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Abstra t - Hydration complexes, lon an object of study in the coordination chemistry 
field, c:n now be studied more directfy by new and powerful methods. Among the new 
experimental methods are the refined neutron scattering methods developed by J. E. 
Enderby, G. Neilson and co-workers. Another is the study of ion-solvent clusters in 
molecular beams, especially by spectroscopic techniques. Some important new theoret- 
ical studies begin with calculating the Born-Oppenheimer potential surfaces for very 
small ion-water clusters. Then one of the available statistical mechanical techniques 
is applied to generate solvent-averaged ion-ion pair potentials from which measurable 
equilibrium solution properties can be calculated. In another new development, the 
same solvent-averaged models are dressed with bare ionic self diffusion coefficients and 
with the ion-ion hydrodynamic interactions. From such models one can calculate some 
of the solution transport coefficients for comparison with real systems. Illustrations of 
both consistencies and contradictions are found. 

INTRODUCTION 

The last decade has witnessed impressive advances in our methods of investigating the molecular structures 
around ions in aqueous solutions. These advances are based on neutron diffraction experiments by Enderby, 
Neilson, and co-workers [l], together with important advances in calculating those average properties of 
model systems that can be compared with experimental data. Thus it becomes practical to apply these 
developments in statistical mechanics to assess the degree to which various models are realistic. 

At the same time evidence has been accumulating for a surprising type of chemical reactivity of some ion 
hydration complexes; they dimerize even in the face of large accumulations of coulombic energy. Here are 
some examples of proposed dimerization processes expressed as chemical reactions 

The evidence for the nickel dimer comes from neutron diffraction experiments which will be discussed below 
[2]; they show that in a 4.35m aqueous NiC12 solution a major fraction of the nickel ions is within 5A center to 
center of another nickel ion. The evidence for the ferrous-ferric complex is based on applying Marcus theory 
to calculate the rate constant for the electron exchange in solution, together with certain NMR relaxation 
data [3 .The evidence for the chloride ion dimerization comes from model calculations done by Kusalik and 
Patey 141 and, for a different model, by Pettitt and Rossky [5]. According to these theories the fluoride ion 
dimer is even more stable [4,5]; it is also is more amenable to investigation by NMR techniques. Indeed 
Hertz and Radle found enhanced NMR relaxation of "F in F- solutions which they attribute to F--F- 
interactions [6]. Besides these aquo-ion dimers with similar charge sign within the pair, there is also evidence 
for pairwise association of the 0x0 cations such as UO;', NpOi and V O t  [7]. 

In this report we limit ourselves to describing the evidence, both pro and con, that chloride ions in aqueous 
solution form dimers, presumeably stabilized by hydrogen bonds [5,8]. While the questions regarding the 
stability of these dimers are not all answered, it is surely an interesting exercise to see which experiments will 
provide a measure of their importance in dilute solutions. So we turn our attention to the proposition that 
in 1M aqueous NaCl solution a substantial fraction of the chloride ions is distributed as close pairs Cli-, 
contrary to what Arrhenius concluded 103 years ago. 

Ion hydration complexes in solution are traditional objects of study in coordination chemistry [9 

specifies the stoichiometry of the complex, while the latter corresponds to the average time a water molecule 
lives in the complex before exchanging with an outside water molecule. In some cases hydration complexes 
found in salt hydrate crystals can be shown to persist in solution on the basis of comparison of electronic 
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most basic level a hydration complex is characterized by the hydration number and its lifetime. T I! e former At the 
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spectra. Then one may be able to infer some details of the geometry of the complex in solution. But more 
generally the study of ion hydration phenomena and the structure of electrolyte solutions must be based on 
the ion-ion, ion-water and water-water forces. 

From this general perspective we find that the distinction between a Born-Oppenheimer (BO) picture, in 
which solute and solvent are treated symmetrically, and a McMillan-Mayer (MM) solvent-averaged picture 
is very useful [lo]. Thus the ion-ion interaction phenomena, responsible for the concentration dependence of 
the thermodynamic and transport properties of electrolyte solutions, are often advantageously discussed in 
terms of solvent averaged ion-ion forces. On the other hand it is only in the BO picture that one sees the 
arrangement of water molecules around an ion. Important information concerning both levels of description is 
provided by the refined neutron diffraction methods [I], and the results achieved by this method are relevant 
to the chloride-chloride complex formation. These experiments, however, are mostly made in the solution 
concentration range above 1M; there is still a need for statistical mechanical model calculations to estimate 
the changes in solution structure as the concentration is changed from infinite dilution to the molar range. 
The relevant theory, described in the sections on BO and MM models and their applications, most directly 
(MM-level) leads to osmotic coefficients ( w  excess free energies) as functions of the concentration of NaCl. 
The calculation of transport coefficients in electrolyte solution gives another set of coefficients which may be 
used to test the models. In new work that is briefly summarized here, a theory of liquid junction potentials 
is developed and applied to the chloride dimer problem, with striking results. In the concluding section the 
various calculations already described are brought together to see what degree of dimerization of the aqueous 
chloride ion is consistent with the various experimental data. 

DIFFRACTION BY SOLUTIONS 
The equilibrium structure of a fluid system is mainly expressed in terms of pair correlation functions g A B ( r ) .  

correlation functions the hydration number of the ionic species (Y is the running coordination number 

if Y=O, or half the running coordination number if Y=H. In either case the appropriate cut-off Ry is the 
minimum beyond the first peak in gaY(r)  [l]. 

It must be admitted that very often thermodynamic, transport, or relaxation data have been interpreted to 
reach conclusions about hydration numbers of solute ions. Unfortunately such determinations are unreliable, 
as shown most obviously by results depending on the kind of data [ll]. On the other hand, the most 
straightforward method for determining structure in chemical systems, namely X-ray diffraction, is not nearly 
so powerful when applied to fluid systems as when applied to crystals [12]. To see why, we need to take a 
look at the theory of the diffraction of X-rays or neutrons by a fluid. The experimental data in a neutron 
diffraction experiment can be reduced to yield a weighted average 

A B  

of the partial structure factors 
i A B ( k )  = / [ S A B ( r )  - 11 e ik.rd3,. (3) 

In Eq. (2) p is the total atom concentration, while zA and zB are the fractions of the nuclear species A 
and B, respectively. The sums are over all of the nuclear species in the system, and the f's are the neutron 
scattering lengths. 

While a direct measure of the structure, F ( k )  is not of much use by itself because even in the 
simplest ionic solution, say 1M NaCl in water, it can be expressed as the sum of ten terms due to the ten 
atomic species pairs 00, OH, HH, NaO, NaNa, . . . . The composition dependence appears implicitly in 
the i A B 6 k )  alongside the secular dependence carried by the factors z A z B .  In dilute solutions, due to the 
secular ependence in Eq. (2), the water-water terms overwhelm the remaining ion-ion and ion-water terms. 
Therefore it was a great advance when Enderby and coworkers showed [13] that the measurements could be 
made so exactly that the differences in F k) due to change of isotopic species were measurable. Thus an 
isotopic substitution of the ionic species (Y b y g yields 

= ~,(k) - ~ ( k )  = P (f," - @ .% iaa(k) + P (fa - fd za C f B z B L B ( k )  (4) 
B f a  

if we may assume that isotopic substitution does not change the structure, i.e. i a B ( k )  = & B ( k ) .  Due to the 
different magnitude of the atomic fractions zA, the first order difference method gives information about the 
detailed arrangement of water molecules around the ion a [1,2,13]. 
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In Fig. 1 we show ~ A ( T ) ,  the  inverse Fourier transform of A A ( k ) ,  for a 1.46m solution of NiCl2 in D2O in 
the case in which A=Ni, i.e. one Ni isotope has been changed to  another. G N ~ ( T )  is a linear combination 
of the pair correlation functions gNiO(r) and g N i D  T ) .  In the figure we compare the experimental function 
with that obtained from a model calculation [14\. The comparison shows that the diffraction data may 
used to  see how realistic a BO model is, but of course it would be more definitive if we had a theory of the 
concentration dependence of g A B ( T ) .  

c11 c12 

Fig. 1. GNi(r) in water. The heavy line 
is the function experimentally determined 
in 1.46m NiCl2 [l] while the light line 
comes from a model calculation with one 
ion and 100 water molecules [14]. 

Fig. 2. Geometry of a Cly(aq) complex 
that is consistent with observed G ~ , ( T ) .  

The neutron diffraction first difference method can be extended by making a larger number of isotopic 
substitutions. For example in the second order difference method [2,13], with two substitutions of the Ni 
isotope (three Ni isotopes altogether) one can determine k N i N i ( k ) .  Its Fourier transform shows that two 
Ni2+ ions in 4.35m NiC12 easily approach each other to  give a center-to-center separation of scarcely more 
than 48,. Since the hydration shells of the ions are not displaced [2], they must interpenetrate to give a 
shoulder in armpit configuration [3]. 

These results are relevant to the theory of the ferrous-ferric electron exchange in water [3] even without a 
theory for predicting the change in hNiNi r )  as one goes from 4.35m NiC12 solution to dilute solutions. More 

very few solutions and the second difference method to  even fewer pairs of ions. 

For diffraction by X-rays the structure factor is again iven by Eq. (2), but now the form factors fA are 
functions of the wavevector k. Enderby and coworkers f1,15] have devised a system by atomic substitution 
based on the "isomorphism" of some pairs of hydrated ions. By this technique it may be again possible to 
reduce Eq. (2) to  fewer terms. 

generally, the first difference neutron di d raction method as developed by Enderby has only been applied to 

The neutron first difference function GCl(r) has been measured in more than ten solutions [1,13,16]. Remark- 
ably, this measure of the hydration structure of the Cl-(aq) is insensitive to  the medium. For example the 
Cl-D peak at  2.38, and the C1-0 peak at  3.28, scarcely shift or broaden as one changes the concentration or 
the counterion species. This insensitivity is qualitatively inconsistent with C1;- being an important species 
as we now explain with the help of Fig. 2. Suppose that Cll:Hl:O:H2 represents the average geometry of 
the chloride ion hydration as determined by Gcl(r). A second chloride ion C12 at an arbitrary point in the 
vicinity of C11 would give rise to  new C1-0 and C1-H peaks in GC,(v) ,  unless it is placed in the Cll-Hl-O-H2 
plane in a location that is symmetric under C2 with respect to C12 (Fig. 2). While this site exists, it is 58, 
away from C11. 

The Pettitt and Rossky theory [5] that makes us look for the ClT2 predicts a 3.5A separation between the 
two chloride ions. As calculated from the experimental data [1,13,16] there is no 3.5A peak in any GCI(r) 
except in cases where there is also some inconsistency in the correlation distances and angles. 

MODELS 

Born-Oppenheimer level 

Great pro ress has been made in calculating BO-level potentials from first principles, i.e. rrom the Schrodinger 
equation 171. A water-water potential is calculated by integrating the Schrodinger equation over the electron 
coordinates to obtain the energy of a given configuration of two water molecules. With a suitable selection 
of nuclear configurations one can in this way generate an important piece of the electronic ground state BO 
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potential energy surface on which the two oxygens and four hydrogens move. Most often this BO surface is 
parametrized in terms of an interaction site model (ISM). Three or more sites [17,18] are chosen in a water 
molecule and the potential energy of interaction ~ ( 1 2 )  between two molecules is expressed as the sum of the 
potential energy over pairs of interaction sites 

One of the most useful forms is 

where TAB is the distance between site A in one water and site B in the other. The 6-12 coefficients AA 
and CA and the site charges qA are adjusted to fit the BO potential surface generated from Schrodinger-level 
calculation. 

Measurable averages, such as goo(r) ,  calculated from a model water-water potential by Monte Car10 (MC) 
or Molecular Dynamics (MD) simulation mostly show rough agreement with laboratory data. We recall that 
Kuharski and Rossky [19 showed that models treated by classical mechanics should not agree too closely 

on the quantum dispersion changes goo(r) roughly as much as raising the temperature of classical water from 
300K to 350K [19]. 

Ion-water potentials can be evaluated by calculating average properties of small clusters of water molecules 
around one ion and comparing the results with thermodynamic data for the same clusters in ion beams [20]. 
Spectroscopic data for vibrational modes of these clusters can now be measured [21] and ma be expected to 
be even more useful for evaluating model solute-water BO surfaces like those in refs. [18(b)yand [22]. 

In recent years there have been attempts to obtain the structure of pure water from models treated by 
approximate statistical mechanical theories. Solving the hypernetted chain (HNC) approximation 101 (see 

range structure, although the structure factor F ( k )  for X-ray diffraction is satisfactory [24(a)]. More recently 
it has been reported that far better results can be obtained for the short-ran e structure by including the 
so-called bridge functions of a simple hard sphere fluid (at appropriate density) b4(b 1. In particular the peak 

Other approaches to the structure of water are due to Kusalik and Patey [25] using the reference HNC theory 
for water modeled as polarizable hard spheres with embeded multipoles and by Pettitt and Rossky [26] by 
applying the extended RISM theory to the TIPS interaction site model [17(b)]. 

with the laboratory data L ecause the latter carry quantum effects. It seems worth remembering that turning 

following section) for the “ionic” or central force model for water [23] gives very poor results for t h e short 

locations and coordination numbers are much better than those given by simple H’ NC for the same model. 

McMillan-Mayer level 
These models specify the interaction laws iiap(r), the potential of average force between solute particles 
at infinite dilution, and are the input for most theoretical calculations of the ion distributions and of the 
concentration dependence of thermodynamic and transport properties. 

At the MM-level the molecular solvent is variously described as averaged out, projected out, or replaced by a 
dielectric, viscous continuum. The basis in statistical mechanics for projecting out the solvent is well known 
[10,27,28] for equilibrium systems. It is implicit already in the theory of the concentration dependence of 
transport coefficients developed by Debye, Hiickel, Onsager, and Falkenhagen [29]. 

Quite generally one can distinguish between those models that are introduced more or less ad-hoc from those 
that are derived under given approximations from BO statistical mechanical calculations. The first group 
comprises the primitive model (charged hard spheres with omission of the image terms of order l/r4) and 
other more refined charged hard core models like the square well or mound model [30]. Included in this group 
are also the solvent-averaged pair potentials of the form [31] 

where A,p is a repulsive coefficient that is selected to be consistent with the diameters of ions of species 
a and /3 and e is the dielectric constant of the medium. The CAV,p(r) term is the leading correction for 
image effects [31]. The Gurney term GUR,p(r), is a bland adjustable term that is tuned to reproduce some 
property, usually the osmotic coefficient, as a function of concentration up to 1M or so. Often referred to 
as vanilla (V) models because they are reduced to essentials (core repulsion, coulomb tail, tunable middle 
section), these soft core models (like the primitive and the other hard core models) might be realistic if the 
real molecular solvent were replaced by a continuous dielectric medium. 

A more realistic model, however, should exhibit spatial oscillations due to the granularity of the solvent, 
as remarked long ago by Guggenhheim [32(a)] and recently by Ciccariello [32(b)]. Such oscillatory features 
appear naturally in solvent-averaged pair potentials derived from BO level calculations. The latter approach 
includes the oustanding contributions by Kusalik and Patey [4] and by Pettitt and Rossky [5] mentioned in 
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Fig. 3. Solvent averaged pair potentials i i ,p(~)/kBT. We have in turn a,@ = Na+- 
Na+; Na+-Cl-; and Cl--Cl-. The broken line represents the coulombic contribution 
to the potentials. The abcisa is P is in units of A. 

the introduction. As an example Fig. 3 shows the Pettitt-Rossky (PR) [5] solvent averaged pair potentials of 
NaCl as). For the Cl--Cl- pair potential, PR1 is the original Pettitt-Rossky potential while PR2 is a slight 
modi A cation to improve the agreement of the MM calculations with the experimental osmotic coefficient data 
1331. 

EQUILIBRIUM STRUCTURE AND ENERGETICS FROM MODELS 

The hypernetted chain (HNC) integral equation approximation is accurate enough for many MM studies 
involving aqueous electrolytes with ion concentrations up to the molar range. Mostly this statement rests on 
comparisons of treating given models by both HNC and a simulation method, whether MC [34] or BD [35] 
Brownian dynamics, in which the ions follow some projected dynamics such sts Langevin’s or Smoluchowski’s. 

The HNC theory for the calculation of the average equilibrium structures of a MM model specifying the pair 
potentials ii,p(~) may be described as follows [lo]. The Ornstein-Zernike equation 

t361) .  

hap(l2) = capu 2) i- c J ca’I(1 3) P’I43) h,p(3 2) (8) 
‘I 

may be taken as defining the direct correlation function ~ ~ ~ ( 1 2 ) .  Also a, p, and 7 are solute species labels, 
while the integers label coordinates, say rl,  r2, r3. The HNC approximation involves a second equation to 
close the calculation, namely 

(9) 
1 

~ 4 1 2 )  = h,p(12) - ln[l+h,p(12)] - - -  ( 1 2 ) .  kBT Uap 

With the addition of one more term, the bridge graph sum B,p(l2), this equation would be exact and we 
could solve for the exact structure functions implied by the model potential and the state variables. If we 
do not neglect Bap completely but instead use B,p calculated for some reference system the theory is called 
reference-HNC (RHNC) [lo]. 

For MM-level models of a ueous electrolytes the adequacy of the HNC theory leaves little incentive to apply 
the RHNC theory. An odaresult (which is mended by the RHNC) is that in symmetrical models for aqueous 
CuSO4 in the millimolar range there is a range of concentration in which g++(r) = g- - (T )  has a peak as a 
function of r a t a  separation that corresponds to the like-like distance in the triple ion -t - -t [37(a)]. Another 
striking result for the same model is that the HNC results for the osmotic coefficient agree very closely with 
results from the non-linear Poisson-Boltzmann equation [37(b)]. 

To see whether the vanilla (V) and Pettitt-Rossky (PR) models can be distinguished by thermodynamic data 
we apply the HNC approximation to both models. We find, after some small adjustments of each model [33] 
that we can fit the osmotic coefficient data up to 1M with high accuracy. Essentially the same result was 
reported by Pettitt and Rossky [5] .  

To investigate the thermodynamics more completely we are calculating the mixing rules for some osmotic 
coefficients of these models. We recover Harned’s rule in mixing a vanilla model for NaC104 with a vanilla 
model for NaC1, in agreement with experiment. But when we mix a vanilla model for NaC104 with a PR 
model for NaCl and with a vanilla model for the Cl-,ClO, pair potential, we find unrealistic deviations from 
Harned’s rule, especially above 1M [37(c)]. 

The pair correlation function g--(r) for the V and PR models of aqueous NaCl at 1M are shown in Fig. 4. 
PR1 is the potential before tuning (to PR2) to fit the experimental osmotic coefficient data [33]. Also for 
comparison g+-(r)  for the PR1 model is included. The extensive formation of Cli- predicted by the PR 
models is evident from the figure. 
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0 4 0 r  

Fig. 4. Pair correlation function g - - ( r )  for V and PR model of aqueous NaCl at 1M. 
Also included is g+-(r)  of the PR1 model. r in units of A. 

In the next two sections we exploit MM-level theories under the HNC approximation in the context of evalu- 
ating model properties that correspond to measurable non-equilibrium functions of aqueous NaCl solutions at 
finite concentrations. We believe that these properties are particularly sensitive probes of the sDecific ion-ion 
interactions. The results derived from a vanilla model “tuned” to fit osmotic coefficient data are compared 
with the results derived from a Pettitt-Rossky models PR1 and PR2. 

SELF AND DISTINCT DIFFUSION COEFFICIENTS 

Historically the development of the theory of ionic solutions has been strongly affected by the progress made in 
the accurate measurement and theoretical interpretation of mass transport coefficients, above all the electrical 
conductivity. But the pace of progress slows down considerably when it comes to the interpretation of the 
transport coefficients of solutions in the molar concentration range. More recently it has been proposed that it 
might be advantageous to concentrate on just two kinds of “more basic” diffusion coefficients, the self D: and 
the distinct D$ diffusion coefficients. They are the basic pieces from which the collective isothermal mass 
transport coefficients (electrical conductivity, transport numbers and interdiffusion coefficients) are built. 
The time correlation function expression of the self diffusion coefficients is 

Dk = J,” dt { (Ua(t) . UQ(O) ) }m , (10) 

where UQ(t) is the velocity of a particle a of species a defined relative to a reference frame that is fixed with 
respect to the laboratory. Also (. . .) denotes an average over an equilibrium ensemble while i* . .}m indicates 
the thermodynamic limit operation. In contrast with the DZ, but in common with most o the other mass 
transport coefficients, the internal reference frame to which the D$ pertain has to be specified. In the 
solvent-fixed reference frame their time correlation function expression [38] (BO-level) is 

D&=’Jm 3 0  dt { ( ~ a t ~ p ) ( [ U ~ ( t ) - 0 w ( l ) ] ‘ [ U b ( O ) - G 1 ~ ( O ) ] ) } ~  7 (11) 

where 0 ,  is the mean molecular velocity of the solvent [39] (a collective dynamical variable), which is defined 
relative to the laboratory reference frame. We say that in Eq. (11) 0 ,  plays the role of a microscopic reference 
velocity [ 38,391. 

For electrolyte solutions the solvent-fixed reference frame is most natural and useful [40], particularly because 
it generates a closed set of ion-ion D i p  which lends itself to approximate calculation (integral equation 
theories or Brownian Dynamics computer simulations) using a projected dynamics that operates at the MM 
level with the solvent-averaged ion-ion pair potentials discussed in the preceding sections. One such scheme 
is the Altenberger, Zhong and Friedman theory (AZF) [33,41], a type of renormalized Smoluchowski integral 
equation transport theory in which the bare solute-solute MM forces are replaced by mean field forces, namely 
the gradients of the equilibrium direct correlation functions cap(.). The bare self diffusion coefficients of the 
ions Dg (i.e. infinite dilution values) and a model for the bare hydrodynamic interaction of pairs of ions (the 
Oseen tensor at the simplest level) are further input to the theory. 

In fact, if for the moment we neglect the hydrodynamic interactions and the mixture aspect, the AZF theory 
takes the form of the Smoluchowski-Vlasov equation [42] for one component spherical particles 

-- a6p(11t) - D V 1 .  [VIp( l , t )  - p ( l , t )  /Vlc(l2)d(2)6p(2,t)]  , 
a t  
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where 6p(l, t )  is the fluctuating part of the particle density field p(1, t )  . 
Equilibrium and non-equilibrium Brownian Dynamics simulations to test the validity of the AZF theory were 
applied to  vanilla models for 1M NaC1, 0.5M K2SO4 and 0.5M CuSO4 aqueous solutions [35(b),40,43]. In 
some studies (K2SO4) hydrodynamic interactions were included [40]. The AZF theory was found inadequate 
for the 2-2 electrolyte, but seems quite accurate for the 1-1 and 1-2 electrolyte models, particularly for the 
self diffusion coefficients and ionic conductivities. Until now, however, the simulations have provided only an 
incomplete test of the quality of the theory owing to the great difficulty in obtaining accurate values of the 
distinct diffusion coefficients by simulation. 

In fig. 5 we compare the experimental C1-41- distinct diffusion coefficient in the solvent-fixed reference 
frame (calculated from the data  of refs. [44]) with predictions by the AZF theory for the V and P R  models 
[33,45]. We conclude that the PR model for NaCl(aq) has an unrealistically strong attraction between two 
C1- ions near contact, as reflected in the Dd_- becoming positive at  rather low concentration, in contrast 
with the experimental data. 

-20 

- . 4 0 1  ' ' ' ' ' ' ' ' ' ' 
.1 .3 .5 .7 .Q \G 

Fig. 5. Distinct diffusion coefficient Dd- (solvent-fixed reference frame) for Cl--Cl- 
in NaCl(aq as a function of the square root of the molar ionic strength [33,45]. PR1 

model. 
and PR2: h ettitt-Rossky models as in Figs. 3 and 4; EXP: experimental; V: vanilla 

THE LIQUID JUNCTION POTENTIAL 

We now turn our attention to  an apparently unrelated problem, namely the distributions of charge and 
electrical potential through the junction between two electrolyte solutions of different composition that are 
mixing by diffusion. We have recently developed a molecular theory [46] for the special case of a liquid 
junction formed between solutions of the same binary electrolyte. The theory of linear response to thermal 
perturbations (McLennan [47(a)] and Mori [47(b)]) is generalized to inhomo eneous electrolyte solutions. 
A novel aspect of the theory is that it is formulated in a salt representationf481; the system is viewed in 
terms of its components in the thermodynamic sense: the "salt" and the solvent. In this way we avoid 
single-ion thermodynamic state parameters in the nonuniform non-equilibrium system. Only the chemical 
potential of the neutral rrsalt" species is needed, while the troublesome single-ion activity coefficients that 
plague the conventional macroscopic formulations are eliminated in favor of equilibrium static correlation 
functions. These functions or susceptibilities may be calculated from BO Hamiltonian models. The transport 
numbers of the ion-constituents, t+ and t- (solvent-fixed reference frame), are required as input to the theory; 
they may be chosen to match those of the system of interest. Under a certain approximation that we call 
the continuum-solvent, the theory may be simplified to the MM level. We confine our discussion to this 
approximation. 

The most interesting liquid junction characteristic is the liquid junction potential (LJP) Q. A surprising 
result of our theory is that Q has direct relevance to the problem discussed in this article. This is due to the 
dependence of Q on the short range specific interactions between the ionic species; indeed Q may become a 
rather useful probe for judging the validity of model particle-particle interaction potentials, a point that we 
exemplify below, after briefly summarizing the results of the theory for the LJP in the continuum-solvent 
approximation. 

The liquid junction potential is given by [46] 

where Aps is the difference in the chemical potential (molar units) of the salt a t  points far from the junc- 
tion and F is the Faraday constant. Moreover g e b ( k )  is the three dimeensional Fourier transform of the 



1354 H. L. FRIEDMAN, F. 0. RAlNERl AND HUA XU 

\ {  
rni 

0 " " " "  

2 4 6 8 ~  

The correction factor for the LJP calculated for several models described in the 
a function of the molar concentration of NaCl at  the final equilibrium state. 

Fig. 
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6. 
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charge susceptibility x e p ( r ) .  The latter depends linearly on the transport numbers of the cation and anion 
constituents and on the mean charge density functions at a distance r from a central ion of species a 

The correlation functions h,p(r) are evaluated a t  the concentration of the final equilibrium state of the 
junction; a consequence of the linear character of the theory. The linear relation between k e p ( k )  and the 
I&(lc) implies that { j i e p ( k ) / k 2 } ~ = o  is linearly related to the single-ion second moment coefficients 

H,(r) = z+p+ ha+(?-) + z-p- h,-(r) , CY = +, - . (14) 

H i 2 )  = -2 6 0  Jrn dr r4 H,(r) . (15) 

(2) (2) Unlike the global second moment condition d2) = z+p+H+ +z-p-H- [lo], the single-ion second momemt 
coefficients depend not only on the long range coulombic interactions, but also on the specific short range 
interactions [49]. This dependence is effected through the functions 

where &(O) is the lc = 0 value of the Fourier transform of the short range part of the ion-ion direct correlation 
y u '  . 

function. In terms of this result for the single-ion second moment coefficients, the expression that we obtain 
for the LJP is 

Q = Q L S ,  (17) 
where the quantity QL arises from the contributions of the long range coulombic interactions to  the single-ion 
second moment coefficients 

q L  = - ln- (18) 
uRT z+t- + ~ - t +  u-J-(+KJ) 

F z ~ Y + + z ~ u -  u+(-KJ) ' 
in which u = u+ + u-, R is the gas constant and T is the absolute temperature. Furthermore the U-J- 

are the mean activities of the electrolyte a t  points far from the junction. QL given by Eq. (18) is the 
expression derived by MacInnes [50] from the classical expression for the diffusion potential by assuming that 
a+ = a- = uk holds for the single-ion activities. Henderson's equation [50] follows as a further approximation 
to this expression. 

But according to  our theory (continuum-solvent approximation) there is still another contribution to q which 
is due to the specific short range ion-ion interactions. It is expressed by the correction factor 

S = l +  (19) 
AS 

z+t- + z-t+ ' 

z+y-C$ + z -y+cs  
1 - (y+CS. + Y-C$) . 

in Eq. (17). Here As is a functional of the Cz which were defined above 

(20) As = 

where y a  is the ionic strength fraction of the ionic species a in the solution in the final equilibrium state. 

In Fi 6 we show S as a function of the molar concentration for NaCl(aq) according to the vanilla model 
and tfe two Pettitt-Rossky models in Fig. 4. These results are interesting because they suggest the LJP, or 
rather the factor S, as a sensitive measure for probing the soundness of ion-ion solvent averaged pair potential 
models. The factor indicates a 10% correction to the classical formula Eq. (18) for the vanilla model at 1M. 
The correction is about 100% for the PR models, being negative for the PR1 model a t  1M. This is in contrast 
with the view (always valid for 1-1 electrolytes) that the faster ions (Cl-) move ahead of the slower ions 
(Na+) so the dilute side of the junction accumulates a negative charge, as indicated by experiment [50]. 
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Here we review our results obtained by various tests of whether the PR model for i i--(r)  in aqueous NaCl 
is realistic. 

The analysis of the G C , ( r )  data is not consistent with C1;-being an important aqueous species. Basically 
this conclusion depends on the evidence that the geometric arrangement of water around chloride ions is 
independent of both concentration and counterion [1,13,16,51] (within certain limits) and on the 3.5A C1-- 
C1- distance being incompatible with the C1- hydration structure revealed by Gcl(r). 

The experimental osmotic coefficient, conductivity, Di;, DB, D$+ and D$- are consistent with the PR 
model in the sense that it fits the experimental data about as well as the vanilla model (the situation changes 
when mixtures are considered). But Di- for the PR model is highly unrealistic in the way one would expect 
if strong Cl--Cl- dimerization were present. This effect is absent in the vanilla model, which shows a much 
better agreement with experiment. 

The calculated LJP for the vanilla model is in the range that is consistent with the experimental data. This 
is not really a very strong claim since the experimental LJP is not known with precision. However the LJP 
calculated for the PR model strongly deviates from the classical results, as would be expected for a model 
with strong specific Cl--Cl- interactions. At high concentration the PR model predicts that a liquid junction 
between two concentrated NaCl solutions would charge in the way opposite to that observed in experiment. 

Presumably improvements in the BO level model would raise fi-- by kBT or more, until it is no longer 
negative. Nothing we have found in the present work suggests that PR models modified in this way would 
still be unrealistic. 

It is interesting to speculate on the source of the error in f i - - ( r )  for the aqueous chloride pair. It cannot 
be the extended RISM theory applied by Pettitt and Rossky to the BO model because MD simulations 
[52] confirm the integral equation results in a very satisfactory way. Therefore the error must come from 
the models used as input to their theory. It would not be surprising if the error came from the absence of 
electronic polarizability in the model C1-, as suggested by calculations by Foresman and Brooks [53], leading 
to substantial deviations from pairwise additivity. 
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