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Abs t rac t  - Theory p r e d i c t s  t h a t  the e l e c t r o n  energy d i s t r i b u t i o n  f u n c t i o n  
(EEDF) o f  a h igh  frequency, low pressure plasma i s  m o d i f i e d  when the  
farameter v /w  i s  g rea te r  ( r a d i o  frequency, "RF" case) o r  l e s s  (microwave, 

MW" case) than u n i t y  (v  i s  t he  e f f e c t i v e  average e lec t ron -neu t ra l  c o l l i -  
s i o n  f requency f o r  momentum t r a n s f e r ) .  I n  argon a t  200 mTorr, t he  ca l cu -  
l a t e d  value o f  v / &  i s  about 50 MHz. Assuming t h a t  t h i s  a p p l i e s  a l s o  t o  
molecular  gases, we have used two d i f f e r e n t  plasma systems f o r  t h i n  f i l m  
depos i t i on  exper iments i n  which f requency o f  t h e  a p p l i e d  f i e l d  f ( =  w / & )  
was the  on ly  va r iab le .  I n  a l l  cases s tud ied,  depos i t i on  r a t e  R was subs- 
t a n t i a l l y  lovrer i n  the  "RF" than i n  t h e  "MW" regime: (RMw/RRF) values 
were about 5, 10 and 20 f o r  depos i t i on  o f  plasma polymers, P - S i N  and 
a-Si:H, respec t i ve l y ,  i n  agreement w i t h  the  few pub l i shed  data i n  the 
1 i t e r a t u r e .  
d u s t r i a l  process ing where throughput  i s  a p r i n c i p a l  cons ide ra t i on .  

Microwave plasmas t h e r e f o r e  appear more a t t r a c t i v e  f o r  i n -  

1. INTRODUCTION 

It i s  now w e l l  accepted t h a t  parameters such as gas pressure,  f l o w  r a t e  and composi t ion,  
r e a c t o r  design and power dens i t y  deposi ted i n  the  plasma, can s t r o n g l y  i n f l u e n c e  a g iven 
plasma e tch  o r  depos i t i on  process. However, the s i t u a t i o n  i s  q u i t e  d i f f e r e n t  rega rd ing  the 
a c t i o n  o f  t h e  a p p l i e d  f i e l d  f requency f ( =  w/271) f o r  h igh  f requency (HF) susta ined plasmas: 
some authors f e e l  t h a t  t h e r e  i s  no frequency e f f e c t  o r  t h a t  i t  i s  n e g l i g i b l e ,  some p r e f e r  t o  
i gno re  the  quest ion t o  obv ia te  the  need t o  redesign o r  op t im ize  t h e i r  reac to r ,  w h i l e  among 
those who accept t h a t  f p lays  a r B l e  i n  plasma processing, t h e r e  are c o n t r a d i c t o r y  statements 
as t o  i t s  exac t  i n f l uence .  
mental i n fo rma t ion  and i n s u f f i c i e n t  plasma modeling. Manufacturers '  conservat ism, u n t i l  very  
r e c e n t l y ,  i s  i l l u s t r a t e d  by the  f a c t ,  as noted by Flamm ( r e f .  11, t h a t  equipment was designed 
t o  operate a t  one o r  the o the r  o f  a few FCC l i c e n s e d  i n d u s t r i a l  f requencies (e.g. 13.56 MHz), 
and t h a t  consequent ly f has on ly  r a r e l y  been f i g u r e d  i n t o  t h e  design o f  apparatus f o r  process 
app l i ca t i ons .  To our knowledge, t h e r e  i s  p r e s e n t l y  no commercial r e a c t o r  w i t h  p r o v i s i o n s  f o r  
process o p t i m i z a t i o n  by va ry ing  f. I n  f a c t ,  t he  i n t e n t i o n a l  e x p l o i t a t i o n  o f  t h i s  v a r i a b l e  as 
a process parameter f o r  e t c h i n g  o r  depos i t i on  i s  a recen t  l i n e  o f  research, as i n d i c a t e d  by 
t h e  contents  o f  two rev iew papers on the s u b j e c t  ( r e f s .  1,2). 

There e x i s t  va r ious  types o f  phys i ca l  phenomena t h a t  can be respons ib le  f o r  f requency e f f e c t s  
i n  process plasmas. Yhen cons ide r ing  f 10 o r  20 MHz, one can igno re  lower  frequency pheno- 
mena such as the ion-sheath t r a n s i t  e f f e c t s  ( r e f .  l ) ,  and one can p o i n t  t o  two remain ing 
impor tan t  frequency-dependent phenomena: m o d i f i c a t i o n s  t o  the shape o f  t h e  e l e c t r o n  energy 
d i s t r i b u t i o n  f u n c t i o n  (EEDF) ( r e f .  21, and changes i n  t h e  s p a t i a l  d i s t r i b u t i o n  o f  the HF 
f i e l d  i n t e n s i t y .  The l a t t e r  e f f e c t ,  which e v i d e n t l y  has bear ing  on the  s p a t i a l  d i s t r i b u t i o n s  
o f  e x c i t e d  species, f o r  example chemical ly  a c t i v e  precursors,  i s  t he  o b j e c t  o f  d e t a i l e d  d i s -  
cuss ions i n  recen t  work by R ica rd  e t  a l .  ( r e f s .  3-61. The former phenomenon, p a r t i c u l a r l y  
i n v e s t i g a t i o n  o f  t he  dependence o f  t he  EEDF on v /w ( r e f s .  2,7) ( v  i s  t he  e f f e c t i v e  average 
e lec t ron -neu t ra l  c o l l i s i o n  frequency f o r  momentum t r a n s f e r )  i s  connected w i t h  energy s e l e c t i -  
v i t y  w i t h i n  the m u l t i t u d e  o f  chemical r e a c t i o n s  o c c u r r i n g  i n  t y p i c a l  process plasmas. I n  t h e  
p resen t  paper, we rev iew exper imental  observat ions,  most ly  f rom our own l a b o r a t o r i e s  and a l l  
r e l a t i n g  t o  t h i n  f i l m  depos i t i on  s tud ies,  which appear connected w i t h  changes i n  the  EEDF as 
v / w  i s  var ied.  F i lms  have been cha rac te r i zed  as t o  t h e i r  s t r u c t u r e s  and r e l e v a n t  physico- 
chemical p roper t i es ;  when s i g n i f i c a n t  p roper t y  v a r i a t i o n s  occurred w i th  va ry ing  f , these a re  
s p e c i f i c a l l y  emphasized. 

Th is  s i t u a t i o n  can r e a d i l y  be exp la ined  by i n s u f f i c i e n t  e x p e r i -  
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2. EXPERIMENTAL (APPARATUS FOR VARYING FREQUENCY) 

A major problem when performing frequency-dependent investigation i s  t o  ensure t h a t  truly the 
only external parameter being varied i s  the applied frequency. As a rule,  reactors designed 
for radio frequency ( R F )  plasmas are different from those operated with microwaves. Since 
reactor walls, particularly important in tubular configurations ( i  .e. large length t o  radius 
ra t io) ,  are completely (ambipolar diffusion case) or p a r t i a l l y  (volume recombination case) 
responsible for the plasma loss rate,  no true frequency ef fec t  comparison can be made i f  the 
prevailing condition i s  no t  rigorously maintained. The results presented below have been 
obtained using two different techniques for producing HF plasmas, b o t h  using the same reactor 
geometry and volume a t  R.F. and microwave frequencies, as well as the same power densit ies,  
pressures and gas flows; they are ( i )  the surface wave plasma and ( i i  1 the "large volume 
microwave" (LMP) plasma techniques. 

2.1 Surface wave plasma apparatus 
Surface wave proiiced pTasma columns are sustained by the e lec t r ic  f ie ld  of an electromagne- 
t i c  surface wave t h a t  uses the plasma column and the d ie lec t r ic  tube containing i t  as i t s  
sole propagating structure: there i s  t h u s  no need fo r  an applicator tha t  would run  along the 
discharge tube t o  activate i t .  The power flowing along the plasma tube i s  emitted by a com- 
pact, localized, wave launching gap device. 
same electromagnetic f ie ld  configuration ( the  azimuthally symmetric mode of propagation) over 
an extremely broad range of frequency ( 4  MHz - 10 GHz demonstrated): t h i s  ensures t h a t  the 
only external parameter varied i s  the applied frequency. A further advantage of surface wave 
plasmas for such studies is  t h a t  modelling i s  very well developed: the f ie ld  intensity d i s -  
tr ibution, the electron density (axial and radial distributions) as well as the dispersion 
and attenuation properties of the wave can be calculated ( re fs .  8,9) (For a review on surface 
wave plasma properties, see refs. 9,101. 

There now ex is t  a large variety of surface wave launchers ( re fs .  11-14) which allow one t o  
operate in the RF as well as in the microwave frequency range, a t  power levels ranging from a 
hundred watts t o  kilowatts with discharge tube diameters ranging from 0.5 mn t o  150 m (de- 
monstrated). The operating conditions can be chosen, or the launcher tuned, so t h a t  only the 
azimuthally symmetric mode of propagat ion  i s  excited, yielding a plasm column w i t h  proper- 
t i e s  which are independent of the particular launcher used. 

Figure 1 shows the surface wave discharge setup used for the plasma polymerization experi- 
ments. The discharge tube i s  a cylindrical pyrex tube (61 mn i.d.1 and the substrate holder 
( a  quartz  crystal mass detector) i s  oriented perpendicularly t o  the wave propagation direc- 
tion. The plasma column length depends on the HF power supplied t o  the wave launcher; the 
power can be se t  so t h a t  the plasma barely reaches the substrate while, for larger power 
levels,  the wave will be to ta l ly  reflected a t  the substrate, increasing the plasma density on 
i t s  way back toward the launcher. 
around the substrate, producing plasma beyond the substrate producing plasma beyond the subs- 
t r a t e .  
the plasma occupying a constant volume, as the plasma column was maintained between the subs- 
t r a t e  holder location and the launcher. 

Such plasma columns can be sustained with the 

For s t i l l  larger power, part of the wave power flows 

The experiments reported hereunder were performed under reflection conditions, with 

1 Mass flow controllers;  
2 surface wave launcher; 
3 microbal ance readout u n i t  ; 
4 low-pass f i l t e r ;  
5 capacitive vacuum gauge; 
6 monomer injector; 
7 microbalance quartz crystal detector ( subs t ra te ) ;  
8 plasma. 

F i g .  1. Plasma system based on the surface wave technique. 
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Pyrex reactor  wal l ;  
s t a i n l e s s  s tee l  top p l a t e ;  
microwave window p l a t e ;  
powered electrode;  
ro ta t ing  subs t ra te  holder 
( a t  ground potent ia l  1; 
heating element; 
pl asma; 
reagent gas feed l i n e ;  
pumping 1 i ne; 
ro ta t ing  shaf t  ( t o  ground); 
vacuum s e a l ;  
slow wave microwave appl ica tor ;  
input  and output waveguides; 
RF generator and matching network. 

Fig. 2. Plasma system based on LMP: ( a )  microwave ( "MW")  mode system, operating a t  2.45 
GHz; (b) radiofrequency ("KF") rode system, operating a t  13.56 MHz. 

2.2 Plasma apparatus based on LMP (large volume microwave plasma) 
Figure 2 shows a second reactor  system f o r  frequency-dependent s tud ies ;  unlike t h a t  discus- 
sed in sect ion 2.1,  i t  has been used only a t  t;wo indus t r ia l  frequencies, namely 13.56 ( "KF")  
and 2450 MHz ( "MW") .  Figure 2 ( a )  shows t h i s  bel l  j a r "  type of reac tor  i n  the  " M i "  mode; as 
i t  has already been described elsewhere ( r e f .  151, only the most important fea tures  a re  d i s -  
cussed here. The reactor  vessel cons is t s  of a 23 cm diameter, 19 cm high Pyrex cyl inder  with 
a s t a i  nl ess  s teel  top p la te  incorporating a1 1 the required access connections ( r o t a t i n g  va- 
cuum seal f o r  the sample holder and e l e c t r i c a l  feedthroughs f o r  i t s  heater ,  connection t o  the 
turbomolecular pump, Baratron vacuum gauge, gas i n l e t  from the e lec t ronic  mass flow meters, 
e t c . ) .  The bottom of the reactor  cons is t s  of a 27.5 cm diameter, 1 .3  cm thick fused s i l i c a  
"window" through which microwave energy i s  supplied t o  the  plasma from the 30 cm long s t r a p -  
ped-bar slow wave s t ruc ture  ( r e f .  16). Substrates  t o  be coated a r e  mounted facing downward 
on the underside of the heated sample holder (15 cm diameter) ,  the dis tance of which t o  the  
s i l i c a  window p l a t e  can be adjusted v e r t i c a l l y .  Usually t h i s  spacing i s  4 cm, so t h a t  the 
to ta l  plasma v o l u n ~  in  the contained space i s  about 1600 c d .  

Figure 2 ( b )  shows t h i s  reac tor  system in the "RF" mode of operation; t h i s  modification i s  
accomplished with ease by removing the microwave appl ica tor  and replacing the s i l i c a  g lass  
\Mindow by a polished s t a i n l e s s  s tee l  p la te  of the same dimensions. This metal p la te  i s  e lec-  
t r i c a l l y  connected t o  the 13.56 MHz power supply and matching network, and thereby becomes 
the "powered" electrode of a capaci t ively coup1 ed discharge system, the "grounded" e lec t rode  
being the sample holder (which, along witn the metal top p l a t e  and a l l  the remaining p a r t s ,  
i s  a t  ground potent ia l  ). Consequently, among a l l  the external plasma var iables  lnentioned i n  
the Introduction, in  t h i s  experiment, f as  well as  the sheath p o t e n t i a l ,  a r e  varied in  chang- 
ing from configuration 2 ( a )  t o  2 ( b ) .  Comparing the RF e lectroded configurat ion with an e lec-  
t rode less  MW discharge i s  important, as  i t  corresponds t o  the two most commonly used types of 
discharges. However, one must bear in  mind t h a t  the influence of sheath-induced ion bombard- 
ment in  t h e  case of the  clectroded reactor  introduces an addi t ional  parameter i n t o  frequency 
comparison. 
with the appropriate  power supply and matching network, b u t  t h i s  has not y e t  been done. 

Evidently, 2 ( b )  could be operated over a r e l a t i v e l y  broad RF frequency range 

2.3 Characterization of thin film deposits 
So f a r  the  pr incipal  use of apparatus described i n  sect ion 2.1 has been t o  study the deposi- 
t ion  l t inet ics  of hydrocarbon and fluorocarbon plasma polymers ( r e f s .  17,18), although syste-  
matic invest igat ions of resu l t ing  f i lm c h a r a c t e r i s t i c s  have commenced. 

Apparatus described in  sect ion 2 . 2 ,  on the otner  hand, i s  used cont inual ly  f o r  depositing 
various thin f i lm mater ia l s ,  which are  then carefu l ly  character ized by a var ie ty  of physical 
a n d  chemical techniques, depending on t h e i r  end use. Families of th in  f i lm mater ia ls  which 
have been thus prepared and studied a re  

( i )  Plasma polymers, par t icu lar ly  organo-silicones ( r e f s .  15,19,20); 
( i i )  Inorganic s i l i c o n  compounds ( s i l i c o n  n i t r i d e ,  oxyde and oxyni t r ide)  ( r e f .  21) and 
( i i i  1 amorphous hydrogenated s i l i c o n .  
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3. RESULTS A N D  DISCUSSION 

The results presented here are primarily concerned with i l l u s t r a t ing  the e f fec t  of f upon 
deposition kinetics of various thin film materials mentioned above. Where appropriate, cha- 
racterization data are also presented. 

3.1 Organic materials (plasma polymers) 
Probably the most conclusive demonstration so f a r  of frequency-dependent effects in low pres- 
sure HF plasma processing i s  the work of Claude e t  a l .  ( re fs .  17,181 on plasma polymerization 
of hydrocarbon and fluorocarbon monomers. Figure 3 shows a plot of l o g ( R / P )  vs. f for isobu- 
tylene ( I B ,  upper curve) and perfluorocyclobutane (PFCB,  lower curve), where R i s  deposition 
rate (in A min'l I t  must be emphasized that 
under the conditions of the experiment, plasma volume was constant, so tha t  P i s  proportional 
t o  power density in the plasma: the fu l l  c i rc les  and cross symbols on the upper p l o t ,  which 
pertain to different power values a t  any given frequency, clearly indicate t h a t  the observed 
effects are due only t o  variation of f (pressure, flow ra te ,  and other pertinent parameters 
having been kept constant throughout). Figure 3 reveals a number of important features: 
IB curve clearly displays two plateaus, one a t  low frequencies ( f  6 30 MHz), the other a t  
high frequencies ( f  > 100 MHz), the R/P value of the former being about a factor of 5 lower 
t h a n  the l a t t e r .  In the case of PFCB, there i s  a plateau for f > 100 MHz, b u t  R / P  s t i l l  
appears t o  be decreasing a t  the lowest frequency ( 1 2  MHz) investigated here. The most s t r ik -  
i n g  and important feature of t h i s  plot ,  however, i s  the fac t  t h a t  the transit ion region bet- 
ween the RF and "microwave" plateaus appears t o  be centred a t  v /w  2 1 , in agreement with the 
theoretical model as t o  the role played by the EEDF ( re fs .  2 , 7 ) .  

In Figure 4, results for PFCB are presented in a plot of composite parameters R/FM vs. P/FM, 
as f i r s t  proposed by Yasuda ( r e f .  2 2 ) ,  F and !.I being flow rate and molecular weight of tine 
;onomer, respectively. 

low" frequencies, respectively, while the hatched region pertains t o  the 10 kHz data of 
Gazicki and Yasuda ( r e f .  23) for various fluorocarbon monomers. If we consider an (imagina- 
ry) envelope curve connecting the maxima of the solid curves with i t s  counterpart for the 
broken curves, the "microwave" d a t a  are again a b o u t  5 times higher than the "low" frequency 
data, for a given P/FM value (e.g. 108 J/kg). The horizontal s h i f t  along the abscissa (by  a 
factor of about 3) between Gazicki's and Claude's "low" frequency data i s  due t o  the f ac t  
t ha t  the experiments were carried o u t  in very different reactor geometries, beside other 
differences in experimental methodologies. For more de ta i l s ,  the reader i s  referred t o  the 
respective references. 

and P i s  the power absorbed by the plasma. 

the 

The sol id and broken curves represent the indicated "microwave" and 
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Fig. 5. Composite p lo t  of data derived from the present  work, and t h e i r  comparison with 
r e s u l t s  from the l i t e r a t u r e .  
as  described i n  the t e x t .  Full symbols r e l a t e  t o  the present  sample s e r i e s  ( see  
t e x t ) :  0 " A " ,  T = 25°C; R "B" ,  T = 100°C; + " C " ,  T = 200°C; A "D" ,  T = 250°C. 
Other symbols: 0 Sinha,(24); x and + Kaganoricz(24), 400W and l O O W ,  respect ively.  

The abscissa  i s  log ( r a t i o  of N% t o  S i ; t  f lowra tes ) ,  

3.2 Inorganic materials 
I n  t h i s  sectron,  we report  frequency-dependent r e s u l t s  r e l a t i n g  t o  amorphous hydrogenated 
s i l icon  films (a-Si:H) prepared from silane/argon (SiY, /Ar) gas mixtures, and to  "plasma 
s i l i c o n  n i t r i d e "  (P-SiN : ac tua l ly  a-SiN,: H )  f i lms prepared from silane/arnmonia (SiY, / I q  ) 
gas mixtures. 

F i r s t ,  regarding the l a t t e r  mater ia l ,  Fig. 5 shows a composite p lo t  with a common abscissa ,  
l o d  (N%/SiY,) ,  the flow r a t e  r a t i o ] ,  of data per ta ining t o  four sample s e r i e s  A t o  D, and of 
selected data from the l i t e r a t u r e .  
a t  subs t ra te  temperatures Ts = 25, 100, 200 and 250"C, respect ively.  
has so f a r  been car r ied  out in  the 2 ( b )  configuration. 
Kaganowicz and Robinson ( r e f .  24) ( f  = 13.56 MHz, T 6 40°C) and Sinha e t  a l .  ( r e f .  25) ( f  = 
13.56 MHz, Ts = 275°C). 
of f i lm dens i t ies .  
with increasing (Nt$/SiY,) r a t i o .  
achieved by reducing SiH, flow r a t e  ( r e f .  21); a l s o  expected i s  the  observed drop in R ( a t  
constant N /Si ) with r i s i n g  T . The data of Kaganowicz ( r e f .  24)  and of Sinha e t  a l .  
( r e f .  25) 2 %  s ow similar  t rends,  b 8 t  t h e i r  deposition r a t e s  ( f o r  Ts6 40'C and 275"C, respec t i -  
vely) are  fac tors  of - 25 and - 13 lower t h a i  the  present  r e s u l t s ,  under comparable fabr ica-  
t ion  conditions. 
authors a re  a l s o  about 500 A m i d  (- 8 A sec-'),  which confirms t h a t  the deposition r a t e  
r a t i o  ( R  
somewhatMWigRer than the fac tor  of 5 reported in sect ion 3.2 f o r  plasma polymers. From Fig. 
5 ( b ) ,  we note t h a t  f i lms of "acceptable' density ( p > 2.5 g cmd ), a property which appears 
t o  govern many of the other  c h a r a c t e r i s t i c s  of importance t o  t h i s  microelectronic engineering 
material ( r e f .  211, can readi ly  be achieved in 2.45 GHz plasma for  T s  > 200°C. 

Final ly ,  turning t o  a-Si:H, we have recent ly  prepared many samples in  the apparatus of F i g .  
2. The object ive was t o  fabr ica te  thick f i lms with l a r g e  photoconduct ivi t ies ,  f o r  applica- 
t ion in electrophotography. Samples were character ized by measuring e l e c t r i c a l  conductivity 
i n  a planar gap configurat ion,  in the dark (ad)  and under simulated AM1 i l luminat ion (aAM1)' 
Table 1 shows a typical  se lec t ion  of r e s u l t s  which a re  re levant  to  the present  discussions:  
samples a and c were pre ared in  tne "RF" mode [F ig .  2 ( b ) ] ,  while b and d were prepared i n  
the "MN" mode [ Fi . 2(a)P.  Pressure and (SiH /Ar) flow r a t e s  were kept constant  throughout 
a t  250 mTorr and 78/42] ( i n  sccm), respectiveyy, while other  fabr ica t ion  var iables  were se- 
lec ted  as shown. Two important r e s u l t s  emerge from comparisons between sample p a i r s  ( a , b )  
and ( c , d ) ,  namely: ( % w / R R F )  i s  about 20 in  both cases ,  and ( ~ ~ , , ~ / a ~ )  i s  between one and two 
orders  of magnitude higher f o r  the "RF" sample mater ia ls  than or  t e i r  "MW" counterpar ts .  
The former observation once again confirms the above-i l lustrated enhancement by about an 
order of magnitude which r e s u l t s  froin plasma deposition i n  the  'Irnicrowave" regime (V /a cc 1). 
Further ,  i t  agrees with s imi la r  observations by other  workers: Curtins e t  a l .  ( r e f .  26) 
recent ly  reported a s t u d y  of a-Si:H deposition i n  a capaci t ively coupled discharge i n  pure 
SiY, , in  the frequency range 25 6 f < 150 MHz. They found a sharp r i s e  in R with increasing 
f ,  a maximum value Qax = 22 A s-l 70 MHr, followed by a gradual decrease i n  R. I t  
i s  i n t e r e s t i n g  t o  note t h a t  t h e i r  f::xfTdr= a 1s  squarely within the t r a n s i t i o n  region of Fig. 3; 
t h e i r  subsequent drop in  R ,  however, disagrees with our observations, and we speculate t h a t  
i t  may be an a r t i f a c t ,  possibly re la ted  t o  d i f f i c u l t i e s  in  impedance matching a t  those very 
high frequencies. Hudgens and Johncock ( r e f .  27)  found even higher R values a t  f = 2450 MHz 
than the ones we report  in  Table 1, namely 7 100 A s-l ,  b u t  t h e i r  feed gas was a (SiY,/SiF,,) 
mixture. 

Regarding the higher (a /ad) r a t i o s  obtained for  RF produced a-Si:H (see  Table l ) ,  we fee l  
t h i s  i s  re la ted  t o  ion l%bardment resu l t ing  froin the plasma sheath(281, which is substan- 
t i a l l y  enhanced i n  the electroded configurat ion of Fig. 2 (b) .  

Ser ies  A t o  D were prepared in the reac tor  of Fig. 2 ( a ) ,  

For comparison, we a l so  show data of 

In Fig. 5 ( a ) ,  we p lo t  log[ aeposi t ion r a t e ] ,  while 5(b)  shows a p l o t  

No P-SiN preparation 

In  ( a )  the deposition r a t e ,  a t  a given value of T s ,  i s  seen t o  decrease 
This i s  t o  be expected, as  the increase in t h i s  r a t i o  i s  

The highest  "low frequency deposition r a t e s  f o r  P-SiN reported by other  

/R F )  f o r  P-SiN, under comparable fabr ica t ion  condi t ions,  appears t o  be about 10, 
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a 
b 

C 
d 
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f(MHz) P(W) TS("C) R(A s-l 
a d  

13.56 120 3 00 1.25 3.7 x ld;' 
2450 120 330 25 103 

13.56 20 280 0.4 9.5 x l b t  
2450 30 270 7 0.8 x 103 
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