Stable isotopes in carotenoid biochemistry

George Britton

Department of Biochemistry, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, U.K.

Abstract—The use of stable isotopes in studies of carotenoid biosynthesis is reviewed, beginning with early work with 18O which defined the origin of oxygen in a range of xanthophylls. A series of experiments from our own laboratory is then described, in which 2H and 13C have been used to investigate the stereochemistry of cyclization to form C$_{40}$ and C$_{50}$ B- and E-ring carotenoids. Novel procedures involving 2H labelling from 2H$_2$O have been used to demonstrate carotenoid transformations during biosynthesis and chloroplast development and to define the stereochemistry of the H$^+$ attack at C-2 which initiates carotenoid cyclization. Procedures by which microorganisms are allowed to metabolize [^{-}1H]-glucose, in 2H$_2$O, or [^{-}13C$_6$]-glucose to make endogenous specifically labelled substrates are described. These methods allow the carotenoid C-1 methyl substituents to be distinguished even when incorporation of exogenous labelled substrates is not possible, and have been used to show that the stereochemistry of cyclization to form the B- and E-rings of the C$_{40}$ carotenoids zeaxanthin and lutein is the same.

INTRODUCTION

In the field of retinaldehyde-proteins, 13C and 2H labelled analogues have been prepared and used in NMR, IR and Raman spectroscopic studies of the molecular interactions and mechanisms of the structural changes that occur during the visual pigment and bacteriorhodopsin cycles (Ref. 1). No such studies on carotenoid-proteins have been reported even though similar structural features and interactions may be crucial to the mechanism of the spectral shift in animal astaxanthin-proteins, and possibly also to the functioning of carotenoids in other pigment-protein complexes, e.g. in the photosynthetic apparatus of plants and bacteria. In carotenoid biochemistry, the use of stable, heavy isotopes has been restricted to the study of biosynthetic pathways and the mechanism of biosynthetic reactions, and even then they have been much less widely used than the radioisotopes 14C and 3H.

EARLY WORK WITH 18O

Incorporation of 18O from 18O$_2$ and 2H18O into xanthophylls

Inevitably, the first stable isotope work in the carotenoid field was with 18O, there being no suitable radioactive isotope of this element. The questions asked concerned the origin of the oxygen functions present in a range of xanthophylls, specifically whether these arose from molecular O$_2$ or from water. With the photosynthetic bacterium Rhodopseudomonas sphaeroides, it is well known that the main pigment in anaerobic cultures is spheroidene which, in the presence of air, is converted into the 2-oxo derivative spheroidenone. Shneour (Ref.2) demonstrated clearly that the oxygen atom of the oxo group came from molecular 18O$_2$. A series of experiments to determine the origin of the hydroxy and epoxy oxygens of the leaf xanthophylls, lutein, violaxanthin, neoxanthin and antheraxanthin, gave less conclusive results (Refs. 3-7). In this work, with leaves, photosynthetic particles derived from them, and the green alga Chlorella, 18O$_2$ and 2H18O were used with comparatively low enrichment (5%), and 18O$_2$/16O ratios in the xanthophylls were determined by MS assay of the CO$_2$ obtained by pyrolysis. With Chlorella, some 18O enrichment from 18O$_2$ was obtained for lutein, violaxanthin and neoxanthin, and slight enrichment in neoxanthin was seen when 2H18O was used. The conclusion was drawn that the hydroxy groups arose from molecular O$_2$ whereas the epoxy groups originated from water. Conflicting results were obtained concerning the stimulation by light of the incorporation of 18O from 2H18O into violaxanthin. Later work (Ref. 7) showed incorporation of 18O into violaxanthin (assumed into the epoxy group) in leaves in the dark. No distinction was made at that time between incorporation of oxygen during biosynthesis or during operation of the violaxanthin cycle. Incorporation of 18O was also obtained into the carboxylic acid torularhodin from the yeast Rhodotorula rubra grown in the presence of 5-6% atom excess of 18O$_2$. From the small enrichment obtained, it was concluded that one 18O atom was incorporated into the carboxy group (Ref. 8). Now that highly enriched 18O$_2$ and 2H18O are more readily available and instrumentation for mass spectrometric assay is so greatly improved, these problems should be reinvestigated, and the carotenoid molecules themselves assayed in order to prove...
the incorporation and location of the 18O atoms. It is unfortunate that the practical problems associated with 17O NMR spectroscopy appear to preclude the useful application of this isotope for this work (Ref. 9).

WORK WITH 2H AND 13C

Synthetic $[2H_5]$-lycopene and carotenoids

As in other branches of biochemistry, it is the stable heavy isotopes of carbon and hydrogen that are now proving most useful in studies of carotenoid biosynthesis. First at Madison and later at Liverpool (Refs. 10, 11) Prof. Eugster described the synthesis and properties of the stereospecifically labelled $[16,16'-2H_4]$-$\beta\beta\beta\beta\gamma\gamma$-, $\beta\beta\gamma\gamma\beta\beta$-, and $\gamma\gamma\gamma\gamma\gamma\gamma$-carotenes. The 1H NMR properties of these chiral cyclic carotenoids were determined, making it possible for the chirality of samples biosynthesized from the $[2H_4]$-lycopene to be elucidated. Unfortunately, work with carotenogenic enzyme systems has not yet advanced to the stage when conversion of this lycopene substrate into cyclic carotenoids can be achieved efficiently enough to give sufficient product for NMR assay and hence permit determination of the stereochemical behaviour of the C-1 methyl groups during cyclization. This problem has, however, been addressed recently by a conventional 13C labelling procedure (Ref. 12).

Incorporation of $[2-13C]$-mevalonate into lycopene, zeaxanthin and c.p. 450

The high-carotenoid Flavobacterium strains R1519 and R1560 will incorporate mevalonic acid (MVA) efficiently into their main pigment, zeaxanthin or, when grown in the presence of the cyclization inhibitor nicotine, into the acyclic precursor lycopene. Flavobacterium cultures were therefore grown, with and without nicotine, in the presence of $[2-13C]$-MVA. The lycopene and zeaxanthin, respectively, were isolated and their 13C-NMR spectra determined. The spectrum of lycopene showed 13C enrichment at C-4, C-8 and C-12 (40.8, 135.5 and 137.5 p.p.m.), and at C-16 (25.7 p.p.m), i.e. the C-1 methyl substituent. The high-carotenoid Flavobacterium strains R1519 and R1560 will incorporate MVA efficiently into their main pigment, zeaxanthin or, when grown in the presence of the cyclization inhibitor nicotine, into the acyclic precursor lycopene. Flavobacterium cultures were therefore grown, with and without nicotine, in the presence of $[2-13C]$-MVA. The lycopene and zeaxanthin, respectively, were isolated and their 13C-NMR spectra determined. The spectrum of lycopene showed 13C enrichment at C-4, C-8 and C-12 (40.8, 135.5 and 137.5 p.p.m.), and at C-16 (25.7 p.p.m), i.e. the C-1 methyl substituent. The signal at 28.38 p.p.m. assigned to the $\gamma\gamma$ substituent C-17, showed no enhancement. If the assignment is correct the final disposition of the C-1 methyl substituents is the same in the C40 and C50 p-ring carotenoids (Ref. 13), and in particular it proved that the methyl substituents at C-1 of lycopene retain their individuality during the biosynthesis. From the 13C NMR spectrum of the enriched zeaxanthin it could also be seen that the 13C enrichment was at C-4, C-8, C-12 and one of the C-1 methyl substituents. Detailed NMR work (Dr. G. Englert) has proved that the enhanced signal at 28.81 p.p.m. is due to C-16, i.e. the axial $\gamma\gamma$ methyl substituent, the equatorial $\beta\beta$ methyl group (C-17, 30.34 p.p.m.) showing no enrichment. The stereochemical behaviour of the C-1 methyl groups during cyclization to form zeaxanthin was therefore established. A similar experiment in which Corynebacterium poinsettiae was incubated with $[2-13C]$-MVA gave a 13C-enriched product, the C50 dial 1-c.p.450. Enhancement was again seen in the higher field C-1 methyl signal (22.54 p.p.m.), tentatively assigned to the axial $\beta\beta$ substituent, C-16. The signal at 28.38 p.p.m. assigned to the $\gamma\gamma$-substituent C-17, showed no enhancement. If the assignment is correct the final disposition of the C-1 methyl substituents is the same in the C40 and C50 β-ring carotenoids.

Use of 2H labelling from $2H_2O$

Demonstration of biosynthetic pathways. It is believed that the cyclization reaction is initiated by electrophilic attack by a proton (C40 series) or a C5 unit (C50 series) at C-2 of the acyclic precursor. Therefore, in order to define fully the stereochemistry of the initial stage of cyclization, the orientation of the incoming group at C-2 must be established. In the C50 series, CD correlation and NMR analysis have established (Refs. 14-16) that the C5 substituent at C-2 occupies the equatorial α-position, so that the $\gamma\gamma$-dial, c.p.450, the $\xi\xi$-dial decaprenoxanthin, and the $\gamma\gamma$-dial sarcanaxanthin all have the configuration (2R,2'R). The stereochemistry of the C-1 methyl groups during cyclization to form zeaxanthin has now been established by a procedure involving deuterium labelling from $2H_2O$. This procedure has also been very useful in giving direct proof of some carotenoid transformations during biosynthesis and during chloroplast development.

The basis of these experiments lies in the discovery some years ago that several microorganisms could be adapted to grow in medium in which the water was replaced virtually completely with heavy water, deuterium oxide, $2H_2O$. Crespi, Katz and coworkers had maintained and grown the green algae Chlorella and Scenedesmus under these conditions for long periods (Ref. 17), and isolated fully deuterated α- and β-carotenes for spectroscopic study (Ref. 18). We have adapted this work, the simple concept assumed being that, if an organism can be cultured de nova in $2H_2O$, then cultures will be able to survive and continue to grow and develop when transferred from ordinary medium (H_2O) to $2H_2O$. The experimental protocol is thus simple; the organism is first cultured in normal medium (H_2O) under one set of conditions and then transferred to $2H_2O$ medium when the growth conditions are altered so that changes occur in metabolism or development. A good illustration is provided by an experiment to demonstrate the direct conversion of lycopene into zeaxanthin in vivo in the Flavobacterium strain R1519 (Ref. 19). The experimental procedure consisted of first growing the Flavobacterium in ordinary (H_2O) medium in the presence of the cyclization inhibitor nicotine so that the acyclic precursor lycopene accumulated, then washing out the nicotine and transferring the cells to $2H_2O$. The zeaxanthin thus produced was isolated and assayed by mass spectrometry. Three kinds of zeaxanthin molecule are possible in the sample: (a) molecules formed in the first phase of the experiment, in the H_2O medium; these would obviously contain no H_2 and would be present in only very small amounts because of the inhibitor, (b) molecules formed de novo in the second phase of the experiment; these would contain substantial amounts of H_2 from the $2H_2O$ medium, and (c) molecules formed in the second, $2H_2O$, phase from $[1H]$-lycopene accumulated in the first phase; this zeaxanthin would contain two H_1 atoms, at C-2 and C-2', introduced during cyclization initiated by H_2 from the medium. The different zeaxanthin species can easily be identified in the mass spectrum and the relative amounts determined. The
Stable isotopes in carotenoid biochemistry

experiment showed that substantial new synthesis of zeaxanthin had taken place in the 2H2O medium, resulting in molecules containing an average of 12-16 2H atoms. The main species present, however, especially if the second phase incubation was for not more than 12 hours, was [2H2]-zeaxanthin. This could only have arisen from the acyclic precursor, lycopene, accumulated during the first (1H2O) phase, a result which therefore proved directly the biosynthetic conversion of lycopene into zeaxanthin.

Similar experiments have since been performed with the photosynthetic bacteria Rhodopseudomonas sphaeroides and Rhodobacter sphaeroides (Ref. 20). These organisms make acyclic xanthophylls, notably spheroidene and hydroxspheroidene in Rs. sphaeroides and rhodopin in Rm. vannieli. The introduction of the C-1 hydroxy groups, like cyclization, is inhibited by nicotine, and precursors accumulate, neurosporene in Rs. sphaeroides and lycopene in Rm. vannieli. When inhibited cultures were washed free from the inhibitor and reincubated in 2H2O medium, the spheroidene and hydroxspheroidene samples that were then isolated contained substantial amounts of 2H1 species with the 2H atom located at C-2. As before, this provided direct proof of the biosynthetic conversions of neurosporene into spheroidene and of lycopene into rhodopin, thus confirming the operation of the postulated biosynthetic pathways.

The stereochemistry of H attack at C-2 during cyclization to form the £-ring in lutein has also been established by employing a somewhat similar strategy with a mutant strain, PCI, of the green alga Scenedesmus obliquus. When grown in the light this strain is indistinguishable from the wild type, having normal chloroplasts and a normal complement of cyclic carotenoids, α- and β-carotenes, lutein, violaxanthin, neoxanthin and luteoxanthin. When grown in the dark, however, PCI is unable to make normal chloroplasts, has little or no chlorophyll and accumulates acyclic precursors, phytoene and especially β-carotene, in place of the normal cyclic carotenoids. On illumination of the dark-grown cultures, the development of chloroplasts is completed and cyclic carotenoids are formed, apparently at the expense of the accumulated acyclic precursors (Ref. 22). This is therefore another system in which carotenoid synthesis, in this case as part of chloroplast development, can be made to take place in two stages. The experimental procedure is very simple; the algae are grown in the dark in ordinary (1H2O) medium, then transferred to 2H2O and illuminated. Any cyclic carotenoids formed in the light from the acyclic precursors that accumulated in the dark will be [2H2]-species (one 2H atom introduced for each cyclization) whereas cyclic carotenoids synthesized in the light de novo, i.e. from CO2 and 2H2O, will be extensively deuteriated. As with the Flavobacterium system, the two kinds of carotenoid molecules can be distinguished and assayed by mass spectrometry. Also, as in the case of Flavobacterium, the 2H introduction at C-2 during cyclization of the accumulated acyclic precursor will be stereospecific, and the chirality at C-2 of the products can be determined by 1H NMR spectroscopy. The main xanthophyll formed by S.obliquus PCI under these conditions is lutein, which thus provides an opportunity to determine the stereochemistry of formation of the £-ring (Ref.23). A sample of lutein prepared from
Carotenoid transformations during chloroplast development. The ability to distinguish cyclic carotenoid molecules synthesized de novo from those which are formed in the light from \[\xi\]-carotene etc. that accumulated in the dark has provided an opportunity to use PGI to look at a number of aspects of the biosynthesis of carotenoids in relation to chloroplast development in this organism, as the dark-grown cultures are allowed to 'green' in the light. A series of experiments with this system has shown the following (Refs. 24, 25):— (i) in the first stages of greening (up to 5 hours) the cyclic carotenoids isolated, both carotenes and xanthophylls, are \[\xi\]-species formed from the accumulated \[\xi\]-carotene. (ii) In the later stages of greening (5 hours onwards) the cyclic carotenoids formed are almost entirely the extensively deuteriated species, formed de novo from CO\(_2\) and \(2\text{H}_2\text{O}\). (iii) This synthesis de novo is prevented by the protein synthesis inhibitors chloramphenicol and cycloheximide, which affect protein synthesis inside and outside the chloroplast, respectively, showing that enzyme synthesis is required before 'new' carotenoid molecules can be produced. (iv) The formation of cyclic carotenoids from accumulated \[\xi\]-carotene is not prevented by these inhibitors. The cyclase enzymes must therefore be present in the dark-grown cultures but require light for activation. (v) The inhibition of new synthesis by cycloheximide is removed to a considerable extent if glucose is provided as carbon source substrate. Presumably the synthesis de novo can then continue through the action of the enzymes responsible for making the carotenoid skeleton in the dark. The inhibitor blocks formation of the enzymes of CO\(_2\) fixation, thereby preventing the use of CO\(_2\) for carotene synthesis. The inhibition by chloramphenicol is not alleviated by the addition of glucose. Chlorophyll synthesis is totally blocked by both inhibitors, the addition of glucose having no effect. (vi) The time courses of formation of the \(2\text{H}\) and \(2\text{H}_2\) species are different for carotenes and xanthophylls, indicating a fundamental difference at least in the control of the synthesis of the two groups of carotenoids, if not in the synthesis itself. (vii) The 'secondary' ketocarotenoids, e.g. 3-hydroxyechinenone, that accumulate outside the chloroplast when Scenedesmus is subjected to conditions of mineral deficiency (especially of nitrogen) are also produced largely as \(2\text{H}_2\) species. Therefore the accumulated \[\xi\]-carotene can serve as a precursor to both the chloroplast cyclic carotenoids and the extraplastidic secondary ketocarotenoids.

GENERATION OF SPECIFICALLY \[2\text{H}\] AND \[\text{_3C}\] LABELLED MEVALONATE AND ACETATE IN VIVO

When suitable substrates, especially MVA, can be incorporated efficiently into carotenoids, the use of \[\text{_3C}\] labelling as outlined above for zeaxanthin in Flavobacterium to demonstrate isoprenoid labelling patterns and the stereochemical behaviour of the C-1 methyl substituents is straightforward, almost routine, provided the \[\text{_3C}\] NMR spectrum can be assigned rigorously. Unfortunately this procedure cannot be applied universally since many organisms, especially bacteria, will not incorporate the substrate at all, or at least not efficiently enough to give the required degree of enrichment. To investigate the stereochemistry of biosynthetic reactions in these systems, other strategies need to be devised and developed. We have now successfully used two such procedures, one with \(\text{_4H}\) the other with \[\text{_3C}\] labelling, which essentially rely on the production and utilization of specifically labelled substrates in vivo.

Growth of microorganisms on \[\text{_2H}_2\text{O}\] and \([\text{_1H}]\)-glucose

Demonstration of labelling pattern in lycopene. The first of these procedures follows from the \[\text{_2H}_2\text{O}\] methods described above, and is based on the observation that synthesis de novo in \[\text{_2H}_2\text{O}\] medium was frequently found not to give fully deuteriated carotenoid products (e.g. \[\text{_2H}_3\] \[\text{_2H}\]-carotene) but species with variable numbers of \(\text{_2H}\) atoms and also appreciable amounts of \(\text{_1H}\). Thus Flavobacterium R1519 grown in \[\text{_2H}_2\text{O}\] medium produced a range of zeaxanthin species with an average of 12 \(\text{_2H}\) atoms per molecule, i.e. \(\text{C}_{40}\) \(\text{_1H}_{26}\) \(\text{_2H}_{30}\) \(\text{_2H}_2\text{O}\), whereas zeaxanthin from Flavobacterium R1560 had an average of 30 \(\text{_2H}\) atoms, i.e. \(\text{C}_{40}\) \(\text{_1H}_{26}\) \(\text{_2H}_{30}\) \(\text{_2H}_2\text{O}\), decaprenoxanthin from Flavobacterium (Cellulomonas) dehydrogenan had an average composition \(\text{C}_{50}\) \(\text{_1H}_{42}\) \(\text{_2H}_{30}\) \(\text{_2H}_2\text{O}\), and lutein from Scenedesmus obliquus was virtually fully deuteriated \(\text{C}_{40}\) \(\text{_1H}_{26}\) \(\text{_2H}_{30}\) \(\text{_2H}_2\text{O}\). With light-grown Scenedesmus, the carbon source is \(\text{_2H}_2\text{O}\), so that essentially all the hydrogen comes from the medium and the carotenoids formed are virtually fully deuteriated. In the other cases, the medium also had \(\text{_2H}_2\text{O}\) as the only water, but the carbone substrate on which the organism was growing, commonly glucose, was normal, i.e. contained \(\text{_1H}\). The differences in the relative amounts of \(\text{_1H}\) and \(\text{_2H}\) reflect the differences in intermediary metabolism by which the carbon source is used to form biosynthetic glucose units. The overall pathway can be summarized as

\[
\text{glucose} \rightarrow \text{acetate} \rightarrow \text{MVA} \rightarrow \text{carotenoids}
\]
the important feature being that acetate is a significant intermediate. It is obvious that, when acetate is formed from glucose, ^1H from this glucose can only be retained in the CH$_3$ group (C-2), and the extent to which it is retained will depend upon the route by which the substrate is metabolized to acetate. Therefore in a molecule derived from this acetate any ^1H could be present only at those positions which originated as the acetate CH$_3$ group; any hydrogen at positions originating from the COO$^-$ group of acetate would necessarily be introduced later, from the medium, as ^2H. In MVA, retention of ^1H would therefore be expected at C-2, C-4 and the C-3' methyl group, with only ^2H from the medium, at C-5. The predicted labelling pattern in lycopene formed from this has been confirmed by the ^1H NMR spectrum of a sample isolated from Flavobacterium R519 grown on $^2\text{H}_2\text{O}$ and $[^1\text{H}]$-glucose, in the presence of nicotine. The NMR signals at 6.49, 6.63 and 6.64 p.p.m., assigned to the protons at C-7, 11 and 15 (from C-5 of MVA) were absent due to virtually complete replacement by ^2H. The presence of ^2H in place of ^1H at these positions also reduces the possibilities of ^1H - ^1H coupling, so that the form of other signals in the spectrum was changed, e.g. signals that were normally doublets due to coupling with a proton derived from C-5 of MVA became singlets.

The main aim of the experiment, however, was to attempt to distinguish between the two methyl substituents at C-1 of the carotenoid. The key to this lies in the isomerization of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) in the early stages of the pathway after MVA. The isomerization of IPP to DMAPP will result in the uptake of a ^2H atom into the methyl group produced (formerly C-2 of MVA) but not into the other methyl group (formerly C-3' of MVA) which is not involved in the isomerization. An equilibrium is maintained between IPP and DMAPP and the reversible isomerization may occur repeatedly before these compounds are used by the prenyl transferase enzymes to construct the tetraterpenoid skeleton of the carotenoid. Each time an isomerization occurs, more ^2H from the medium will replace ^1H at C-2 (equivalent to C-4 of MVA), when DMAPP \rightarrow IPP and at C-4 (equivalent to C-2 of MVA), when IPP \rightarrow DMAPP. The C-3' methyl group is not involved in the isomerization and will therefore retain its ^1H. Eventually, this procedure relies on the production and utilization in vivo of MVA that can be considered to be labelled at C-5 (fully deuteriated) and/or at C-3' (greatest retention of ^1H). The retention of ^1H in any isoprenoid compound should therefore be greater at positions derived from C-3' of MVA than at any other positions in the molecule. In particular it should be possible to distinguish between the C-1 methyl substituents of a carotenoid, one of which will arise from C-3' of MVA, the other from C-2. This was clearly shown in the case of this lycopene (Fig 1A); the ^1H NMR signal at 1.69 p.p.m. from the C-16 methyl group (the C-1 methyl substituent trans to the main carbon chain and derived from C-2 of MVA) was very weak due to extensive ^2H replacement, whereas that at 1.97 p.p.m. due to the C-17 methyl group (cis to the main carbon chain and derived from C-3' of MVA) remained of high intensity, as did the signals at 1.82 and 1.97 p.p.m. due to the C-18, 19 and 20 methyl groups which are also derived from C-3' of MVA.

Distinction between C-1 methyl groups in zeaxanthin. This approach was then applied to the cyclic carotenoids, first zeaxanthin. This compound was isolated from Flavobacterium R519 grown on $^4\text{H}_2\text{O}$ and $[^1\text{H}]$-glucose, without the addition of nicotine, and the ^1H NMR spectrum of its diacetate determined. As with lycopene, virtually no ^1H was present at the positions derived from C-5 of MVA (C-7, 11, 15). The C-1 methyl substituents in zeaxanthin diacetate are not equivalent and give separate signals in the ^1H NMR spectrum (Fig 1B). The spectrum of the ^2H-enriched sample clearly showed the signal at 1.075 p.p.m. due to the C-1 equatorial methyl group (C-17) present, but that normally found at
1H06 p.p.m. due to the C-1 axial methyl group (C-16) was of very low intensity, i.e. contained very little
4H. This therefore identifies the equatorial C-17 as the C-1 methyl substituent derived from C-3' of MVA
and the axial C-16 as the one derived from C-2 of MVA. This confirms the result previously obtained by
labelling with [2,13C] MVA, and proves the validity of this novel method of determining isoprenoid
labelling patterns and distinguishing between the C-1 methyl substituents on the carotenoid ring.

Stereochemistry of the C-1 methyl groups in decaprenoxanthin. We have now used the same method to
investigate the behaviour of the C-1 methyl groups during the biosynthesis of the C35 -ring carotenoid
decaprenoxanthin in Flavobacterium (Cellulomonas) dehydrogenases, by growing this organism on [1H]-
glucose and [2,13C]-glucose. Even though in this case the 4H/4H ratio was shown by mass spectrometry to be
considerably greater (30:1), the 4H NMR signals due to the hydrogen substituents at C-7, 11 and 15
(derived from C-5 of MVA) were of much lower intensity than the others. In addition, the signal at 4.04
p.p.m. due to CH2OH was of much lower intensity than that of the CH3 group of the C5 sidechain at 1.68
p.p.m., confirming that these groups retain their individuality and arise via C-2 and C-3' of MVA,
respectively. The two C-1 methyl substituents of decaprenoxanthin give well separated 4H NMR signals
at 0.75 and 0.95 p.p.m. The signal at 0.95 p.p.m. in the spectrum of the 4H-enriched sample was of
considerably greater intensity than that at 0.75 p.p.m. Although the assignments have not yet been
proved rigorously, the signal at 0.75 p.p.m. is tentatively attributed to the C-1 axial methyl group (C-16),
that at 0.95 p.p.m. to the equatorial C-17. This leads to the conclusion that the C-1 axial methyl group,
i.e. that in the α-position, is the one derived from C-2 of MVA, and the C-1 (β) equatorial methyl
group arises from C-3' of MVA. If the assignments are correct this result for the C50 e-ring is in
agreement with that obtained previously from the experiment involving incorporation of [2,13C]-MVA into
the β-ring C35 carotenoid c.p. 450.

Use of [13C]-glucose to generate [13C2]-acetate.
The second of these strategies employs 13C labelling from [13C6]-glucose to produce a suitably
labelled endogenous substrate, in this case [13C2]-acetate, for conversion into carotenoid. In studies of
other classes of compounds, notably polyketides but also isoprenoid fungal metabolites, extensive use has
been made of incubations with acetate uniformly enriched with 13C in both carbon atoms. The use
usually contains 10-20% of [13C2]-acetate molecules. When the 13C NMR spectrum of the product is
examined, those carbon atoms that are derived from an intact acetate unit show 13C - 13C coupling and
can easily be distinguished. 13C - 13C coupling between carbon atoms from different acetate units is low
or negligible. In the case of isoprenoids, these acetate units give rise to a molecule of MVA. One carbon
atom is later lost in the formation of the 'isoprene unit'. In this C5 unit, four of the carbon atoms are
formed from two intact acetate units. The fifth, that equivalent to C-2 of MVA, is not and therefore
carbon atoms derived from this position, C-2 of MVA, can be distinguished by the lack of C-C coupling in
the 13C NMR spectrum of the product. This approach has not yet been used in the carotenoid field
because of the inefficient incorporation of acetate by most carotenogenic organisms. However, we have
recently achieved similar results by culturing microorganisms on generally labelled [13C2]-glucose as
carbon source. The biosynthesis of carotenoids can then be summarized as

\[
glucose \rightarrow \text{acetate} \rightarrow \text{MVA} \rightarrow \text{carotenoid}
\]

Provided acetate is formed direct from the glucose as an intact C2 unit to an appreciable extent, the
system can be considered to be using endogenous [13C2]-acetate as substrate and results obtained should
be equivalent to those that would be obtained if exogenous [13C2]-acetate were supplied and utilized.
Some metabolic conversion of glucose to acetate via C1 units, either by direct breakdown or via cycles,
is inevitable, and will give the equivalent of [13C2]-acetate units, but so long as an appreciable proportion
of the acetate formed and used in carotenoid synthesis arises directly as C2 units then, in any product,
those carbon atoms derived via C-2 of MVA will be distinguishable by the lack of, or low level of C-C
coupling in the 13C NMR spectrum, compared with carbon atoms derived from the intact C2 units that
make up the rest of the MVA molecule. A somewhat similar procedure has been used to demonstrate
that the simple terpenoid pentenolactone is biosynthesized via mevalonate. (Ref. 26).

Labelling pattern in zeaxanthin. Fig 2A illustrates the results of an experiment in which
Flavobacterium R1560 was grown on a substrate consisting of [13C6]-glucose (20%) and natural
abundance [12C6]-glucose (80%), and the main carotenoid produced, zeaxanthin, isolated. Under these
conditions, the maximum possible extent of coupling between adjacent carbon atoms arising from
different C2 units or single carbon atoms (C-2 of MVA) is 4%, whereas those carbon atoms arising from
an intact C2 unit should show extensive C-C coupling. In the 13C NMR spectrum of this zeaxanthin,
most of the signals are seen as apparent triplets, consisting of a central signal for the uncoupled carbon
flanked by satellite peaks due to C-C coupling. In some cases, however, the satellite peaks are virtually
absent, showing the absence of C-C coupling. The signals showing no coupling are, as predicted, those of
carbons derived from C-2 of MVA. In particular, the C-1 methyl substituents can again be distinguished,
the signal at 28.72 p.p.m. due to the α axial, substituent (C-16) showing virtually no C-C coupling,
whereas that at 30.25 p.p.m. due to C-17, the β equatorial substituent, shows substantial coupling. This
therefore confirms the labelling pattern obtained by using [2,13C]-MVA as substrate, and establishes the
validity of the arguments and procedure for the use of [13C6]-glucose as substrate.
Stereochromy of the C-1 methyl groups in lutein. This procedure has now been used to tackle one of the outstanding problems in the stereochromy of carotenoid biosynthesis, the behaviour of the C-1 methyl groups during formation of the ε-ring. No system has yet been found that will incorporate exogenous MVA or acetate efficiently enough to allow standard 13C enrichment experiments. In particular Scenedesmus obliquus, which we have used to establish the stereochromy of introduction of hydrogen at C-2' during cyclization to form the ε-ring, will not incorporate MVA or acetate. Although when grown in the light it uses only CO2 as carbon source, it will grow in the dark on glucose as substrate and still produce the normal range of chloroplast cyclic carotenoids, including lutein. The alga (wild type) was therefore grown on medium containing [13C]-glucose (20%) and [12C]-glucose (80%) as carbon source, and the lutein was isolated and purified and its 13C NMR spectrum determined (Fig 2B). The signals due to carbon atoms derived from C-2 of MVA could clearly be distinguished by the absence of significant C-C coupling satellites. This confirms the isoprenoid labelling pattern and the origin of C-4, 6, 12, 14, 16 and 18 of the lutein from C-2 of MVA. The four C-1 methyl substituents, from the B- and ε-rings, could also be distinguished. As with zeaxanthin from Flavobacterium, it was C-16 (the C-1 axial methyl group) of the 3-hydroxy-B-rings (28.72 p.p.m.) that showed virtually no C-C coupling and hence arises from C-2 of MVA. Of the two C-1 methyl substituents of the ε-ring the signal (29.51 p.p.m.) of C-17' (the C-1 equatorial methyl group) of the 3-hydroxy-B-ring was again distinguished by the lack of C-C coupling, and is therefore the one arising from C-2 of MVA and C-16 (trans to the main carbon chain) of the acyclic precursor. The C-17' (C1-methyl group) signal (24.34 p.p.m.) did show extensive coupling. Thus, even though the incorporation of exogenous substrate was not possible, this procedure has allowed us to prove that the stereochemical behaviour of the C-1 methyl groups during cyclization is the same in the B- and ε-rings.

CONCLUSIONS

A short article such as this can present only a brief outline of published work on the use of stable isotopes in carotenoid biochemistry, and of unpublished work from the author's laboratory. It should, however, show how powerful these techniques are in giving a direct and unequivocal answer to many of the questions posed. The two-phase 2H2O labelling procedure has already proved useful in demonstrating carotenoid transformations during biosynthesis and during developmental processes such as chloroplast maturation. Much work remains to be done in the latter area. Perhaps the main achievement of the stable isotope work so far has been the elucidation of the stereochromy of cyclization to form both B- and ε-rings in the C40 and C50 carotenoid series. The application of the range of techniques that we have developed to investigate isoprenoid labelling patterns and details of the stereochromy of biosynthesis of other carotenoids is to be anticipated. The results obtained to date are summarized in Fig. 3. No difference was found between the B and ε-rings of the C40 series in the stereochromy of introduction of hydrogen substitution at C-2 in the behaviour and disposition of the C-1 methyl groups. The suggestion that these different ring types are formed by alternative proton loss from C-6 or C-4 of the same 'carbomion ion' intermediate therefore remains valid, and the stereochromy of folding of the acyclic precursor to produce this intermediate conforms to the C2 (εC/βB2) (εC/2) alternative in the series of possibilities tabulated by Eugster (Refs. 10, 11) as an extension of those we proposed some years ago (Ref. 27). Perhaps the most interesting and surprising finding was that the behaviour of the C-1 methyl substituents during formation of the B- and ε-rings in the C50 carotenoids, 'c.p. 450' and decaprenoxanthin, appears to be the same as for the C40 series even though the stereochromy of substitution at C-2 is opposite. If the tentative NMR assignments are confirmed, these C50 molecules...
therefore do not conform to any of the possible patterns listed by Eugster. Other features therefore need to be considered when attempting to define the stereochemical course of cyclization in the C50 carotenoid series. Any attempt at explanation at this stage would be purely speculative and premature; further experimentation is obviously needed.

ACKNOWLEDGEMENTS.

I am most grateful to the coworkers responsible for most of the experimental work outlined in this article: Drs. Bill Lockley, Narendra Patel, Ann Mundy and Susan Pollard, and Mr. Michael Browne, -also to our colleagues Gary Harriman, Malcolm Rose and Mark Prescott for determination of mass spectra, to Dr. Gerhard Englert (Basel) and Dr. Peter Bevan (Southampton) for determination of NMR spectra, and to Dr. Englert for much patient work on the rigorous assignment of the spectra. Financial support from S.E.R.C. is acknowledged with thanks. I also wish to take this opportunity to express my gratitude to Emeritus Professor T.W. Goodwin, C.B.E., F.R.S., who first introduced me to the world of carotenoids and from whom I have learned so much.

REFERENCES

1. J. Lugtenburg, Pure Appl. Chem, this volume.