INTERNATIONAL UNION OF
PURE AND APPLIED CHEMISTRY
AND
INTERNATIONAL UNION OF BIOCHEMISTRY

ABBREVIATIONS AND SYMBOLS
FOR DESCRIPTION OF
CONFORMATION OF
POLYPEPTIDE CHAINS

RULES APPROVED 1974

Issued by the
IUPAC–IUB Commission on Biochemical Nomenclature

LONDON
BUTTERWORTHS
ABBREVIATIONS AND SYMBOLS FOR DESCRIPTION OF CONFORMATION OF POLYPEPTIDE CHAINS†

IUPAC—IUB COMMISSION ON BIOCHEMICAL NOMENCLATURE‡

Rules Approved 1974

PREAMBLE

These rules are based on 'A proposal of standard conventions and nomenclature for the description of polypeptide conformations'¹ (Edsall et al.) and have been prepared by a subcommission set up by the IUPAC–IUB Commission on Biochemical Nomenclature in 1966. The original proposals have been modified so as to bring them as far as possible into line with the system of nomenclature current in the fields of organic and polymer chemistry.

Two recommendations are appended to the rules, the first dealing with the terms configuration and conformation and the second with primary, secondary and tertiary structure. These are formulated as recommendations rather than rules because there is at present no general agreement about their definition.

Note. Two alternative notations are recommended throughout. That with superscripts and subscripts may be used when it is unlikely to cause confusion, e.g. in printed or manuscript material; that without is to be used where superscripts or subscripts may cause confusion or are technically difficult or impossible, e.g. in computer outputs. In the latter connection the following Roman equivalents of Greek letters are recommended: α, A; β, B; γ, G; δ, D; ε, E; ζ, Z; η, H; τ, T; υ, U; φ, F; χ, X; ψ, Q; ω, W.

RULE 1. GENERAL PRINCIPLES OF NOTATION

1.1. Designation of atoms

The atoms of the main chain are denoted thus

\[\text{NH—C}^2\text{H}^2—\text{CO—} \]

Where confusion might arise the following additional symbolism may be used

\[\text{N'}\text{H'}—\text{C}^2\text{H}^2—\text{C'O'} \]

Comments on and suggestions for future revisions of these rules should be sent to: Prof. O. Hoffmann-Ostenhof, Institut für Allgemeine Biochemie der Universität Wien, Währingerstrasse 38, A-1090 Wien, Austria.

1.2. Amino acid residues
Amino acid residues, \(-\text{NH}--\text{CHR}--\text{CO}\), are numbered sequentially from the amino-terminal to the carboxyl-terminal end of the chain, the residue number being denoted \(i\).

Example

\(C^\alpha \) of the \(i\)th residue is written \(C^\alpha_i\) or \(C_\alpha(i)\)

1.3. Peptide units
For some purposes it is more convenient to group together the atoms \(-\text{CHR}--\text{CO}--\text{NH}\). These groups are described as ‘peptide units’, and the peptide unit number, like the residue number, is denoted \(i\). It will be noted that the two numbers are identical for all atoms except \(\text{NH}\); generally there will be no confusion, because a single document will use either ‘residues’ alone, or ‘peptide units’ alone, but in the latter case explicit reference must be made to this usage at the beginning. If confusion might arise, the symbols \(N_i^*\) and \(H_i^*\) are to be used for these atoms in the \(i\)th peptide unit, which are \(N_i\) and \(H_i\) in the \(i\)th residue (so that \(N_i^* = N_{i+1}\)).

Example

\[
\begin{array}{c}
\text{peptide unit no. 2} \\
\text{residue no. 2}
\end{array}
\]

\[
\begin{array}{c}
\text{peptide unit notation}\ N_1^* \ C_2^* \ C_2 \ N_2^* \\
\text{residue notation}\ N_2 \ C_2^\alpha \ C_2 \ N_3
\end{array}
\]

Notes
(i) Residue notation is used throughout these rules.
(ii) Whether ‘residues’ or ‘peptide units’ are being used, \(\phi_i\) and \(\psi_i\) always refer to torsion angles about bonds of the same \(C_i^\alpha\).

1.4. Bond lengths
If a bond \(A--B\) be denoted \(A_i--B_j\) or \(A_i\) (see Rules 3.1, 4.5), the bond length is written \(b(A_i,B_j)\) or \(b(A_i,B_j)\), or \(b_i^A\) or \(b(A_i)\). An abbreviated notation for use in side chains is indicated in Rule 4.5.

Note. The symbol previously recommended for bond length was \(l\). This symbol is no longer recommended, partly because it is easily confused with \(l\) in many type fonts and partly because it is also used for vibration amplitude in electron diffraction and spectroscopy.

1.5. Bond angles
The bond angle included between three atoms

\[
\begin{array}{c}
B_j \\
A_i \ C_k
\end{array}
\]
DESCRIPTION OF CONFORMATION OF POLYPEPTIDE CHAINS

is written $\tau(A_i,B_j,C_k)$, which may be abbreviated, if there is no ambiguity, to $\tau(B_j)$ or τ_i^B or $\tau B(j)$.

1.6. Torsion angles

If a system of four atoms

\[\text{A} \quad \text{B} \quad \text{C} \quad \text{D} \]

is projected on to a plane normal to bond B—C, the angle between the projection of A—B and the projection of C—D is described as the torsion angle of A and D about bond B—C; this angle may also be described as the angle between the plane containing A, B and C and the plane containing B, C and D. The torsion angle is written in full as $\theta(A_i,B_j,C_k,D_l)$, which may be abbreviated, if there is no ambiguity, to $\theta(B_j,C_k)$, $\theta(B_j)$ or etc. In the eclipsed conformation in which the projections of A—B and C—D coincide, θ is given the value 0° (syn-planar conformation). A torsion angle is considered positive (+θ) or negative (−θ) according as, when the system is viewed along the central bond in the direction B → C (or C → B), the bond to the front atom A (or D) requires rotation to the right or to the left, respectively, in order that it may eclipse the bond to the rear atom D (or A); note that it is immaterial whether the system be viewed from one end or the other. These relationships are illustrated in Figure 1.

Figure 1. Newman and perspective projections illustrating positive and negative torsion angles. Note that a right-handed turn of the bond to the front atom about the central bond gives a positive value of θ from whichever end the system is viewed.

Notes. (i) Angles are measured in the range $-180 < \theta \leq +180^\circ$, rather than from 0 to 360°, so that the relationship between enantiomeric configurations or conformations can be readily appreciated.

† The terms dihedral angle and internal rotation angle are also used to describe this angle, and may be regarded as alternatives to torsion angle though the latter has been used throughout these rules.
(ii) The symbols actually used to describe the various torsion angles important in polypeptides are ϕ, ψ, ω, ν and χ (see Rules 3.2, 4.5.2). In the above, θ is used simply as an illustrative generic symbol covering all these.

RULE 2. THE SEQUENCE RULE, AND CHOICE OF TORSION ANGLE

2.1. The rules here enunciated for use in the field of synthetic polypeptides and proteins are in general harmony with the sequence rule of Cahn et al.† with the exceptions of Rules 2.1.1 and 2.2.2 (cases II and III), and later rules dependent upon these. The sequence rule was formulated as a universal and unambiguous means of designating the 'handedness' or chirality of an element of asymmetry. It includes subrules for the purpose of arranging atoms or groups in an order of precedence or preference, and this system may conveniently be used in the description of steric relationships across single bonds (see Klyne and Prelog³). Here its function is to determine the priority or precedence of different atoms or groups attached to the same atom. However, Rule 2.1.1 below overrides the precedences of the sequence subrules, providing a new 'local' (specialist) system for use with the general sequence rule‡. After application of Rule 2.1.1, the normal procedure of the sequence rule is applied, but modified by Rule 2.2.2.; in this connection the only parts of the sequence rule required are given in Rules 2.1.2–2.1.5.

2.1.1. The main chain is given formal priority over branches, notwithstanding any conflict with the following rules. Thus the main chain has precedence at C^α over the side chain and at C' over O'.

Note. This rule has not yet been formally accepted except in the present context.

2.1.2. The order of (decreasing) priority is the order of (decreasing) atomic number.

Example

$$\text{Cl}$$

In $\text{Br} - \text{C} - \text{CH}_3$ the order of priority is Br, Cl, CH_3, H.

2.1.3. If two atoms attached to the central atom are the same, the ligands attached to these two atoms are used to determine the priority.

Examples

(i) In

$$\text{CH}_3\text{CH}_2 - \text{C} - \text{CH}_3$$

‡ Other local systems are available analogously for steroids, carbohydrates, and cyclitols, where the sequence rule is applied when the local system does not suffice.
DESCRIPTION OF CONFORMATION OF POLYPEPTIDE CHAINS

the order is Cl, (CH₂CH₃) CH₃, H. (CₓH₂CH₃ takes precedence over C'’H₃ because C’’ is bonded to C, H, H and C’’’ to H, H, H.)

(ii) In

CH₂Cl

\[\text{HO—C—CH₂OH} \]

the order is OH, CH₂Cl, CH₂OH, H.

(iii) In

\[\text{OH} \]

\[\text{CH₃CH₂—C—CH(CH₃)₂} \]

the order is OH, CH(CH₃)₂, CH₂CH₃, H.

2.1.4. A double bond is formally treated as though it were split. Thus >C=O is treated as >C—O

\[(O) (C) \]

Example

In CH₃CO—OH the order is =O, —OH, CH₃.

2.1.5. If two ligands are distinguished only by having different masses (e.g. deuterium and hydrogen), the heavier takes precedence.

Example

In

\[\text{D} \]

\[\text{Br—C—CH₃} \]

the order is Br, CH₃, D, H.

Note. This rule is to be used only if the two previous rules do not give a decision.

2.2. Choice of torsion angle and numbering of branches (tetrahedral configurations)

2.2.1. If, in a compound

\[\text{A—D} \]

\[\text{P—B—C—E} \]

\[\text{Q—F} \]

the sequence rule gives the priorities A>P, Q and D>E>F, then the
principal torsion angle θ is that measured by reference to the atoms $A-B-C-D$ as in Rule 1.6. The branches beginning at C are numbered

$$C-D, C-E, \text{ and } C-F$$

2.2.2. If two branches are identical, and the third is different (or non-existent), they are numbered in a clockwise sense when viewed in the direction $B \rightarrow C$, as follows (see Figure 2).

Case I: $D > E = E$. D has the highest priority and is given the smallest number (1).

Case II: $D = D > E$. E has the lowest priority and is given the largest number (3).

Case III: $D = D$, numbered 1 and 2 (E non-existent). In each case the principal torsion angle is measured between $A-B$ and branch 1.

Notes. (i) The rule given in case II differs from conformational selection rule b of the sequence rule (see Cahn et al.2, p 406), according to which if an identity among the groups of a set leaves one group unique, the unique group is fiducial. The reason for the difference is that the sequence rule would define principal torsion angle in terms of a hydrogen atom whenever a single atom formed part of the set; in the x-ray technique, nearly always used to establish structures of the type under discussion, hydrogen atoms are usually unobservable, and even at best not accurately locatable, so that the position of one used to define a principal torsion angle could only be established by calculation based on (perhaps unjustified) assumptions about the bond angles concerned. These considerations apply with even more force to case III, where one branch is non-existent; the 'phantom atom' of zero atomic number would be given highest priority because it is unique.

(ii) In case III the clockwise passage from CD^1 to CD^2 shall be by the shorter of the two possible routes.

2.2.3. If all three branches are identical, that giving the smallest positive or negative value of the principal torsion angle is normally assigned the highest priority and the lowest number (1) (see Figure 3, IV, V); if two branches have torsion angles respectively $+60$ and -60°, the former is chosen (see Figure 3, VI). The others are numbered in a clockwise sense when viewed in the direction $B \rightarrow C$.

† The qualification 'normally' is added to avoid the need to renumber the branches if by chance the rule would demand this in consequence of a movement during refinement of a structure. In this or similar cases the symbolism should remain unchanged.
Note. Rule 2.2.3 introduces a new principle, not invoked in 2.2.1 or 2.2.2, that the precedence depends on the conformation. This must necessarily be done since in this case the branches are distinguishable only in this respect. (The same applies to Rule 2.3.2.)

2.3. Choice of torsion angle and numbering of branches (planar trigonal configurations)

2.3.1. If, in a compound

such that B, C, D and E are coplanar, or nearly so, the sequence rule gives the priorities A > P, Q and D > E, then the principal torsion angle is that measured by reference to atoms A—B——C---D as in Rule 1.6 above. The branches beginning at C are numbered

C—D, C—E

1 2

2.3.2. If the branches are identical, that giving the smallest positive or negative value of the principal torsion angle is normally assigned the highest priority and the lowest number (1); if the two branches have torsion angles respectively +90 and -90°, the former is chosen (see Figure 4, IX).

Figure 4. Planar trigonal configurations. Identical branches: VII, θ positive; VIII, θ negative; IX, θ = 90°.
RULE 3. THE MAIN CHAIN (OR POLYPEPTIDE BACKBONE)

3.1. Designation of bonds

Bonds between main-chain atoms are denoted by the symbols of the two atoms terminating them, e.g. \(N_i - C_i^2 \), \(C_i^2 - C_i^3 \), \(C_i^3 - N_{i+1} \), \(C_i - O_i \), \(N_i - H_i \). Abbreviated symbols should not be used. Bond lengths are written \(b(C_i N_{i+1}) \), etc.

![Perspective drawing of a section of polypeptide chain representing two peptide units.](image)

Figure 5. Perspective drawing of a section of polypeptide chain representing two peptide units. The limits of a residue are indicated by dashed lines, and recommended notations for atoms and torsion angles are indicated. The chain is shown in a fully extended conformation \((\phi_i = \psi_i = \omega_i = 180^\circ) \), and the residue illustrated is 1.

3.2. Torsion angles

3.2.1. The principal torsion angle describing rotation about \(N - C^2 \) is denoted by \(\phi \), that describing rotation about \(C^2 - C \) is denoted by \(\psi \), and that describing rotation about \(C - N \) is denoted by \(\omega \). The symbols \(\phi_i, \psi_i \), and \(\omega_i \) are used to denote torsion angles of bonds within the \(i \)th residue in the case of \(\phi \) and \(\psi \) and between the \(i \)th and \((i + 1) \)th residues in the case of \(\omega \); specifically, \(\phi_i \) refers to the torsion angle of the sequence of atoms \(C_i, N_i, C_i^2, C_i^1 \); \(\psi_i \) to the sequence \(N_i, C_i^2, C_i^3, N_{i+1} \); and \(\omega_i \) to the sequence \(C_i^2, C_i, N_{i+1}, C_{i+1}^1 \) (see Figure 5). In accordance with Rules 1.6 and 2.1.1, these torsion angles are ascribed zero values for eclipsed conformations of the main-chain atoms \(N, C^2, \) and \(C \), that is, for the so-called cis conformations (see Table 1).

Notes.

(i) This convention differs from that proposed by Edsall et al. The new designation of angles may be derived from the old by adding 180° to, or subtracting 180° from, the latter. (This statement is precisely correct only if the peptide bond is exactly planar, which is generally not the case in experimentally determined structures.)

(ii) Owing to the partial double-bond character of \(CO \cdots NH \), it is normally possible for \(\omega \) to assume values only in the neighbourhood of 0 or 180°. \(\omega \approx 180^\circ \) is the value which is generally found (i.e. the trans conformation).

(iii) A 'fully extended' polypeptide chain is characterized by \(\phi = \psi = \omega = +180^\circ \). The case of \(\phi = \psi = 0^\circ \) would involve the relations indicated in Table 1.

(iv) Table 2 gives values of \(\phi \) and \(\psi \) for various well-known regular structures. It is noteworthy that a right-handed \(\alpha \) helix has negative torsion angles.
DESCRIPTION OF CONFORMATION OF POLYPEPTIDE CHAINS

Table 1. Main-chain torsion angles for various conformations in peptides of L- amino acids

<table>
<thead>
<tr>
<th>Rotation about N-Cα</th>
<th>Rotation about Cα-C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Cα—C αtrans</td>
<td>Cα—N αtrans</td>
</tr>
<tr>
<td>+60</td>
<td>Cα—H αcis</td>
<td>Cα—R αcis</td>
</tr>
<tr>
<td>+120</td>
<td>Cα—C αtrans</td>
<td>Cα—H αtrans</td>
</tr>
<tr>
<td>+180</td>
<td>Cα—C αcis</td>
<td>Cα—N αcis</td>
</tr>
<tr>
<td>-120</td>
<td>Cα—H αtrans</td>
<td>Cα—R αcis</td>
</tr>
<tr>
<td>-60</td>
<td>Cα—R αcis</td>
<td>Cα—H αcis</td>
</tr>
</tbody>
</table>

* trans to Nα—Hα is the same as cis to Nα—Cα; trans to Cα—Oα is the same as cis to Cα—Nα+1 (see Figure 5).

For the description of D-amino acids, interchange Cα—Hα and Cα—Rα in the table.

Table 2. Approximate torsion angles for some regular structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>(deg)</th>
<th>(deg)</th>
<th>(deg)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-handed α helix</td>
<td>-57</td>
<td>-47</td>
<td>+180</td>
<td>Arnott and Dover^8</td>
</tr>
<tr>
<td>[α-poly-L-alanine]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-handed α helix</td>
<td>+57</td>
<td>+47</td>
<td>+180</td>
<td>Arnott and Dover^8</td>
</tr>
<tr>
<td>Parallel-chain pleated</td>
<td>-119</td>
<td>+61</td>
<td>+180</td>
<td>Schellman and Schellman^9</td>
</tr>
<tr>
<td>sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiparallel-chain</td>
<td>-139</td>
<td>+135</td>
<td>-178</td>
<td>Arnott et al.^10</td>
</tr>
<tr>
<td>pleated sheet [β-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poly-L-alanine]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyglycine II</td>
<td>-80</td>
<td>+150</td>
<td>+180</td>
<td>Ramachandran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>et al.^11</td>
</tr>
<tr>
<td>Collagen</td>
<td>-51, -76, -45, +153, +127, +148</td>
<td>+180</td>
<td>Yonath and Traub^12</td>
<td></td>
</tr>
<tr>
<td>Poly(L-proline) I</td>
<td>-83</td>
<td>+158</td>
<td>0</td>
<td>Ramachandran and Sasisekharan^13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>calculated from</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traub and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schmueli^14</td>
</tr>
<tr>
<td>Poly(L-proline) II</td>
<td>-78</td>
<td>+149</td>
<td>+180</td>
<td>Arnott and Dover^15</td>
</tr>
</tbody>
</table>

* For a fully extended chain φ = ψ = ω = +180.

(v) Figure 6 is a typical conformational map (φ-ψ plot) using the rules enunciated above.

3.2.2. There may occasionally be a need to consider torsion angles differing from zero for the sequences of atoms O—C—N—Cα and Cα—C—N—H, in cases where C=O or N—H lies out of the peptide plane. These angles may be represented υO and υH (Greek upsilon).

3.3. Chain terminations

3.3.1. If the terminal amino group of the chain is protonated, the three hydrogen atoms are denoted H1, H2, and H3; the hydrogen atom giving the smallest (positive or negative) value of the principal torsion angle H—N—Cα—C is denoted H1 and the others are numbered in a clockwise sense when viewed in the direction Cα → N. The corresponding torsion angles are denoted φ1, φ2, and φ3. If the terminal amino group is not protonated the hydrogen atoms are denoted H1 and H2 in accordance with Rule 2.2.2. and the corresponding torsion angles φ1 and φ2.
3.3.2. At the carboxyl terminus of the chain \((i = T)\) the double-bonded oxygen is written as \(O'\) and the other oxygen as \(O''\), thus

\[
\begin{array}{c}
\text{O'} \\
C^\alpha - C - O'' - H''
\end{array}
\]

The torsion angles about the \(C^\alpha - C\) bond are written \(\psi_1^T\) and \(\psi_2^T\) [or \(\psi_1(T)\), \(\psi_2(T)\)]; the torsion angle about the \(C - O''\) bond, defining the orientation of the hydrogen atom of the hydroxyl group relative to \(C^\alpha\), is written \(\theta_1^C\) [or \(\theta(C(T))\)]. If the terminal carboxyl group is ionized the oxygen atoms are denoted \(O'\) and \(O''\), the precedence being determined by Rule 2.3.2, and the torsion angles are written as before.

Note. Instead of \(O'\) and \(O''\) the alternative notations \(O^1\) and \(O^2\) may be used. \(\psi_T\) may be used instead of \(\psi_1^T\), in conformity with the convention for the middle of the chain, so long as confusion does not arise.

3.3.3. *Substituted terminal groups*

Natural extensions of the above rules may be devised, e.g.

(i) *N-formyl group*

\[
H_0 - C_0 O_0 - N_1 H_1 - C_1^\alpha H_1^\alpha - \ldots
\]

302
DESCRIPTION OF CONFORMATION OF POLYPEPTIDE CHAINS

(ii) \(N\)-acetyl group

\[\text{CH}_3\text{CO}\text{H} \rightarrow \text{C}_9\text{H}_7\text{O}_6\text{C}_6\text{H}_6\text{O}_5\text{N}_4\text{H}_3\text{C}_2\text{H}_1\text{C}_1\text{H}_2\text{H}_3\rightarrow \ldots \]

(iii) \(C\)-amido group

\[\begin{aligned}
&\text{O}_T' \\
&\text{C}_T^2\text{H}_T^2\text{C}_T \\
&\text{H}_{T+1}^1 \\
&\text{N}_{T+1} \\
&\text{H}_{T+1}^2
\end{aligned}\]

RULE 4. SIDE CHAINS

4.1. Atoms are lettered, or lettered and numbered, from \(C^\alpha\), and bonds are numbered from \(C^\alpha\), working outwards away from the main chain.

4.2. Designation of atoms other than hydrogen

Atoms other than hydrogen are designated in the usual way by Greek letters, \(\beta, \gamma, \delta\) etc., e.g. \(C_\beta^\delta\) [or \(C_\beta(i)\)], \(N_\zeta^\varepsilon\) [or \(N_\zeta(i)\)].

Note. The notations for the amino acids normally occurring in proteins are given in Table 3.

4.3. Designation of branches

If a side chain is branched, the branches are numbered 1 and 2, the order being determined (i) in cases where the branches are different, by application of Rule 2.2.1 or 2.3.1, (ii) in cases where two branches are identical (e.g. in valine, phenylalanine), by the application of Rule 2.2.2 (valine) or 2.3.2 (phenylalanine). Non-hydrogen atoms in different branches are designated by the Greek letter indicating their degree of remoteness from \(C^\alpha\) and by the number of their branch (see Rules 2.2 and 2.3); e.g. in valine \(C_\gamma^1\) and \(C_\gamma^2\) [or \(C_\gamma^1(i)\), \(C_\gamma^2(i)\)]. The branch number need not be indicated where no ambiguity results, e.g. in threonine \(O_\gamma^1\) and \(C_\gamma^2\) instead of \(O_\gamma^1\) and \(C_\gamma^2\), in hydroxyproline \(O_\delta^1\), \(C_\delta^2\) instead of \(O_\delta^1\), \(C_\delta^2\), and in histidine \(C_\delta^1\), \(N_\varepsilon^1\), etc., instead of \(C_\delta^2\), \(N_\varepsilon^2\). For asparagine or glutamine, in cases where nitrogen and oxygen in the amide group have not yet been distinguished, these atoms may be written \((NO)_\delta^1\), \((NO)_\delta^2\), or \((NO)_\varepsilon^1\), \((NO)_\varepsilon^2\), the indices 1 and 2 being determined by Rule 2.3.2.

4.4. Designation of hydrogen atoms

Hydrogen atoms are designated by the Greek letter and/or number of the atom to which they are attached, e.g. in valine \(H_\delta^\beta\) [or \(H_\beta(i)\)]. Where three hydrogen atoms are attached to a single non-hydrogen atom, they are designated 1, 2 and 3; in the situation

\[\begin{aligned}
&\text{A} \\
&\text{B} \\
&\text{C} \\
&\text{H} \\
&\text{H}
\end{aligned}\]

303
the hydrogen atom giving the smallest (positive or negative) value of the principal torsion angle is designated 1, and the others are numbered in a clockwise sense when viewed in the direction B → C (see Rule 2.2.3, which also covers the case where \(\theta = \pm 60^\circ \)), e.g. in valine \(H_i^{11}, H_i^{12}, H_i^{13} \) and \(H_i^{21}, H_i^{22}, H_i^{23} \) [or \(H_{11}(i), \) etc.]. Where only two hydrogen atoms are present, they are designated in accordance with Rule 2.2.2, case I, for \(-\text{CH}_2-\text{R}\) and case III for \(-\text{NH}_2\).

4.5. Designation of bonds and torsion angles (see Table 3)

4.5.1. Bonds are designated by means of the two atoms terminating them, e.g. \(\text{C}_i^x-\text{C}_i^y, \text{N}_i^x-\text{H}_i^{12} \), or, if no ambiguity results, by the symbol of the first atom of the bond, e.g. \(\text{C}_i^x, \text{C}_i^y \). In superscripts the bond may be denoted either by \(\chi; \beta; \gamma_1; \gamma_2, \) etc., or by \(1; 2; 3,1; 3,2; \) etc. Bond lengths are denoted \(b(\text{C}_i^x, \text{C}_i^y), b\text{C}_i^x, b_1, b_1^{3,1}, \) etc.

4.5.2. Torsion angles are denoted by \(\chi \) and are specified by two (or three) superscripts, the first one (or two), in the situation

\[
\begin{array}{c}
D \\
\text{A—B—C—E} \\
\text{F}
\end{array}
\]

indicating the bond B—C about which the angle is measured, and the last indicating whether the angle is measured relative to D, E or F. The principal torsion angle is defined by Rule 2.2.1, and if there is no ambiguity the last superscript may be omitted in referring to it.

Thus in valine \(\chi_{2,1}^1 \) and \(\chi_{2,2}^2 \) refer to the torsion angles specifying atoms \(\text{C}_i^{11} \) and \(\text{C}_i^{22} \); in leucine \(\chi_{i}^{3,1,1}, \chi_{i}^{3,1,2}, \) and \(\chi_{i}^{3,1,3} \) refer to the torsion angles specifying the three hydrogen atoms attached to \(\text{C}_i^{61} \). If there is no ambiguity the principal torsion angles may be referred to, in valine and leucine, as \(\chi_{i}^{2} \) and \(\chi_{i}^{3,1} \), respectively. Corresponding notations without subscripts are \(\gamma_{2,1}^1(i) \), \(\gamma_{3,1}^2(i) \), \(\gamma_{3,1,1}^1(i) \), \(\gamma_{3,1,1}^1(i) \).

Note. By the sequence rule, when \(\chi_1 = 0, \text{C}^7 \) (or \(\text{C}^7 \)) is in the eclipsed position relative to \(\text{N} \).

RULE 5. HYDROGEN BONDS

5.1. Polarity of hydrogen bonds

In specifying a hydrogen bond as directed from residue \(i \) to residue \(k \) (or from atom \(X_i \) to atom \(Y_k \)), the direction \(X-H \rightarrow Y \) is implied; i.e. the atom covalently linked to the hydrogen atom is mentioned first.

Example

In the \(\alpha \) helix the \(\text{N—H} \) of residue \(i \) is hydrogen bonded to the \(\text{O—C} \) of residue \((i - 4) \). Therefore, the \(\alpha \) helix is described as having \(i \) to \((i - 4) \), or \((5 - 1) \), hydrogen bonding.
Table 3. Symbols for atoms and bonds in the side chains of the commonly occurring L-amino acids.

<table>
<thead>
<tr>
<th>(a) Unbranched side chains</th>
<th>(b) Branched side chains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>![Alanine diagram]</td>
</tr>
<tr>
<td>Serine</td>
<td>![Serine diagram]</td>
</tr>
<tr>
<td>Cysteine</td>
<td>![Cysteine diagram]</td>
</tr>
<tr>
<td>Cystine</td>
<td>![Cystine diagram]</td>
</tr>
<tr>
<td>Methionine</td>
<td>![Methionine diagram]</td>
</tr>
<tr>
<td>Lysine</td>
<td>![Lysine diagram]</td>
</tr>
<tr>
<td>Arginine</td>
<td>![Arginine diagram]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Cyclic side chains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proline</td>
</tr>
<tr>
<td>Hydroxyproline</td>
</tr>
<tr>
<td>Histidine</td>
</tr>
<tr>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Tyrosine</td>
</tr>
<tr>
<td>Tryptophan</td>
</tr>
</tbody>
</table>
5.2. Dimensions of hydrogen bonds

Dimensions may be denoted by natural extensions of the nomenclature given above. For example, in

the following symbols might be used: \(b(H, O_k) \), \(\tau(N_i, H_i, O_k) \), \(\tau(H_i, O_k, C_k) \), \(\theta_f(H_i, O_k) \), \(\theta_f(N, H) \), \(\theta_d(C, O) \).

RULE 6. HELICAL SEGMENTS

A regular helix is strictly of infinite length, with all \(\phi \)s identical and all \(\psi \)s identical. A helical segment of polypeptide chain may be defined either in terms of \(\phi \) and \(\psi \) or in terms of symmetry and hydrogen-bond arrangement.

6.1. In the description of helices, or helical segments the following symbols should be used: \(n = \) number of residues per turn; \(h = \) unit height (translation per residue along the helix axis); \(t = \frac{360^\circ}{n} = \) unit twist (angle of rotation per residue about the helix axis).

6.2. Definition in terms of \(\phi \) and \(\psi \)

Under this definition a helical segment is referred to as a \((\phi, \psi) \) helix; thus a right-handed \(\alpha \) helix would be a \((47^\circ, -57^\circ) \) helix. The first and last residues of the helical segment are taken to be the first and last residues which have \(\phi \) and \(\psi \) values equal to those defining the helix, within limits which should be defined in the context. No account is taken of hydrogen-bonding arrangements.

6.3. Definition in terms of symmetry and hydrogen-bond arrangement

A helix is referred to as an \(n_r \) helix, where \(n = \) number of residues per turn and \(r = \) number of atoms in ring formed by a hydrogen bond and the segment of main chain connecting its extremities. Thus an \(\alpha \) helix would be 3.613. The first helical residue is taken as the first whose CO group is regularly bonded to NH along the helix (in the case of an \(\alpha \) helix, to the NH of the fifth residue); the last helical residue is the last whose NH is regularly hydrogen bonded to CO along the helix (in the case of an \(\alpha \) helix, to the CO of the residue last but four). Irregular hydrogen-bonding arrangements are considered not to form part of the helix.

Notes (i) A helical segment defined by Rule 6.2 may, but need not necessarily, be two residues shorter than the same segment defined by Rule 6.3.

(ii) These rules prescribe no definitions for irregular helical segments.

APPENDIX

Recommendation A. Conformation and Configuration

There is at present no agreed definition of these two terms for general stereochemical usage.

In polypeptide chemistry the term ‘conformation’ should be used, in
conformity with current usage, to describe different spatial arrangements of
atoms produced by rotation about covalent bonds; a change in conformation
does not involve the breaking of chemical bonds (except hydrogen bonds)
or changes in chirality (see Cahn et al.2).

On the other hand, in polypeptide chemistry the term ‘configuration’ is
currently used to describe spatial arrangements of atoms whose intercon-
version requires the formal breaking and making of covalent bonds (note: this usage takes no account of the breaking or making of hydrogen bonds).

For a more extensive discussion see references in footnote† on page 296.

Recommendation B. Definitions of Primary, Secondary, Tertiary and Quater-
nary Structure

These concepts, originally introduced by Linderstrøm-Lang17†, cannot be
defined with precision, but the definitions given below may be helpful.

B.1. The primary structure of a segment of polypeptide chain or of a pro-
tein is the amino acid sequence of the polypeptide chain(s), without regard to
spatial arrangement (apart from configuration at the α-carbon atom).

Note. This definition does not include the positions of disulfide bonds and
is therefore not identical with ‘covalent structure’.

B.2. The secondary structure of a segment of polypeptide chain is the local
spatial arrangement of its main-chain atoms without regard to the conforma-
tion of its side chains or to its relationship with other segments.

B.3. The tertiary structure of a protein molecule, or of a subunit of a protein
molecule, is the arrangement of all its atoms in space, without regard to its
relationship with neighbouring molecules or subunits.

B.4. The quaternary structure of a protein molecule is the arrangement of
its subunits in space and the ensemble of its intersubunit contacts and inter-
actions, without regard to the internal geometry of the subunits.

Note. A protein molecule not made up of at least potentially separable
subunits (not connected by covalent bonds) possesses no quaternary struc-
ture. Examples of proteins without quaternary structure are ribonuclease
(one chain) and chymotrypsin (three chains).

REFERENCES

1 J. I. Edsall, P. J. Flory, J. C. Kendrew, A. M. Liquori, G. Némethy, G. N. Ramachandran and
H. A. Scheraga. J. Biol. Chem. 241, 1004 (1966); Biopolymers, 4, 130 (1966); J. Mol. Biol. 15,
399 (1966).
168 (1966).
† The use of the terms ‘primary, secondary, tertiary and quaternary structure’ has been
criticized as being imprecise by Wetlauffer18. He has proposed an alternative terminology.