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Abstract - An exactly-solvable lattice-gas model for binary liquid mixtures is proposed which describes 
not only complex miscibility effects, such as closed-loop phase diagrams, but also asymmetry in the 
coexistence curves. A key feature of the model is the inclusion of lattice vacancies, allowing density 
fluctuations in the system. In fact, density fluctuations are found to be essential if the asymmetries in the 
underlying microscopic interactions to be expressed in the coexistence curves. The phase diagrams 
that result from this model are in accord with the qualitative features observed experimentally, and also 
indicate that other more novel forms of the coexistence curves await discovery. 

INTRODUCTION 

All binary liquid mixtures display coexistence curves that have at least some degree of asymmetry under interchange 
of the two components, a reflection of underlying microscopic differences in the component molecules. Even so, 
both theory and experiment (ref. 1) show that the critical solution points of binary liquid mixtures are in the same 
universality class as the simple, symmetric Ising ferromagnet, which thus serves as a suitable starting point in 
studying such systems. With the addition of further degrees of freedom and further interactions to the basic Ising 
model, such as orientation-dependent bonding, many of the complexities of real mixtures may be understood, 
including such novel phenomena as closed-loop phase diagrams. Incorporating asymmetry in such a model 
description, however, has proven to be a much more challenging task. 

Recent theories for complex miscibility behavior in binary mixtures have included calculations using decorated-lattice 
models (refs. 2 and 3), position-space renormalization-group theory (ref. 4), and partial-mace approximations (ref. 5) .  
As successful as the above models and calculations have been, they all share the drawback of having phase diagrams 
that are perfectly symmetric about concentration one half. The problem in each case has been with the model itself, 
rather than with the means of calculation. In fact, these models may be extended to encompass asymmetric phase 
diagrams by simply incorporating density fluctuations in the system, as has been demonstrated using the partial-trace 
approximation (ref. 6). It is the purpose of this paper to show that asymmetry via density fluctuations may also be 
obtained without resorting to approximation methods at all, by using an exactly-solvable lattice model presented 
below. 

ISlNG MODEL REPRESENTATION FOR BINARY LIQUID MIXTURES 

In the simplest case, a binary liquid mixture may be represented by an Ising lattice-gas model, defined by the 
Hamiltonian 

(1) - P H I =  KI c sisj + HI c si , 
<ij> i 

where Si = f l ,  the first sum is over all nearest neighbors on the lattice, and the second sum is over all lattice sites. 
With the usual mixture-magnet correspondence the two values of Si are identified with the two components, A and B, 
of the mixture, KI represents the difference in van der Waals interaction between like and unlike molecules, and HI is 
directly related to the chemical potential difference between the components. Note that with this model the energy of 
interaction for an AA nearest-neighbor pair (Si = +1, s' - +1) is the same as that for a BB nearest-neighbor pair (Si = - 
1, S j  = -l), so that the two types of molecules are handled symmetrically. 

To produce an asymmetric model it would seem only natural that one simply let the two energies mentioned above be 
different; that is, define EM to be different from EBB. In terms of the model, this is accomplished by including an 
additional magnetic field, H, with a nonzero value. The problem is that to obtain coexistence it is necessary that the 
total magnetic field in the system be zero, thus one must set HI = -H. This completely undoes the asymmetry inherent 
originally in EM # EBB, and the resultant phase diagram is symmetric as before. The net effect has simply been a 
shift in the coexistence condition from HI = 0 to HI = -H. 

LATTICE-GAS MODEL WITH BONDtNG INTERACTIONS 

A reasonable way to extend the Ising model description given above, with the possibility of achieving asymmetry, is 
to introduce additional degrees of freedom in the model. For example, many binary mixtures have molecules that can 
hydrogen bond to one another, depending on whether the two molecules in question have the correct relative 
orientation. This possibility may be modeled with orientational degrees of fmdom, Oi, associated with each site of 
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the lattice gas. Now in reality a molecule's orientation is continuous, just as is its position in space, but just as space 
is partitioned into discrete cells in a lattice-gas model, imagine partitioning the solid angle surrounding a molecule into 
"cells" of solid angle. Each solid angle cell will be roughly the size of the solid angle associated with hydrogen 
bonding. Since hydrogen bonds have an angular width of roughly lo' (ref. 7), the solid angle surrounding a given 
molecule should be divided into something on the order of 500 cells. Thus, let Oi = 1,2, 3, . . .,q, with q - 500. 

(2) 
<ij> 

which was first studied by Walker and Vause (ref. 4), and shown to agree well with experiments on closed-loop 
phase diagrams with q = 500. Note first that the zero of interaction is taken to be the energy associated with nearest- 
neighbor molecules of the same type, that is, Si = Sj. Next, if unlike molecules are nearest neighbors, they may either 
bond or not depending on their relative orientation. This is taken into account by assigning CTi = Oj as the condition 
for correct orientations, and ~i z O, corresponding to any other orientations. Thus K1 is the energy of bonding, and 
K2 is the energy associated with nonbonding. 

The above model has been studied with position-space renormalization-group methods, but an exact solution is not 
possible. A very similar model, however, may be solved exactly. Consider the following Hamiltonian 

-PHs = V;, (3) 

V: = ~ 1 ( 1  - 8slsl)P(Oij) + K Z ( ~  - 8sisj)(1 - P(Oij)) + ~ A i s j ~ ( o i j )  , 

p(Oij) = 2 8aij.k (5) 

<ij> 

where 

and 

(4) 

q 

k =  1 
with oi, = 1,2,3,. . .,q2. This interaction potential is symmetric since it treats the two components the same, hence the 
sub- and superscripts S, and it also allows for bonding between like molecules with the K3 term. The really new 
features here, however, are the bond variables oi j  which replace the site variables oi and Oj in equation (2), and the 
projection operator P(o.) which is unity (zero) for bonding (nonbonding) relative orientaaons. Note that the q2 
values of oi, corresponc?to the q2 orientations originally associated with Oi and Oj . 
This model can be solved exactly because each bond variable is independent of all other bond variables on the lattice, 
and hence the q' may be summed over without approximation, mapping the model onto the three-dimensional king 
model, for which exact results are known. Note that this is not possible with the site variables Oi in equation (2) since 
these variables interact directly with one another. Another way of saying this is that equation (3) defines a decorated 
lattice model, where the bonds are decorated with the variables oij. In typical decorated models (ref. 2) the bonds are 
decorated with both the king and orientational variables, which means that some Ising variables are treated differently 
than others. Here this is not the case. Each Ising variable occupies a lattice site, and the decorated bonds carry only 
information regarding the relative orientations associated with the sites they connect. 

The model just described is similar to that studied by Huckaby (ref. 3). Furthermore, it can be shown (ref. 8) that the 
exact solution to the decorated-lattice model of equation (3) is precisely the same as the partial-trace approximation to 
the Hamiltonian of equation (2). Clearly then, given the success of the partial-trace approximations (ref. 5), this 
model provides a good starting point for further exact studies. 

Asymmetric interactions 

It is now of interest to explore asymmetry within the richer context provided by the inclusion of bonding interactions. 
In particular, consider the following asymmetric interaction potential 

where again P(oi,) is the bonding projection operator, and where the Si are taken to be f l .  From this expression it is 
clear that hi is the energy splitting between AA and BB nearest-neighbor bonding pairs, and similarly, that h2 is the 
energy splitting for AA and BB nonbonding nearest-neighbor pairs. With an asymmetric Hamiltonian defined by 

VA = 1 hl(si + s j ) P ( ~ i j )  + 1. hZ(Si + ~ j ) ( l  - P ( ~ i j ) )  , (6) 
*J 2 2 

(7) -PHA = c Vc , 
<ij> 

the full Hamiltonian of interest is 
-PH = -PHs - PHA 

Notice that in this model the asymmetric effects depend on temperature, since the amount of bonding in the system 
varies as the temperature is changed. As a result, it is certainly not the case that the condition for coexistence is simply 
shifted to a different value of the magnetic field, as happened with the simple Ising model, but rather the magnetic 
field must vary dynamically with temperature. In spite of this, the phase diagrams are still completely symmetric. We 
find that by satisfying the condition for coexistence, we at the same time force the system back to a symmetric 
condition-the parameter space we are working in is simply not large enough to permit coexistence and asymmetry to 
be specified separately. The only possible solution lies in enlarging the parameter space to include features of the 
system other than just bonding. 
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EXACTLY SOLVABLE LATTICE-GAS MODEL WITH ASYMMETRIC 
COEXISTENCE CURVES 

In looking more carefully at the lattice models described above one oversimplification is immediately evident; namely, 
all lattice sites are occupied so that the system always has the same density, even as temperature is varied. Since the 
density clearly should vary, it is reasonable on physical grounds to include vacancies in the lattice models. Though 
lattice vacancies by themselves have nothing to do with asymmetry-that is, the vacancies are not placed preferentially 
near one type of molecule or the other, the presence of vacancies allows additional flexibility in the system permitting 
the underlying microscopic asymmetry to be expressed. 

Lattice vacancies 
To include lattice vacancies in the description of the system a new variable must be introduced in the Hamiltonian. We 
choose to associate this variable with the bonds, in a fashion similar to that described for Oij, so that the model is still 
of the decorated-lattice type and hence exactly solvable in terms of the known results for the three-dimensional Ising 
model, Let the variable describing vacancies be Tij, with ij denoting the bond connecting sites i and j. Tij must 
assume four values, corresponding to the following four conditions: site i empty and site j occupied; both sites empty; 
site i occupied and site j empty; both sites occupied. The values of Tij for these four conditions are defined to be Tij = 
-1, 0, 1, and 2, respectively. 

The Hamiltonian describing the system will include the terms given in the previous section when both sites associated 
with a bond are occupied (Tij = 2). On the other hand, if either site is empty (Tij =-1, l),  or if both sites are empty 
(Tj, = O), then the interactions of the previous section do not occur at all. This may be obtained by writing the 
interactions in the form 

Note that the second square bracket vanishes for Tij = -1, 0, and 1, and gives unity for Tij = 2, as desired. 

Similar consideration apply to magnetic field terms. That is, if only site i is occupied then only it contributes to the 
Hamiltonian, if both sites are occupied they both contribute, and so on. Thus, the Hamiltonian contains the terms 

Finally, there must be a term in the Hamiltonian determining the energy difference A associated with the presence of a 
vacancy. This term must give 2A if both sites are occupied, A if only one site is occupied, and zero if neither site is 
occupied. All these conditions are satisfied by the expression 

(1 1) 

Putting this together results in the total Hamiltonian for our exactly-solvable model 

[ v: + v$ [; T~~(T;~ - i)] . 

h s' - 1 . '  2T2. - 3Tij - 5)] + h s i l  Tij(Tij - l)] . 

A [ (- Tij( T2j - 3Tij - 1 )] . 

(9) 

(10) 
'J 2 

-PH = ([V: + Vt] Tij(TTj - I)] + h si [( - 1 ,jP11( ,. 2T2. 1J - 3T,, 'J - 5)] + h S. J[2 1 T-'T.. 'Jt 1J - 1) 
<ij> 

Si T ~ ~ ,  oij Sj Si 
n 0 - Exact partial trace of Tij, oij --C, - 

Effective Ising couplings 
(Kp HI) 

Figure 1 - Schematic representation of the exact transformation used to study the model defined by equation (12). 
The variables Tjj and oij are associated with the bond connecting sites i and j ,  and since they interact with no other 
bond variables, may be summed over exactly. 

Exact calculation 
As illustrated in figure 1, the calculation now takes on the form of an exact trace over the Tij and Oij variables for each 
bond, in the process generating effective king couplings between the Ising variables that stdl remain on every site. 
Since each bond is handled separately the transformation is really quite straightforward. In fact, the details are 
essentially the same as for the calculations already given in reference 5, and thus they will not be repeated here. 

Briefly, the results are that the reduced free energy per site of the model defined by equation (12), f = -PF/N, is given 

(13) 

where (Jj]  refers to the set of couplings (K1, K2, K3, h, hi, h2, A), g is an analytic function of the couplings, and KI 
and HI are the effective king coupling and magnetic field which enter into the free energy per site of the Ising model, 
fI. The coexistence condition, of course, is simply that HI = 0, and this condition determines the magnetic field h in 
terms of the other microscopic interactions. To obtain the phase diagram it is necessary to compute the mole fraction 
of A molecules-that is, the concentration-for both the left-hand (-) and right-hand (+) branches of the coexistence 
curves. This is obtained from xk = (1 t m)/2, where m = <Si> = af/ah. Using the above relation this becomes 

by 
f({Ji))  = d(Ji1) + fI(Kd(Ji)) 9 Hd(JiJ)) 9 

x* = l[ 1 + (a&h + eIaKI/ah k m ~ a H ~ / a h ) c ~ ~ ~ ]  . (14) 
2 
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In the above, eI = dfr/aKI is the nearest-neighbor correlation and mI = dfI/dHI is the magnetization of the three- 
dimensional Ising model in the limit HI + O+. Results for these quantities may be found in the work of Scesney 
(ref. 9). 

To complete the calculation, we note that 
KI = $ln(y) , HI = 1 4 In(&) z-- 

g = ln(Z+ +Z- -) - dKI + A ,  

where d is the dimension of the hypercubic lattice on which the model is defined (in the present case, of course, d = 3) 
and the Z s  are partial partition functions defined as follows: 

z+ + = qeKi +hi  

z- - = qeK3 - hl - 2h + ZA + q(q - 1)e-h - Zh + ZA + 2q2e-h + A  

+ q(q - l)eh2+2h+ZA + 2q2eh+A + q2 

+ q2 
Z+-=qeKl+U + q ( q -  l ) e K l + = + q 2 e h + A + q 2 e - h + A + q 2 .  

RESULTS 

Figures 2 through 4 show typical results from this model. In particular, fig. 2(a) shows an asymmetric closed loop 
above an ordinary miscibility dome. The dashed line shows the diameter, that is, the average of the concentration of 
the left-hand and right-hand branches of the coexistence curve. In fig. 2(b) the magnetic field h required for 
coexistence is shown as a function of temperature. The circles on the curve show the locations of the three critical 
solution points. In a system such as this the concentration of vacancies is increasing with temperature, thus the 
density is decreasing as one would expect. With vacancies increasingly prevalent in the system the underlying 
microscopic asymmetries become more evident. At low temperature, with few vacancies but the same asymmetric 
interactions, the system is almost perfectly symmetric. 

1.0 

0.0 0.5 1 .o 
Concentration, x 

Figure 2(a) - Temperature (-1K2) versus concentration 
phase diagram for the model of equation (12), with -K1/K2 

= 1, and q = 500. The temperature scale is normalized by 
the temperature of the upper critical solution point. Note that 
the asymmetry is much more evident at higher temperatures, 
due to the increased concentration of vacancies. 

= 4.86, -K3/K2 = 5 ,  -h1& = 0.85, -h@2 = 1.75, -NK2 

Figure 2(b) - Magnetic field h required for coexistence, as a 
function of temperature, for the system shown in figure 2(a). 
The circles indicate critical solution points. 

-1.3 -1.2 - 1.1 -1.0 -0.9 -0.8 
Magnetic Field, h 

Figure 3(a) and 3(b) show two phase diagrams that form a sequence leading to the diagram of fig.2. In particular, as 
the bonding between unlike molecules is made more favorable the miscibility dome pinches in, finally breaking off to 
allow a region of intermediate-temperature miscibility as in fig.2. 
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Figure 3(a) - Temperature (-1/K2) versus concentration 
phase diagram for the model of equation (12), with -K1& 

and q = 500. The temperature scale is normalized by the 
temperature of the upper critical solution point. This is an 
example of asymmetry in an otherwise ordinary miscibility 
dome. 

= 4.8, -K3/K2 = 5,  -hl/K2 = 5 ,  -h$K2 = 0.3, -Am2 = 1, 

0.0 0.5 1 .o 
Concentration, x 

Figure 3(b) -Temperature (-1K2) versus concentration 
phase diagram for the model of equation (12), with -Kim2 

= 1, and q = 500. The temperature scale is normalized by 
the temperature of the upper critical solution point. In this 
case like-molecule bonding is causing the miscibility dome to 
"pinch in". With stronger like-molecule bonding the phase 
diagram would be like that shown in fig. 2(a). 

= 4.8, -K3/K2 = 5, -hl/K2 = 0.85, -h2/K2 = 1.75, -A/K2 

0.0 0.5 1 .o 
Concentration, x 

In fig. 4 the unlike molecule bonding is energetically more favorable than the like molecule bonding, thus at low 
temperature the system is miscible. These figures show results that are very similar to phase diagrams seen in 
experimental systems. In fig. 4(a) the phase diagram bows out toward the high concentration side, whereas in fig. 
4(b) the closed loop is almost symmemc about its center line, but it has been translated toward low concentrations. 

I 

1 .oo 

0.90 

0.85 

Figure 4(a) -Temperature (-1/K2) versus concentration 
phase diagram for the model of equation (12), with -K1/K2 
= 10, -K3& = 0, -hi& = 7.1, -h$K2 = 0.3, -A& = 
0.75, and q = 500. The temperature scale is normalized by 
the temperature of the upper critical solution point. A simple 
closed loop in this case, slightly bowed out toward the high 
concentration side. 

0.0 0.5 1 .o 
Concentration, x 
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Figure 4(b) - Temperature (-1Kz) versus concentration 
phase diagram for the model of equation (12), with -Ki/Kz 
= 10, -K3/Kz = 0, -hl/KZ = 7.5, -h2/Kz = 0.7, -A& = 
0.75, and q = 500. The temperature scale is normalized by 
the temperature of the upper critical solution point. The 
closed loop in this case is translated toward low 
concentration. Note that the entire loop exists to one side of 
x = 0.5. 

0.0 0.5 1.0 
Concentration, x 

These are just a few examples of the types of phase diagrams produced by the model introduced in this paper. The 
phase diagrams are physically reasonable, and point the way toward further study of asymmetric effects. In 
conclusion, we find that asymmetry is a more subtle feature than one might at first suppose, and that vacancies can 
play a necessary role in its expression. 
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