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Abstract - Reactions of subvalent boron species, generated by the dehalogenation
of X2BNRjy (X = Cl, F; R = Pr! or Bu') by Na/K, with aromatic compounds in
1,2-dimethoxyethane lead to polycyclic species in which formal borene units,
"BNR ,", are added across or inserted into the carbon skeleton of the aromate.
The highly reactive borene or borenoid intermediates lead to complex product
mixtures and lossy high vacuum distillations make it difficult to evaluate the
true yields of the respective products. In some cases (compounds 9 and 13) pure
isolated material come ug to nearly 50%). Structures have been deduced from
MS and NMR (IH, ”B, 13¢ and in part I5N) data as well as by x-ray structure
analyses for 14 of the 27 species formulated. Formation of specific compounds
depends on the reaction conditions (see the references cited). All species exhibit
high thermal stability, some are slowly hydrolysed by atmospheric moisture while
.others are stable to wet acetone for prolonged periods. With one exception (20),
the novel species are quite different from carboranes.

INTRODUCTION

Carbenes, derivatives of divalent carbon are six electron species. They can be described as Lewis
acids and (in their singlet state) as Lewis bases at the same time. Without a suitable reaction partner,
carbenes will polymerize. With aromatic compounds carbenes will react either by 1,2-addition across a
(CC) double bond thus forming norcaradiene derivatives or by insertion into the carbon skeleton thus
forming e.g. cycloheptatriene. Cases where the same aromatic ring reacts with two carbene species
are extremely rare. A borene is a derivative of monovalent boron and therefore a four electron spe-
cies, Even its electron deficiency may be diminished by w-donor substituents its reactivity must be
higher than that of a carbene.

To be certain that a free borene is acting as the reaction partner to any substrate, the borene has to
be generated either in a gas phase reaction or in solution by elimination from cyclic moieties. This
has been performed by Timms by the high temperature preparation of boron monohalides and their re-
action with alkynes to give 1,4-dihalo-dibora-cyclohexadienes (ref. 1), When borenes are generated in
solution, by the dehalogenation of dihaloboranes, RBXj, with active metals, reaction products obtai-
ned can be formed also by radical reactions of borenoids, RBX, and a subsequent second dehalogena-
tion step. Surprisingly no attempts have been made to react subvalent boron species (borenes or bore-
noids) with aromatic compounds in the past. - However the borole dianion A has been reacted with
CH,BBr,, to yield the 2,3,4,5-tetracarba-nido-hexaborane(é) derivative B, while with PriNBCly the 2,6-
dibérabi€yclo[3.1.0]hex-3-en derivative C is obtained (ref. 2). Like in the 1,4-dihalogeno-1,4-diboracy-
clohexadienes classical, cyclic structures are stabilized by the diminution of the electron definiency
at the boron atoms by additional w-bonding from their substituents.

All species marked by letters (denoting the work of others) or by numbers (our work) are de;l)icfed in
Table 1. All these compounds have been fully characterized by their mass-(MS) and NMR.('H, g,

C and in part '2N) spectra. Those labeled with an * have been substantiated by x-ray structure
analyses.

RESULTS AND DISCUSSION

By the reaction of XzBNPr% (X = Cl or F) with Na/K and CgHy in (CH30CHj2)y, species CgHy x BN(i-
Pr)2 (x = 1-6) are formed as shown by field ionization (FI) mass spectrometry.

1) +2n No/K  2.) + n X,BNR,

xn > C
(CH3OCH2)2, - 2n(Na/K)X

He v BNR,
xm10-0.1; y=1-4 XaClF; RaPr, Byl
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By fractionating high vacuum distillation of the viscous mixture of the reaction products, so far three
bicyclic species containing two (1) and three (2, 3) formal borene units "BNPry" have been isolated
(ref. 3,4). In all these products two double bonds are retained; 3 is a spirocyclic species and hydrogen
transfer is observed. The structure of 4 (which is obtained from 1,4-diisopropyl-benzene) presents the
same skeleton as 1, while 5 derived from toluene corresponds to 2. Likewise the reaction product of
p-xylene with two "BNPr3" units, é and compounds 7 and 8 which originate from 1,2,4-trimethylbenze-
ne and N-dimethyl(4-trimethylsilylaniline belong to a common type of structure (ref. 5). The type of
skeleton which is presented by the compounds 6 to 8 seems to be easily formed and is also contained
in 9 which is the main product formed in the dehalogenation of X2BNPrs by the naphthalene alkali-
metal complex in glyme (ref. 3,4,7). These products apparently are formed by the 1,4-addition of a
“"borene" unit across a six membered aromatic ring and by insertion of the other "borene" under ring
enlargement. Again compounds 6 - 2 still contain two double bonds. The inclusion of a part of the re-
maining aromatic ring into the bonding system of the borylated part of 9 apparently stabilizes the
aromatic ring against further attack. The reaction product obtained from m-xylene by the addition of
two "borene" units represents a tricyclic structure 10 characterized by a six- and a five membered
ring with boron atoms and a cyclopropane unit (ref. 8). The species 11 obtained from toluene contains
four "borene" units and consists of a seven- and two five membered rings (ref. 8). Compounds 12 and
13 made from toluene and tert-butylbenzene consist of each a seven-, a six- and a five membered
ring (ref. 5). The compounds 11 - 13 still contain one double bond in the seven membered B,C5 ring.
If the starting aromatic species carries substituents (as alkyl, trimethylsilyl, dialkylamino groups or a
condensed second ring) double bonds are always retained next to the substituents, thus indicating, that
carbon atoms carrying substituents other than H are not attacked by the subvalent boron species for-
med. Upon reacting 1,2,4,5-tetramethylbenzene with Na/K and F,BNPr} in glyme one obtains only the
exocyclic disubstituted compound 14, formed by 1,4-addition of the fluoroborenoide moiety. If o-xy-
lene is the starting material however, besides of 15 (which is isostructural to 14) also the bicyclic
species 16 is formed by additional insertion of two "borene" units into the carbon skeleton. In 16 the
double bond is fixed between the C atoms carrying the two methyl groups (ref. 9).

So far the species C4Hg * BNR, and Cy4Hg -6 BNR, (or derivatives thereof) have not been isolated.
This is due to the fact that the products with just one "borene" oligomerize rapidly and perhaps are
less stable than species containing additional boron atoms. From the dianion of cyclooctatetraene (o
10 m-species) however 17 has been isolated, which would suggest that a 1,4-addition is the first step
of the reaction. However from FI-MS and 13C-NMR it must be concluded, that also g second species
with the same mass is formed, containing the "borene" between two C-atoms with spz—geomeh‘y (ref.
10). On the other hand 18 is apparently the main product with acenaphthylene, a species were no
1,4-addition between two (CH) groups is possible (ref. 6). Also it shows that 1-methylnaphthalene is
extremely difficult to be borylated, while 2-methylnaphthalene easily adds up to five borene units
(ref. 5). C4Hg + 6 BNPrﬁ has not been obtained in pure state so far.

According to the structural data obtained, substitution by boron appreciable lengthens the C-C bonds,
so in 11 a (CC) bond which is substituted by 3 boron atoms is 159.6 pm, the bond between two C-
atoms carrying 4 boron gtoms is 164.2 pm long (ref. 8). The two (CC) bonds in D, prepared from Przl-
NB(CI)-CH=CH-B(CI)NPr} with Na/K and phthalocyanine palladium catalysis, are 165 and 169 pm long
(both between C atoms of spJ-geometry which together carry four B atoms) (ref. 11). The (BC) bond
lengths are between 158 to 160 pm like those in other 3-dimensional boron carbon structures with
classical bonding obtained recently by different methods (ref. 11, 12). Com3pounds 1 - 18 contain only
three coordinated boron and three- or four coordinated carbon (spZ and sp” hybridization) and there-
fore are different from carboranes. The same is true for 19 which is obtained from norbornene and
represents an uncomplexed 1,2,3-triborolane derivative (ref. 5, see also ref. 13). If however norborna-
diene is the starting material, CsHy is eliminated from the reaction product in a retro Diels-Alder
reaction and the corresponding 1,5-dicarba-closo-pentaborane(5) derivative 20 is formed (ref. 5). 20
has not to different structural parameters compared to 1,5-dicarba-closo-pentaborane(5) and its alkyl
derivatives (ref. 14, 15), however quite different NMR-data indicating that 20 is rather to be descri-
bed as a classical bonded system.

Benzene reacts with difluorosilylene to give a compound in which cyclohexadiene is bridged in 1,4-po-
sition by a difluorosilylene trimer (2,2,3,3,4,4-hexafluoro-2,3,4-trisilabicyclo[ 3.2.2]nona-6,8-diene) (ref.
16). This resembles the structure of 19. Also 21, the product of the reaction of the alkali metal com-
plex of 2,2'-dipyridyl and Cl,BNPr} (ref. 17), corresponds to a species recently obtained from photoly-
tically generated di-tert-butylsilylene and 2,2'-dipyridyl (ref. 18).

If aromatic compounds are used which show restrained reactivity towards the subvalent boron species

p 4 p
generated, the "borene" species will attack the solvent, 1,2-dimethoxyethane, and diborylated ethyne
22 is formed under partial hydrogenation of the aromatic compound (ref. 4, also see ref. 19).

Furtheron the reaction of subvalent boron species has been studied with oxygen-, sulfur- and nitrogen
heterocycles (ref. 20, 21). For example with benzothiazole compounds 23 and 24 have been isolated
(ref. 20). From 2-methylbenzoxazole besides of (PhO)2BNPr) and (Pr3N);B-C =N compound 25 has been
isolated and the formation of 26 and 27 substantiated by MS and NMR-spectroscopy (ref. 20).

Subvalent boron compounds generated by active metal dehalogenation of dihalogeno-(diorganylamino)-
boranes are by far more reactive than carbenes. Even the formation of a free borene species "BNR;"
in these systems cannot be substantiated unambigously, products obtained support this assumption.
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Certainly it would be of high interest to make use of todays facilities of structural characterization

for the only example of a transition metal borene complex, (CO)4FeBNMe2, described 20 years ago
(ref. 22).

TABLE 1 Letters denote compounds described by other authors. Numbers denote our own results.

Compounds labeled with an * have been characterized by x-ray structure analyses.
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