15. N. Eustathopoulos, M. G. Nicholas, B. Drevet. Wettability at High Temperatures, Pergamon Press (1999). Brings together current scientific understanding of wetting behavior gained from theoretical models and quantitative experiments. Considered are liquid metals or inorganic glasses in contact with solid metals or ceramics at temperatures of 500–2500 K. Information contained in the various chapters is useful for selection of suitable container materials of metallic and ceramic systems at high temperatures.
  • 16. A. Pechenik, R. K. Kalia, V. Priya (Eds.). Computer-aided Design of High-temperature Materials (Topics in Physical Chemistry), Oxford University Press, Oxford (1999). Collection of recent work from experimental and computational scientists on high-temperature materials, emphasizing the potential for collaboration. Features state-of-art materials modeling and recent experimental results.
  • 17. E. S. Machlin. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science, revised and updated ed., Giro Press, Croton-on-Hudson, NY (1999). Covers topics of materials science required for senior and graduate students.
  • 18. H. O. Pierson. Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications, 2nd ed., Noyes Publications, Norwich (1999). A description of principles, technology, and applications of CVD processes. Fundamentals described in Chaps. 1–3. Plasma and metallo-organic CVD are illustrated with many examples.
  • 19. L. Hae-Geon. Chemical Thermodynamics for Metals and Materials, ICP Imperial College Press, London (1999). Classical thermodynamics with CD-ROM for computer-aided learning. Primarily for students and graduate materials engineers, it is useful as well for students of chemical sciences.
  • 20. T. G. Grimvall. Thermophysical Properties of Materials, enlarged and revised ed., North-Holland-Elsevier Science B. V., Amsterdam (1999). Overview in a specific field of materials science: thermophysical phenomena. Primarily for graduate students in condensed matter physics, metallurgy, inorganic chemistry, or geophysical materials. Chaps. 7, 12–14, 16, and 17 are particularly useful.
  • 21. N. Saunders, A. P. Miodownik. CALPHAD: Calculation of Phase Diagrams. A Comprehensive Guide, Pergamon Materials Series, Pergamon/Elsevier Science, Oxford (1998).
  • 22. M. W. Barsoum. Fundamentals of Ceramics, McGraw-Hill, Taylor & Francis (1997).
  • 23. D. R. F. West. Ternary Equilibrium Phase Diagrams, 3rd ed., Chapman and Hall/CRC Press, Boca Raton (1997).
  • 24. J. J. Moore, H. J. Feng. “Combustion synthesis of advanced materials. Part I. Reaction parameters”, Prog. Mater. Sci. 39, 243 (1995). (http://dx.doi.org/10.1016/0079-6425(94)00011-5)
  • 25. J. J. Moore, H. J. Feng.“Combustion synthesis of advanced materials. Part II. Classification, applications and modeling”, Prog. Mater. Sci. 39, 275 (1995). (http://dx.doi.org/10.1016/0079-6425(94)00012-3)
  • 26. D. V. Ragone. Thermodynamics of Materials, Vols. I and II, Wiley MIT Series in Materials Science & Engineering, New York (1995).
  • 27. M. N. Rahaman. Ceramic Processing and Sintering, 2nd ed., Marcel Dekker, New York (1995).
  • 28. N. A. Gokcen, R. G. Reddy. Thermodynamics, 2nd ed., Plenum Press, New York (1996). Contains floppy disk for chemical equilibrium calculations with thermodynamic database for inorganic compounds. Classical thermodynamics with emphasis on its application chemical, materials, and metallurgical problems. For students and specialists in materials sciences, metallurgical engineering, chemical engineering, chemistry, and related fields.
  • 29. V. L. Stolyarova, G. A. Semenov. Mass Spectrometric Study of the Vaporization of Oxide Systems, John Wiley, Chichester (1994). Invaluable on fundamentals and applications of vaporization thermodynamics of oxide systems.
  • 30. O. Kubaschewski, C. B. Alcock, P. J. Spencer. Materials Thermochemistry, 6th ed., revised from Metallurgical Thermochemistry, Pergamon Press, Oxford, New York (1993). A classic dealing with practical applications of thermochemistry to the optimization of materials and materials processes. Contains many examples and problems and useful tables of thermochemical data. Warning: contains many typographical and other types of errors!
  • 31. H. O. Pierson. Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications, Noyes Publications, Park Ridge, NJ (1993). A review of the science and technology of the element carbon and its allotropes with a large amount of high-temperature chemistry of carbon.
  • 32. C. N. R. Rao (Ed.). Chemistry of Advanced Materials, IUPAC/Blackwell Scientific Publications, Oxford (1993).
  • 33. R. J. Borg, G. J. Dienes. The Physical Chemistry of Solids, Academic Press, New York (1992).
  • 34. A. Fontijn (Ed.). Gas-Phase Metal Reactions, North-Holland, Amsterdam (1992).
  • 35. D. A. Porter, K. E. Easterling. Phase Transformations in Metals and Alloys, 2nd ed., CRC Press, Boca Raton (1992). Designed for final year undergraduate and postgraduate students of metallurgy, materials science, or engineering materials, this is an ideal textbook for both students and instructors.
  • 36. R. W. Cahn, P. Haasen, E. J. Kramer (Eds.). Materials Science and Technology: A Comprehensive Treatment, 18 vols. See topics in Vols. 5 and 11.
  • 37. P. Haasen (Ed.). Phase Transformations in Materials, Vol. 5, Chap. 1, VCH, Weinheim (1991). Thermodynamics and phase diagrams of materials.
  • 38. M. Swan (Ed.). Structure and Properties of Ceramics, Vol. 11, Chap. 10, VCH, Weinheim (1994). High-temperature engineering ceramics.
  • 39. T. Ya. Kosolapova (Ed.). Handbook of High Temperature Compounds: Properties, Production, Applications, Taylor & Francis/Hemisphere Publishing, New York (1990).
  • 40. Z. A. Munir, J. B. Holt (Eds.). Combustion and Plasma Synthesis of High-Temperature Materials, VCH, New York (1990). Contributed by an international group of experts from a meeting in San Francisco, October 1988, and reporting on various aspects of current research and development activity in combustion and plasma synthesis of high-temperature materials.
  • 41. J. W. Hastie (Ed.). Materials Chemistry at High Temperatures, 2 vols. Humana Press, Clifton, NJ (1990). Selected papers based on Proceedings of IUPAC Sixth International Conference on High-Temperature-Chemistry of Inorganic Materials.
  • 42. T. J. Quinn. Temperature, 2nd ed., Academic Press, London (1990). Comprehensive treatment of the principles of temperature measurement over the range 0.5–3000 K.
  • 43. M. G. Hocking, V. Vasantasree, P. S. Sidky. Metallic and Ceramic Coatings: Production, High Temperature Properties and Applications, Longmans Scientific & Technical, Harlow, UK/ John Wiley, New York (1989).
  • 44. J. D. Gilchrist. Extraction Metallurgy, 3rd ed., Pergamon Press (1989).
  • 45. H. V. Boenig. Fundamentals of Plasma Chemistry and Technology, Technomic Publishing, Lancaster (1988).
  • 46. P. Kofstad. High Temperature Corrosion, Elsevier Applied Science, London (1988). Survey of main aspects and mechanisms of gas–metal reactions at high temperature. Descriptions and treatments of the principles of various corrosion phenomena are emphasized. Of value to those engaged in materials science, metallurgy, corrosion, and high-temperature materials and technology. Particularly useful: Chap. 1, parts of Chaps. 5, 6, 10, 11, 13, 14.
  • 47. E. Bullock (Ed.). Research and Development of High Temperature Materials for Industry, Elsevier Applied Science, New York (1989). Reports of a study carried out at the Joint Research Center, Petten, The Netherlands reviewing materials requirements in high-temperature technologies. Identifies priorities for research and development in the short-term future (approximately 10 years) of structural materials operating in major high-temperature technologies.
  • 48. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K. Nissen. Cohesion in Metals: Transition Metal Alloys, Vol. 1, North-Holland, Amsterdam (1988).
  • 49. A. Jones, B. D. McNicol. Temperature-Programmed Reduction for Solid Materials Characterization, Marcel Dekker, New York (1986). Course in phase equilibria designed for students in ceramic engineering and associated disciplines.
  • 50. P. C. Hayes. Process Selection in Extractive Metallurgy, Hayes Publishing, Brisbane (1985).
  • 51. R. J. Fruehan. Ladle Metallurgy Principles and Practices, Iron and Steel Society, now AIST, Warrendale, PA (1985).
  • 52. L. Condurier, D. W. Hopkins, I. Wilkomirsky. Fundamentals of Metallurgical Processes, 2nd ed., Pergamon Press (1985).
  • 53. V. I. Babushkin, G. M. Matveyev, O. P. Mchedlov-Petrossyan. Thermodynamics of Silicates, Springer Verlag, Berlin (1985). Theoretical and applied parts deal with the application of thermodynamics to the study of silicate systems.
  • 54. R. H. Doremus. Rates of Phase Transformations, Academic Press, New York/Elsevier, Amsterdam (1985). Introduction to kinetics of phase transformations and how rates of transformation control the properties of materials being processed.
  • 55. C. H. Bamford, C. F. H. Tipper, R. G. Compton (Eds.). Chemical Kinetics, Vol. 21, Reactions of Solids with Gases, Elsevier, Amsterdam (1984). Chap. 1 on oxidation of metals is particularly useful.
  • 56. J. L. Margrave (Ed.). Modern High Temperature Science, Humana Press, Clifton, NJ (1984). Collection dedicated to Leo Brewer on the occasion of his 65th birthday.
  • 57. F. A. Hummel. Phase Equilibria in Ceramic Systems, Marcel Dekker, New York (1984). Particularly adequate for use in teaching equilibria in ceramic systems at undergraduate level and enabling the student to move into highly specialized textbooks or treatises.
  • 58. C. G. Bergeron, S. H. Risbud. Introduction to Phase Equilibria in Ceramics, The American Ceramic Society, Columbus, OH (1984). An introductory text.
  • 59. E. Lang (Ed.). Coatings for High Temperatures Applications, Applied Science Publishers, London (1983).
  • 60. O. van der Biest (Ed.). Analysis of High Temperature Materials, Applied Science Publishers, London (1983). Lectures from a course organized by the Commission of the European Communities, J. R. C. Petten, The Netherlands, and aimed at analytical techniques appropriate to the study of high-temperature materials. Particular examples are given that are generally applicable to metallic and ceramic materials.
  • 61. C. H. P. Lupis. Chemical Thermodynamics of Materials, North-Holland, New York (1983). For graduate students and senior students in metallurgy and materials science who have had previous introductory courses in thermodynamics. Useful also to professional metallurgists, chemists, and chemical engineers. Most applications are for metals and alloys.
  • 62. T. Rosenqvist. Principles of Extraction Metallurgy, 2nd ed., McGraw-Hill, New York (1983). A paperback edition was published in 2004.
  • 63. D. R. F. West. Ternary Equilibrium Phase Diagrams, Chapman and Hall, London (1982).
  • 64. U. R. Evans. An Introduction to Metallic Corrosion, 3rd ed., Edward Arnold, London (1981).
  • 65. H. Schmalzried. Solid State Reactions, 2nd ed., Verlag Chemie, Weinheim (1981). Classic monograph providing quantitative understanding of solid-state reactions.
  • 66. H. A. J. Oonk. Phase Theory: The Thermodynamics of Heterogeneous Equilibria, Elsevier, Amsterdam (1981). Thermodynamic principles of heterogeneous equilibria, in particular the relation between phase diagrams and Gibbs energy.
  • 67. V. Guttmann (Ed.). Phase Stability in High Temperature Alloys, Applied Science Publishers, London (1981). Lectures of a course organized by the Commission of the European Communities, J. R. C. Petten, The Netherlands, that presents a summary of the relevant theoretical and practical aspects of metal structures with emphasis on their possible changes during use. Fundamental thermodynamic aspects and computational techniques of phase diagrams are dealt with.
  • 68. T. I. Barry (Ed.). The Industrial Use of Thermochemical Data, The Chemical Society Special Publ. No. 34, London (1980).
  • 69. B. W. Rossiter (Ed.). Chemical Experimentation Under Extreme Conditions, Vol. IX of Techniques of Chemistry, John Wiley, New York (1980). Relevant is J. L. Margrave and R. Hauge, “High temperature techniques”, Chap. 6, where generation, measurement, and utilization of high temperatures are reported in detail.
  • 70. K. J. Klabunde. Chemistry of Free Atoms and Particles, Academic Press, New York (1980). Deals with the chemistry of reactive species (atoms and molecules). Although these reactive species are generated at high temperatures, and the chemistry is that of high-temperature species, the reaction chemistry is usually studied at low or extremely low temperatures.
  • 71. E. T. Turkdogan. Physical Chemistry of High Temperature Technology, Academic Press, New York (1980). Fundamentals and applications, presented in compact and comprehensive form topics on the physical chemistry of materials and systems at elevated temperatures and pressures.
  • 72. Committee on High Temperature Science and Technology. High Temperature Science: Future Needs and Anticipated Developments, Assembly of Mathematical and Physical Sciences, National Research Council, National Academy of Sciences, Washington, DC (1979).
  • 73. P. Davidovits, D. L McFadden (Eds.). Alkali Halide Vapors: Structure, Spectra and Reaction Dynamics, Academic Press, New York (1979). Reviews and summarizes structural and spectral properties and gas-phase chemistry of alkali halides.
  • 74. R. H. Parker. An Introduction to Chemical Metallurgy, 2nd ed., Pergamon Press, Oxford (1978). Introduction to applications of thermodynamics and reaction kinetics to chemical metallurgical processes.
  • 75. G. S. Updhayaya, R. K. Dube. Problems in Metallurgical Thermodynamics and Kinetics, International Series in Materials Science and Technology, Vol. 25, Pergamon Press, Oxford (1977). Deals with basic metallurgical thermodynamics and kinetics with worked numerical problems. Advantageous for undergraduate and postgraduate students.
  • 76. F. P. Glasser, P. E. Potter (Eds.). High Temperature Chemistry of Inorganic Materials, The Chemical Society Special Publ. No. 30, London (1977).
  • 77. W. D. Kingery, H. K. Bowen, D. R. Uhlmann. Introduction to Ceramics, 2nd ed., Wiley-Interscience, New York (1976). A classical treatise on structure, phase equilibria, phase transformations, reactivity, and properties of ceramics.
  • 78. J. Szekely, J. W. Evans, H. Yong Sohn. Gas-solid Reactions, Academic Press, New York (1976). See Chaps. 5–8.
  • 79. R. Pampuch. Ceramic Materials: An Introduction to their Properties, Elsevier, Amsterdam (1976). See Chaps. 2 and 3.
  • 80. N. B. Hannay (Ed.). Treatise on Solid State Chemistry, Vols. 1–6, Plenum Press, New York (1974–1976). Discusses unifying principles in the chemistry, physical chemistry, and chemical physics of solids. Useful chapters of Vols. 4, 5, and 6A are: Volume 4, Reactivity of Solids, covers a great variety of “chemical reactions” in the broadest context. Particularly useful and relevant to HTMC are topics dealt with in Chap. 3 (“High-temperature reactivity”), Chap. 4 (“Decomposition reactions”), Chap. 5 (“Solid-state reactions”), and Chap. 8 (“Gas-solid reactions - Oxidation”). Volume 5, Changes of State, includes phase transformations which are at the heart of much of the chemistry and metallurgy of complex inorganic solids. Chapters relevant to high-temperature materials are topics in Chaps. 1–6 and particularly Chaps. 4–6. Volume 6A, Surfaces I, covers major surface phenomena. Particularly relevant to classical high-temperature chemistry is Chap. 3 where evaporation from solids is dealt with in a clear and thorough manner.
  • 81. A. Cottrell. An Introduction to Metallurgy, 2nd ed., Edward Arnold, London (1975).
  • 82. J. Hastie. High Temperature Vapors. Science and Technology, Academic Press, New York (1975). Reference monograph summarizing three decades of research efforts in characterizing and understanding high-temperature phenomena with emphasis on the vapor state.
  • 83. C. B. Alcock. Principles of Pyrometallurgy, Academic Press, London (1975). Deals with the application of high-temperature chemistry of individual metallic systems to various extractive unit operations in three major sections: reactions involving solids, metal extraction processes, metal refining processes. Essential reading for students of metallurgy and materials science and for those concerned with the science of metal-making at high temperature.
  • 84. G. Chaudron, F Trombe. Les Hautes Températures et leurs Utilization en Physique et en Chimie, 2 vols., Masson, Paris (1973). Reference treatise dealing with high temperatures and their utilization in science and industry.
  • 85. R. A. Swalin. Thermodynamics of Solids, 2nd ed., John Wiley, New York (1973).
  • 86. M. M. Faktor, J. Garrett. Growth of Crystals from the Vapour, Chapman and Hall, London (1974). Describes one of the most versatile, cheap, and widely used methods of growing crystals: chemical vapor transport. Particularly useful chapters on the thermodynamic basis of chemical vapor transport.
  • 87. A. G. Guy. Introduction to Materials Science, McGraw-Hill, New York (1972).
  • 88. T. B. Reed. Free Energy of Formation of Binary Compounds: An Atlas of Charts for High-Temperature Chemical Calculations, MIT Press, Cambridge (1971).
  • 89. A. W. Searcy, D. V. Ragone, U. Colombo (Eds.). Chemical and Mechanical Behavior of Inorganic Materials, Wiley-Interscience, New York (1970). Contains lectures presented at the First International Course on Materials Science, Tremezzo, Italy, September 1968. The first 19 chapters present a systematic development of the thermodynamic and kinetic principles that underlie the behavior of solids and illustrate applications of these principles to understanding chemical and mechanical processes. Of particular interest are Chaps. 1–6 and 13.
  • 90. R. A. Rapp (Ed.). Techniques of Metal Research, Vol. IV, Physicochemical Measurements in Metal Research, Parts 1 and 2, Wiley-Interscience, New York (1970). Covers the important techniques in the study of physicochemical properties of metallic materials. Particularly useful are chapters on VP methods, calorimetry, chemical equilibria, phase equilibria and transformations, electrochemistry, oxidation, and corrosion: Chaps. 1, 2A, 2B, 2C, 2D, 3A, 3B, 4A, 4B, 4C, 5A, 5B, 6A, 6B, 6C, 10A, 10B, Appendix.
  • 91. A. M. Alper (Ed.). Phase Diagrams: Materials Science and Technology, Academic Press, New York (1970). Treatise on phase diagrams contributed by various specialists.
  • 92. A. M. Alper (Ed.). Theory, Principles and Techniques of Phase Diagrams, Vol. I, Academic Press, New York (1970).
  • 93. A. M. Alper (Ed.). The Use of Phase Diagrams in Metal Refractory, Ceramic and Cement Techniques, Vol. II, Academic Press, New York (1970).
  • 94. A. M. Alper (Ed.). The Use of Phase Diagrams in Electronic Materials and Glass Technology, Vol. III, Academic Press, New York (1970).
  • 95. L. Eyring (Ed.). Advances in High Temperature Chemistry, Vols. 1–4, Academic Press, New York (1967–1971).
  • 96. N. A. Toropov (Ed.). Chemistry of High-Temperature Materials, transl. from Russian, Consultants Bureau, New York (1969).
  • 97. J. L. Margrave (Ed.). The Characterization of High Temperature Vapors, John Wiley, New York (1967). Collection of problems and techniques concerning characterization of high-temperature vapors based on the results of the first 25 years of high-temperature chemistry. All chapters useful; in particular Chaps. 2–8 on VP methods.
  • 98. I. E. Campbell, E. M. Sherwood (Eds.). High Temperature Materials and Technology, Electrochemical Society (Wiley), New York (1967). Useful topics found in Chaps. 1–4; 18–27.
  • 99. I. S. Kulikov. Thermal Dissociation of Chemical Compounds, English transl. from Russian, Israel Program for Scientific Translation, Jerusalem (1967).
  • 100. A. Prince. Alloy Phase Equilibria, Elsevier, Amsterdam (1966). Main text discusses binary, ternary, and quaternary systems. Binaries are treated in full, while ternaries and quaternaries more selectively.
  • 101. D. A. Young. Decomposition of Solids, Pergamon Press, Oxford (1966).
  • 102. H. Schaefer. Chemical Transport Reactions, Academic Press, New York (1964).
  • 103. A. W. Searcy. “High temperature inorganic chemistry”, Prog. Inorg. Chem., Vol. III, F. A. Cotton (Ed.), Wiley-Interscience, New York (1962).
  • 104. A. W. Searcy. “High temperature reactions”, in Survey Progress in Chemistry, A. Scott (Ed.), Academic Press, New York (1963).
  • 105. W. D. Kingery. Property Measurements at High Temperatures, John Wiley, New York; Chapman and Hall, London (1959). Presents description of measurements at high temperatures.
  • 106. J. O’M. Bockris, J. L. White, J. D. Mackenzie (Eds.). Physicochemical Measurements at High Temperatures, Butterworths, London (1959). Deals with various aspects (mainly experimental) of investigations in the field of high-temperature physical chemistry.
  • 107. P. Terzieff, A. Mikula, H. Ipser (Eds.). High Temperature Materials Chemistry XII, Proceedings of IUPAC-sponsored conference (HTMC XII), Vienna, 17–22 September (2006).
  • 108. Plenary lectures in Pure Applied Chemistry 79 (11) (2007).
  • 109. M. Yamawaki, A. Nakamura (Eds.). High Temperature Materials Chemistry XI, Proceedings of IUPAC-sponsored conference (HTMC XI), Tokyo, 19–23 May (2003); J. Phys. Chem. Solids 66, 219 (2005). (http://dx.doi.org/10.1016/j.jpcs.2004.08.048)
  • 110. K. Hilpert, F. W. Froben, L. Singheiser (Eds.). High Temperature Materials Chemistry X, Proceedings of IUPAC-sponsored conference (HTMC X), Juelich, Germany, 10–14 April (2000). Schrift. Forschungszentrum Juelich. Pure Appl. Chem. 72 (11) (2000).
  • 111. Metallurgical and Materials Processing Principles and Technologies, Yazawa International Symposium, Vol. 1: Materials Processing Fundamentals and New Technologies, TMS, Warrendale, PA (2003).
  • 112. K. E. Spear (Ed.). High Temperature Materials Chemistry IX, Proceedings of IUPAC-sponsored conference (HTMC IX), Pennsylvania State University. Electrochem. Soc. Proc. 97-39, The Electrochemical Society, Pennington, NJ (1997).
  • 113. J. W. Hastie (Ed.). Materials Chemistry at High Temperatures, Proceedings of IUPAC-sponsored conference, Chemistry of Inorganic Materials (HTMC VI), Gaithersburg, MD, USA, 2–3 April (1989); Pure Appl. Chem. 62 (1) (1990).
  • 114. G. De Maria, G. Balducci (Eds.). High Temperature and Energy-Related Materials, Proceedings of IUPAC-sponsored conference (HTMC V), Rome, Italy, 25–29 May (1987); High Temp.-High Press. 20, 1 (1988); Pure Appl. Chem. 60 (3) (1988). Also published as a book.
  • 115. G. De Maria, G. Balducci (Eds.). Fifth International Conference on High Temperature and Energy-Related Materials, Pion, London (1989).
  • 116. G. Rosenblatt, R. Scaggs (Eds.). High Temperature and Energy-Related Materials, Proceedings of IUPAC-sponsored conference (HTMC IV), Santa Fe, NM, USA (1984). High Temp. Sci. 19, 1; 20, 1 (1985); Pure Appl. Chem. 56 (11) (1984).
  • 117. P. E. Potter (Eds.). Chemistry of Materials at High Temperature, Proceedings of IUPAC-sponsored conference (HTMC III), Harwell, UK, 7–10 September (1981); High Temp.-High Press. 14, 1 (1982); Pure Appl. Chem. 54 (7) (1982).
  • 118. A. Pechenik, R. K. Kalia, V. P. Vashishta (Eds.). Computer-aided Design of High-temperature Materials (Topics in Physical Chemistry), Oxford University Press, Oxford, UK (1999). But this is a book, not conference proceedings.
  • 119. P. Nash, B. Sundman (Eds.). Applications of Thermodynamics in the Synthesis and Processing of Materials, Proceedings of symposium at Fall 1994 TMS meeting, Rosemont, IL, TMS, Warrendale, PA (1995).
  • 120. N. S. Stoloff, R. H Jones (Eds.). Processing and Design Issues in High Temperature Materials, Proceedings of conference, Davos, Switzerland (1996); Minerals, Metals & Materials Society (1998).
  • 121. B. C. H. Steele (Ed.). High Temperature Materials Chemistry, Proceedings of Charles Benjamin Alcock Symposium, Imperial College, London, October (1993); The Institute of Materials, London (1995).
  • 122. F. W. Poulsen, J .J. Bentzen, T. Jacobsen, E. Skow, M. J. L. Oestergard (Eds.). High Temperature Electrochemical Behavior of Fast Ions and Mixed Conductors, Proc. 14th Riso Int. Symp. on Materials Science, Roskilde, Denmark, 6–10 September (1993). Published by Riso National Laboratory, Roskilde, Denmark (1993).
  • 123. C. K. Mathews (Ed.). Thermochemistry and Chemical Processing, Kalpakkam, India (1989); The Indian Institute of Metals (1991). Dedicated mainly to thermochemistry of inorganic systems, high-temperature materials, and extractive metallurgy.
  • 124. V. A. Ravi, T. S. Srivatsan (Eds.). Processing and Fabrication of Advanced Materials for High Temperature Applications, Minerals Metals & Materials Society, Warrendale, PA (1992); Proc. TMS/ASM Fall Meeting, Cincinnati, OH, October 1991.
  • 125. Z. A. Munir, D. Cubicciotti (Eds.). High Temperature Materials Chemistry-III, Electrochem. Soc. Proc. 86-2 (1986).
  • 126. D. D. Cubicciotti, D. L. Hildenbrand (Eds.). High Temperature Materials Chemistry, Electrochem. Soc. Proc. 82-1 (1982).
  • 127. Z. A. Munir, D. Cubicciotti (Eds.). High Temperature Materials Chemistry-II, Electrochem. Soc. Proc. 83-7, The Electrochemical Society, Pennington, NJ (1983).
  • 128. J. L. Gole, W. C. Stwalley (Eds.). Metal Bonding and Interactions in High Temperature Systems, ACS Symposium Series No. 179, American Chemical Society, Washington, DC (1982). Based on a symposium on High-Temperature Chemistry held in Atlanta, Georgia, 31 March–3 April 1981, deals with current basic and applied research on metal bonding and interactions in high-temperature systems with emphasis on alkali metals.
  • 129. N. A Gokcen (Ed.). Chemical Metallurgy-A Tribute to Carl Wagner, symposium, 110th Annual Meeting, AIME, Chicago, 1981, The Metallurgical Society of AIME, New York (1981).
  • 130. J. W. Hastie (Ed.). Characterization of High Temperature Vapors and Gases, NBS Spec. Publ. 561/1-2, Washington, DC (1979).
  • 131. D. L. Hildenbrand, D. Cubicciotti (Eds.). High Temperature Halide Chemistry, Electrochem. Soc. Proc. 79-1, The Electrochemical Society, Princeton, NJ (1978).
  • 132. N. A. Gokcen, R. V. Mrazek L. B. Pankratz (Eds.). Workshop on Techniques for Measurement of Thermodynamic Properties, Albany, Oregon, BuMines IC 8853 (1979).
  • 133. P. Barret (Ed.). Reaction Kinetics in Heterogeneous Chemical Systems, Elsevier, Amsterdam (1975). Proceedings of meeting in Dijon, France (1974). Contributions are relevant to thermochemical and kinetic aspects of high-temperature gas–solid reactions, in particular, oxidation of metals.
  • 134. Thermodynamics of Nuclear Materials 1974, Vols. I, II, IAEA, Proceedings Symposium 21–25 October Vienna (1974); IAEA Proceedings Series, Vienna (1975). Mainly concerned with thermodynamic properties, phase equilibria, and reactivity of nuclear fuels.
  • 135. G. B. Belton, W. L. Worrell (Eds.). Heterogeneous Kinetics at Elevated Temperatures, University of Pennsylvania, September 1969, Plenum Press, New York (1970).
  • 136. High Temperature Chemistry: Current and Future Problems, Rice University, Houston, TX (1967). Publ. 1470 NAS-NRC Washington, DC (1967).
  • 137. Thermodynamics of Nuclear Materials 1967, IAEA, Proceedings Symposium, 4–8 September 1967, Vienna (1967). IAEA Proceedings Series, Vienna (1968).
  • 138. IUPAC Commission on High Temperatures and Refractories. High Temperature Technology III, Stanford Research Institute, Palo Alto, CA (1967), Butterworths, London (1969).
  • 139. IUPAC Commision on High Temperatures and Refractories. High Temperature Technology, Butterworths, London (1964).
  • 140. Thermodynamics, Vols. I and II, Proceedings of symposium held in Vienna (Austria) 22–27 July 1965, International Atomic Energy Agency (IAEA), Vienna, Austria.
  • 141. E. Rutner, P. Goldfinger, J. Hirth (Eds.). Condensation and Evaporation of Solids, Dayton, OH, September, 1962; Gordon and Breach, New York (1964).
  • 142. Thermodynamics of Nuclear Materials, IAEA, Vienna (1962); IAEA Proceedings Series, Vienna, Austria (1962).
  • 143. Stanford Research Institute. High Temperature Technology, Pacific Grove, CA (1963), Butterworths, London (1964).
  • 144. Stanford Research Institute. High Temperature Technology, Palo Alto, CA, McGraw-Hill, New York (1959).
  • 145. Stanford Research Institute. High Temperature. A Tool for the Future, Stanford Research Institute, Menlo Park, CA (1956).
  • 146. A. Dillon, C. Olk, C. Filiou, J. Ohi (Eds.). The Hydrogen Cycle: Generation, Storage and Fuel Cells, 885E, Materials Research Society, Warrendale, PA (2005). (available only as electronic version). <http://www.mrs.org/s_mrs/sec.asp?CID=7999&DID=191828>.
  • 147. Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, 886 (2005).
  • 148. Solid State Chemistry of Inorganic Materials, 658 (2000).
  • 149. N. Eustathopoulos (Ed.). Proceedings of High Temperature Capillarity Conference 1994, Bratislava (1994), reprint, Slovakia (1995).
  • 150. N. Eustathopoulos, N. Sobczak (Eds.). Proceedings of High Temperature Capillarity Conference 1997, Cracow (1997). Foundry Research Institute, Cracow, PL (1998).
  • 151. N. Eustathopoulos, K. Nogi, N. Sobczak (Eds.). Proceedings of High Temperature Capillarity Conference 1997, Trans. JWRI 30, 1 (2001).
  • 152. A. Passerone, N. Eustathopoulos (Eds.). Proceedings of High Temperature Capillarity Conference 2004, J. Mater. Sci. 40, 2119 (2005).
  • 153. N. Eustathopoulos, E. Louis, A. Mortenson (Eds.). Proceedings of High Temperature Capillarity Conference 2007. Mater. Sci. Eng. A 495 (1–2) (2008).
  • 154. M. W. Chase Jr., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald, A. N. Syverud (Eds.). JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data 14 (Suppl.) (1985); M. W. Chase Jr. NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data (Monograph 9) (1998).
  • 155. I. Barin. Thermochemical Data for Pure Substances, Vols. 1, 2, 3rd ed., VCH, Weinheim (1995).
  • 156. Thermocentre Russian Academy of Science. NIST-IVTANTHERMO Database of Thermodynamic Properties of Individual Substances, CRC Press, Boca Raton (1993).
  • 157. O. Knacke, O. Kubaschewski, K. Hesselmann. Thermochemical Properties of Inorganic Substances, 2nd ed., Springer Verlag, Berlin (1991).
  • 158. V. P. Glushko, L. V. Gurvich, G. A. Bergman, G. A. Khachkuruzov, V. A. Medvedev, I. V. Veyts, V. S. Yungman. (Eds.). Thermodynamic Properties of Individual Substances, Vols. 1–5, 4th ed. (English transl.), L. V. Gurvich, C. B. Alcock, I. V. Veyts (Eds.), Hemisphere Publishing/Taylor & Francis, New York (1989) and onwards.
  • 159. B. Predel (Ed.). Landolt-Bornstein Tabellen, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 5, sub Vol. b, Springer Verlag (1992).
  • 160. E. H. P. Cordfunke, R. J. M. Konings (Eds.). Thermochemical Data for Reactor Materials and Fission Products, North-Holland, Amsterdam, and Elsevier Science (1990).
  • 161. L. B. Pankratz. Thermodynamic Properties of Halides, Bulletin 674, U.S. Department of the Interiors, Bureau of Mines (1984).
  • 162. E. T. Turkdogan. Physicochemical Properties of Molten Slags and Glasses, The Metal Society, London (1983).
  • 163. L. B. Pankratz, J. M. Stuve, N. A. Gokcen. Thermodynamic Data for Mineral Technology, Bull. 677, U.S. Department of the Interior, Bureau of Mines (1984).
  • 164. L. B. Pankratz. Thermodynamic Properties of the Elements and Oxides, Bull. 672, U.S. Department of the Interior, Bureau of Mines (1982).
  • 165. Slag Atlas, Verlag Stahleisen M. H. B., Dusseldorf (1981).
  • 166. R. A. Robie, B. S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar Pressure and Higher Temperatures, U.S. Geol. Survey Bull. 1452; U.S. Government Printing Office, Washington (1978). Deals primarily with mineral compositions.
  • 167. K. C. Mills. Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworths, London (1974).
  • 168. R. L. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, D. D. Wagmans. Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH (1973).
  • 169. R. L. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley. Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, OH (1973).
  • 170. G. V. Samsonov (Ed.). The Oxide Handbook, IFI/Plenum (1973).
  • 171. M. H. Rand, D. T. Livey, P. Feschotte, H. Novotny, K. Seifert, R. Ferro. Plutonium: Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Special Issue No. 1, O. Kubaschewski (Ed.), IAEA, Vienna (1966).
  • 172. Ya. I. Gerassimov, V. I. Levrentev, O. von Goldbeck, D. T. Livey, R. Ferro, A. L. Dragoo. Tantalum: Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Special Issue No. 3, O. Kubaschewski (Ed.), IAEA, Vienna (1972).
  • 173. P. J. Spencer, O. von Goldbeck, R. Ferro, K. Girgis, A. L. Dragoo. Berillium: Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Special Issue No. 4, O. Kubaschewski (Ed.), IAEA, Vienna (1973).
  • 174. M. H. Rand, O. von Goldbeck, R. Ferro. Thorium: Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Special Issue No. 5, O. Kubaschewski (Ed.), IAEA, Vienna (1975).
  • 175. C. B. Alcock, K. T. Jacob, S. Zador, Ortrud Kubaschevski-von Goldbeck, A. Novotny, K. Sefert, O. Kubaschevski. Zirconium: Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Special Issue No. 6, O. Kubaschewski (Ed.), IAEA, Vienna (1976).
  • 176. L. Brewer, R. H. Lamoreaux. Molybdenum: Physicochemical Properties of its Compounds and Alloys, Atomic Energy Review, Special Issue No. 7, O. Kubaschewski (Ed.), IAEA, Vienna (1980).
  • 177. C. E. Holley Jr., M. H. Rand, E. F. Westrum. The Chemical Thermodynamics of Actinide Elements and Compounds, Part 6: The Actinide Carbides, V. A. Medvedev, M. H. Rand, E. F. Westrum Jr., IAEA, Vienna (1984).
  • 178. N. Jacobson, “Use of tabulated thermochemical data for pure compounds”, J. Chem. Educ. 78, 814 (2001). Useful summary of the use of tabulated thermochemical data.
  • 179. Phase Diagrams for Ceramists, Vols. I–XIII, The American Ceramic Society, Columbus/Westerville, OH (1964–2001).
  • 180. P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams, 10 vols., 7380 systems, ASM International (1995).
  • 181. Landolt-Bornstein Tabellen. Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 5 sub Vol. b, B. Predel (Ed.), Springer Verlag (1992).
  • 182. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (Eds.). Binary Alloy Phase Diagrams, 3 vols., 2nd ed., ASM International, Materials Park, OH (1990). See also a version of this edition plus updates in Ann. Rev. Phys. Chem. on CD-ROM.
  • 183. For other compilations, check the American Society of Materials website: <www.asminternational.org>.
  • 184. L. Brewer, A. W. Searcy. “High temperature chemistry”, Annu. Rev. Phys. Chem. 7, 259 (1956). (http://dx.doi.org/10.1146/annurev.pc.07.100156.001355)
  • 185. J. L. Margrave. “High temperature chemistry”, Annu. Rev. Phys. Chem. 10, 457 (1959). (http://dx.doi.org/10.1146/annurev.pc.10.100159.002325)
  • 186. P. W. Gilles. “High temperature chemistry”, Annu. Rev. Phys. Chem. 12, 355 (1961). (http://dx.doi.org/10.1146/annurev.pc.12.100161.002035)
  • 187. J. Drowart, P. Goldfinger. “High temperature chemistry”, Annu. Rev. Phys. Chem. 13, 459 (1962). (http://dx.doi.org/10.1146/annurev.pc.13.100162.002331)
  • 188. V. A. Kireev. “Some aspects of high-temperature chemistry from the viewpoint of thermodynamics”, Russ. Chem. Rev. 33, 330 (1964). (http://dx.doi.org/10.1070/RC1964v033n06ABEH001413)
  • 189. R. J. Thorn. “Chemical phenomena at high temperature”, Ann. Rev. Phys. Chem. 17, 83 (1966). (http://dx.doi.org/10.1146/annurev.pc.17.100166.000503)
  • 190. J. W. Hastie, R. H. Hauge, J. L. Margrave. “High temperature chemistry: Stabilities and structures of high temperature species”, Annu. Rev. Phys. Chem. 21, 475 (1970). (http://dx.doi.org/10.1146/annurev.pc.21.100170.002355)
  • 191. J. L. Gole. “High temperature chemistry: Modern research and new frontiers”, Annu. Rev. Phys. Chem. 27, 525 (1976). (http://dx.doi.org/10.1146/annurev.pc.27.100176.002521)
  • 192. High Temperature (Engl. Transl.); Teplofiz. Vysok. Temp. (1963–).
  • 193. High Temperature Science, subsequently High Temperature and Materials Science, Humana Press, USA (1969–1997, discontinued).
  • 194. High Temperature–High Pressure, Pion, UK (1969–).
  • 195. High Temperature Technology, subsequently Materials at High Temperature, Science Reviews, UK (1982–).
  • 196. M. G. Hocking (Ed.). Bibliography on the High Temperature Chemistry and Physics of Materials, IUPAC-sponsored quarterly publication contributed by various scientists established for about 25 years (now discontinued).