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Abstract - A general equation for the solubility of a completely-ionized solute 
which dissolves congruently in a mixed solvent in terms of (a) the solubilities of 
the solute in the individual solvents, (b) properties of the pure mixed solvent 
system, and (c) parameters which have molecular significance has been deduced 
using both classical thermodynamics and exact statistical thermodynamic theory 
of liquids. The equation from classical thermodynamics contains three terms 
which sum to zero: an excess logarithmic solubility relative to a defined ideal 
logarithmic solubility, an excess logarithmic activity coefficient, and an excess 
standard chemical potential. The ideal logarithmic solubility is linear in the 
solvent mole fraction. A method is described for estimation of the excess 
logarithmic activity coefficient if the Pitzer parameters for the salt in one pure 
solvent and the dielectric constant and density of the pure solvent mixture are 
known. The remaining term, the excess standard chemical potential, can be 
correlated with the theory of Kirkwood and Buff to define selective solvation 
term for the salt as a whole, and this term can be evaluated if the molar volume 
and the excess Gibbs energy of the solvent mixture are known. Examples from 
published experimental data are discussed. 

INTRODUCTION 
Solubilities of non-electrolyte or electrolyte solutes in mixed solvents have been used, along with 
appropriate classical thermodynamic theory, to deduce Gibbs energies of transfer from a reference 
pure solvent to the mixed solvent (ref. 1). Because little knowledge is available on activity 
coefficients in mixed solvents, especially for electrolytes, use of solubility data has been restricted, 
for the most part, to systems in which the solubility is sufficiently low that activity coefficients can 
either be neglected or can be estimated with reasonable certainty. Thus, while significant 
theoretical advances in the molecular interpretation of Gibbs energies of transfer have been made 
recently (ref. l), the formulation of a general solubility equation for use in critical evaluation of 
solubilities in mixed solvents has yet to be achieved. Such an equation would describe, ideally, the 
solubility of a solute in a mixed solvent in terms of: (a) the solubilities of the solute in the 
individual solvents, and (b) parameters which can be used directly in molecular theories of 
solubility. The most general theoretical approach to the derivation of a solubility equation would 
use both classical thermodynamics and exact statistical thermodynamic theories of liquids, and it 
is this extended concept of thermodynamics that is used in this paper. 

Exact statistical thermodynamic theories are analogous to classical thermodynamic theories, in that 
they are independent of the specific form of the molecular interaction energies. In classical 
thermodynamics, solubility equilibrium is described in terms of chemical potentials, which are 
related to solubilities through definitions of activity coefficients. In exact statistical theories, 
exemplified by the theory of Kirkwood and Buff (ref. 2, 3, 4) as modified by Hall (refs. 5, 6 )  and 
by Marcus (ref. 7), solubility equilibrium is described in terms of molecular correlation functions, 
which in turn are related by exact equations to the chemical potentials. The correlation functions, 
in particular the radial distribution function, thus provide a direct link between microscopic and 
macroscopic pictures of liquids, and also provide criteria which must be satisfied by specific models 
of interactions in the liquid, such as ion-multipole interactions which lead to selective solvation. 
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Fig. 1. Schematic representation of solubility 
equilibria for a single salt in pure solvents L, 
and and mixed binary solvent; M - 
membranes semipermeable to salt only. 

The specific aim of this paper is to examine the application of thermodynamics (in the extended 
sense) to the solubility of a single completely-ionized salt which dissolves congruently in a mixed 
two-component solvent. Once the appropriate equations are established, some illustrations of their 
application to experimental data and their relation to current theories of solvation will be discussed 
briefly. 

The method for investigating the thermodynamics of solubility in a two-component solvent in terms 
of solubilities in the pure solvents involves a procedure which has been described previously (ref. 
8) but less completely than here. We shall show that the definition of an ideal solubility in a mixed 
solvent follows from thermodynamic analysis. 

salt + LI + L 2  salt + Lz salt + Ll 

solid salt 

CLASSICAL THERMODYNAMICS AND SOLUBILITY EQUILIBRIUM IN MIXED 
SOLVENTS 

The Gibbs energy for transfer of a congruently-dissolving solid to a saturated solution is a 
minimum, and the same minimum affinity holds for transfer to a mixed solvent or to each of the 
pure solvents. The conditions for equilibrium are thus: 

The terms in the chemical potential of the solid disappear with the choice a + p = 1, so that, on 
rearrangement, 

Because the chemical potential terms in eqn (3) are mutually equal, the remaining Lagrange 
multiplier@ is clearly an arbitrary dimensionless quantity with the characteristics of a fraction, such 
as solvent mass or mole fraction, volume fraction, or any other fractional quantity. The most 
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convenient choice is p = xi ' ' ) ,  the solvent mole fraction of solvent component 2. The chemical 
potential of the salt in solvent i, with i = 1, 2 or 12, is: 

where R is the gas constant, T the thermodynamic temperature, v the sum of the stoichiometric 
coefficients v + and v of ions of the completely-ionized salt, p,O('), y s(i), in:) the standard chemical 
potential, activity coefficient (molality scale) and molality of the solute in solvent i and mo = 1 rnol 
kg-' the standard rnolality. Substitution of eqn (4) into (3) gives: 

is the Gibbs energy of transfer from solvent i to mixed solvent 12. 

In eqn (9, the first set of terms on the right-hand side defines the ideal solubility in a mixed 
solvent: 

ln(m,(12)/m 'lid = (l-x,)ln(m,(')/m o)+x21n(m,(2)/m (7) 

while the remaining excess terms account for solute-solute and solute-solvent interactions. Thus 
eqn (5 )  can be written: 

[ln(my'/m o > ~ E +  [lny 3~+ b0(12)1~/v RT= o 

[ln(m:12)/m 0)lE = ln(ms12/m 0)- ( l-x,('z))ln(m:')/m o)-xf%(m;)/m 0 )  

(8) 

(9) 
where 

It should be noted that a change in definition of the activity coefficients could eliminate the term 
involving the Gibbs energies of transfer. Thus, choosing the reference chemical potential as the 
chemical potential of the supercooled pure liquid solute at the given temperature and pressure, and 
the mole fraction of the solute as the composition variable would give the same reference chemical 
potential for the solute in each solution. This choice has value for non-electrolyte solutes. 
However, for electrolytes, which are the main concern in this paper, interpretation of the activity 
coefficients is more convenient using the molality scale and the conventional infinite-dilution 
standard state, and it is this choice of standard state that gives rise to the necessity of Gibbs 
energies of transfer. 

It is clear that eqn. ( 5 )  could be written at once, given the equality of the chemical potentials in 
eqn. (1). The derivation given here shows that eqn. (5 )  is the form of relation that follows at once 
from formal thermodynamic reasoning, and emphasizes the arbitrary choices that are made in 
identifying the Lagrange multipliers. 

Definition of an ideal solubility only has value if real systems exist which approximate closely to the 
definition. An actual example is found in the system is NaCl-H,O-D,O (refs. 8, lo), where the 
logarithm of the solubility at 25OC is a linear function of the solvent mole fraction within 
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experimental error (Fig. 2). The immediate conclusion is that the activity coefficients and the 
Gibbs energies of transfer both follow simple mixing rules, which from eqns. (10) and (11) are: 

In systems which exhibit non-ideal solubility in a mixed solvent, deviations from the ideal 
solubility involve both the Gibbs energies of transfer and the activity coefficients, and we turn to 
statistical thermodynamic theories to clarify the significance of these terms and to provide practical 
methods for obtaining their general mathematical form. 

.I 
'"hO 0.2 0.4 0.6 0.8 1.0 

x(' ')( D20) 
Fig. 2. Ideal logarithmic solubility of NaCl in 
H,O-D20 mixtures at 25°C (ref. 10). Points: 
experimental data; line drawn through 
solubilities in pure solvents. Dielectric 
constants (ref. 11): H20, 78.54; D20, 78.06. 
See text for symbols. 

xg 2) 

Fig. 3. Solubilities of NaC1, KCl and 
Ba(NO,), in H20-En(OH), mixtures at 
25°C (ref. 13). 

As an illustration of the application of the thermodynamic principles, solubilities of NaC1, KC1 and 
Ba(NO,), in water (w)-ethylene glycol [En(OH),] mixtures (ref. 12) are shown in Fig. 3, along with 
the ideal solubility lines. Note that the excess solubility is negative, indicating that the sum of the 
excess logarithmic activity coefficient and the excess standard chemical potential must be positive. 
The other contributions to the total solubility curve will be discussed in the following sections. 

THE EXCESS LOGARITHMIC ACTIVITY COEFFICIENT 
Few published data are available from which general principles can be established for 

evaluation of activity coefficients in mixed solvent systems. The most direct procedure, especially 
where salts with high solubility are in question, would be to use Pitzer's equations for activity 
coefficients. Here an important assumption is involved: the dielectric constant in the Pitzer 
electrostatic term is the bulk dielectric constant, which implies that counterions are effectively 
excluded from the neighborhood of a given ion where preferential solvation takes place. 
Koh et d. (ref, 13) have analyzed emf data for the systems alkali metal chloride-water- 
methanol by Pitzer's equations, and have evaluated the interaction parameters p(") and p('). 
The equation for the mean activity coefficient of the salt is (ref. 14): 

lny , = z ~ J '  +m(h ,,,v x / ~  )B: +m , ( 2 ~  M~ x / ~  )3/2c,' (13) 

with ff = A4x 
A4 = (1/3)(~N,d)112(e2/4.rr~~kr)3/2 

x = 11/2/(1+1.21'~2)+(5/3)ln(l+1.21'/2) 

y = [ 1 - exp( - z ll2) ( 1 + z 'I2- 1/2)1/41 

= 8.60323(d/kg m-3)'/2D-3/2 at 25°C 

Bb' = 2 ( $ ) + p 3 )  

(14) 
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Here, zi is the charge number of ion i, A+ is the Debye-Hueckel osmotic parameter, NA Avogadro's 
constant, d,  D the solvent density and dielectric constant, e the elementary charge, E ,  the 
permittivity of vacuum, k the Boltzmann constant and I the ionic strength divided by the standard 
molality. 

Analysis of the results of Koh et aL (ref. 13) shows that p ( O )  is either constant for each alkali 
chloride, or varies linearly with solvent mole fraction, and is generally much smaller thanp('), while 
lo@((') is a linear function of lo@, with a different slope for each salt; for CsC1, there are two 
slopes, delineating two ranges of solvent composition. An example is given in Fig. 4. This 
behaviour is not unexpected, since p(") is a measure of interactions between pairs of like ions and 
p(") of interactions between pairs of unlike ions, i.e., p ( l )  is analogous to an ion pairing parameter 
(ref. 14). The Bjerrum theory of ion pair formation (see ref. 15) indeed gives the ion pair 
formation constant as a function of D which depends on the particular ion pair. 

loqp) .  
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Fig. 4. Dependence of lo@(') and 
lo@ ('1 on lo@ for NaCl in H,O-MeOH 
mixtures at 25OC (from data in ref. 13). 

Fig. 5. Density, molar volume and dielectric 
constant of H,O-En(OH), mixtures at 25OC. 

These observations provide a general strategy for estimation of the activity coefficients in solvent 
mixtures if we know the solubilities, densities and dielectric constants for the pure solvent mixtures, 
and the Pitzer parameters for one salt-solvent mixture. For the data on salts. in water-ethylene 
glycol mixtures at 25OC, the Pitzer parameters are known for solutions in pure water (ref. 14): for 
NaC1, p(") = 0.0765, p ( ( ' )  = 0.2994, C = 0.001905, from which lny,(') = 0.01044 for the saturated 
solution with rn = 6.160 mol kg-'. Fig. 5 shows the necessary density (estimated from linear 
dependence on mass fraction, as in ref. 16) and dielectric constant data (ref. 11) for the pure 
solvent mixtures. For the saturated solution of the salt in En(OH),, 

from which, with the Gibbs energy of transfer from water to En(OH), = 7 000 J mor' (ref. ll),  In 
yS(') = 0.2369. Now assume that p(") is independent of D, and that the coefficient P is constant. 
The value p((') = 4.596 can then be calculated for NaCl in En(OH),, and the index n in the 
equation 

p (')(H,O)/p (')(En(OH),) = [D(H,O)/D(En(OH),]' (16) 

is found to be -4.390, a reasonable value in terms of Bjerrum theory. This value can then be used 
to estimate values of p(( ' )  for all mixed solvent systems, and hence the activity coefficients for 
these systems can also be estimated. The results of these calculations and similar calcu- 
lations for KC1 are shown in Fig. 6. For Ba(NO,),, no information is available for the Gibbs 
energy of transfer between water and En(OH), for either barium or nitrate ions, so no 
further analysis can be made. The activity coefficient term is larger in absolute value than the 
excess solubility itself. Thus errors in the activity coefficients are serious, but difficult to estimate. 
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Fig. 6. Excess solubility 1.2 
functions for NaCl and 
KC1 in H,O-En(OH), 
mixtures  a t  2SOC. n 
[In(m,"2)/mo)]E: 0 NaCl, 
0 KCl; [lny (12)]E:0 NaCI, 

0.8 

2 0.4 
A KC1; b!('2)]E/2RT: > F1 

NaCI, v KCI. y 0.0 
W 

The excess logarithmic activity coefficient is 

the excess standard chemical potential must be 
positive at all solvent compositions. The 

coefficient arises from the smaller solubility 
and larger logarithmic activity coefficient in 
pure En(OH), compared with the values in H,O. The inverse dependence of logarithmic activity 
coefficient on dielectric constant contributes to the curvature of the plot. Inspection of eqns. (8) 
through ( 1 1 )  shows that the extrema in all curves in Fig. 6 must occur at the same value of the 
solvent mole fraction, which is an obvious feature in the figure. 

- s 
negative for both NaCl and KCI, indicating that -0.4 

negative value of the excess logarithmic activity -O'%.O 0.2 0.4 0.6 0.8 1 .O 

Xg *) 

THE EXCESS STANDARD CHEMICAL POTENTIAL 

The negative of the sum of the excess logarithmic solubility and the excess logarithmic activity is 
equal to the excess standard chemical potential, which is shown in Fig. 3. Hall (refs. 5, 6 )  has 
applied the Kirkwood-Buff solution theory (ref. 2,3,4) to derive equations for preferential solvation 
of ions in terms of the radial distribution function about the ion, and this derivation has been 
extended and criticized by Newman (ref. 17) and Marcus (ref. 7). We write these equation for the 
salt, and find that the dependence of the excess standard chemical potential on solvent composition 
is given by: 

Here, V, is the molar volume of the pure solvent mixture, and the Kirkwood-Buff integrals for the 
salt are defined to be 

vGi,  = v+(Gi++Gi- )  i = 1, 2 (18)  

where the individual ionic Kirkwood-Buff integrals for the cation (+ ) -solvent i interaction are 

Nit' is the excess of solvent component i near the cation, g,, is the radial distribution 
function for solvent molecules of type i around the cation, r is the radial distance from the 
ion, and R is a distance at which the solvent distribution has become essentially uniform, and 
within which the counterion concentration is negligible. Similar definitions apply for the anion- 
solvent interaction. The term in the derivative of the chemical potential of the solvent is given by 
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The second derivative of the excess Gibbs energy of mixing, GE, of the solvent component 2 can 
be found from experimental data on excess Gibbs energies, and is 

d2G E/&,('2) = -U,+ 6( 1-&,(12))A2- ( 10-4&cz(12)+4&cp)2)A 3 (21) 

with A ,  = -1829, A,  = 689 and A,  = 160 J mol" for H20-En(OH), mixtures (ref. 11). The 
penultimate term is the standard Gibbs energy of transfer from water to En(OH),, and the final 
term (which has not been reported previously) accounts for the change from standard chemical 
potentials on the amount concentration scale (used in the analysis based on Kirkwood-Buff theory) 
to standard chemical potentials on the molality scale. 

The excess standard chemical potential can be fitted to the polynomial 

W l  

with B, = 6.997, B, = -9.197, B, = 8.249, B4 = -2.649 for NaCl, B, = 5.789, B, = -10.147, B, = 
15.950, B, = -9.667 for KC1 and from which the derivatives can be found. From density data, the 
molar volume and the correction for difference in standard state can be calculated, from which the 
value of G,' - Gls* can be calculated. These quantities are shown in Figs. 7 and 8. 
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Fig. 7. Quantities required for calculation of 
solvent sorting by NaCl at 25OC. 0 ,  
(11. RT)al. O(l2)]E/dxp); 
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Fig. 8. Difference in Kirkwood-Buff 
integrals for NaCl and KC1 at 25°C from 
solubilities in H,O-En(OH),. 

While methods exist for estimation of preferential solvation by individual ions, still 
more thermodynamic information, as well as assumptions concerning the splitting of the 
total term for the salt into its ionic components (see especially refs. 1,7, 17), are necessary. In this 
paper, we confine our attention to the immediate interpretation of the terms in the general 
solubility equation, and make the minimum number of assumptions. The individual Kirkwood-Buff 
integrals for each solvent can be calculated if the partial molar volumes of the salt at infinite 
dilution in the solvent mixtures are known (information which is sparse except for the pure 
components), as well as the isothermal compressibilities of the solvent mixtures. These latter can 
be estimated closely enough from the isothermal compressibilities of the pure solvents, K(i) and a 
simple mixture rule which recognizes that the compressibility is a volume property, with V' the 
molar volume of pure liquid i: 

K (I2) = [ (1-xp))v;K (1)+Xz(12)vtqC (2)]/vm (23) 

The experimentally accessible values of the individual Kirkwood-Buff integrals plus the partial 
molar volumes at infinite dilution are then given by: 

G,,+ 5' = (Gs2- G,,)c,~,+K (l2)RT 
Gs2+ 5' = -(G,,-G,,)c,V,+K('~)RT 
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These values are plotted in Fig. 9. 
Either this figure or Figure 8 suggests 
that, even when the limiting partial 
molar volumes are taken into account, 
the net preferential solvation of K+ and 
Cl- ions is small, and almost 
independent of solvent composition. By 
contrast, net preferential solvation of 
Na' and C1' ions decreases rapidly as 
En(OH), is added. 

The initial goal has now been reached: 
description of the excess solubility in 
terms of the solubilities in the pure 
solvents, and the properties of the solvent 
mixture. 

CONCLUSIONS 
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Fig. 9. Individual Kirkwood-Buff 
integrals plus limiting partial molar 
volumes for NaCl at 25OC for H,O (Gsl 
+ V:) and En(OH), (Gs2 + V:). 

1. Classical thermodynamics provides a 
general equation which describes the 
solubility of a salt in a mixed binary 
solvent in terms of three contributions: an excess logarithmic solubility relative to a defined 
ideal logarithmic solubility; an excess logarithmic activity coefficient; and an excess standard 
chemical potential. The excess logarithmic solubility can be calculated readily from experi- 
mental solubility data as a function of solvent composition. 

2. With the assumption that the activity coefficient contribution to the excess solubility involves ion 
interactions in a region where solvent sorting is absent, and that the ion-pair interaction coefficient 
in Pitzer's equations varies as a power of the dielectric constant, estimates of the activity 
contribution can be made from known Pitzer parameters in one pure solvent and the solubilities 
in the two pure solvents. 

3. The remaining excess contribution (excess standard chemical potential, or alternatively, excess 
standard Gibbs energy of transfer) can be correlated with the derivative of the chemical potential 
of one solvent component with respect to the solvent mole fraction, the molar volume of the 
solvent, and a term describing net preferential solvation of the ions of the salt. 

4. While there are no restrictions on the general concept of the general solubility equation, and on 
calculation of the excess logarithmic solubility, calculation of the activity coefficient contribution 
assumes that complete ionization is a suitable reference state for the salt, which may cause 
difficulties in interpretation, especially in non-aqueous solvent systems, where extensive ion pair and 
ion multiplet formation is to be expected even in very dilute solutions. 

5. As the possibility of direct experimental evaluation of the Kirkwood-Buff integrals becomes more 
widely realized, this approach is expected to become more widely used in evaluation of solubility 
data in mixed solvents and in the related areas of Gibbs energies of transfer between solvent pairs 
and testing of theoretical radial distribution functions. Serious theoretical problems remain to be 
resolved, in particular, the mutual effects of solvent and counterion sorting near a given ion, which 
have been treated here by a simple empirical assumption. 

6. Recommendations for evaluation of solubility data in mixed solvents include: calculation of at 
least the excess logarithmic solubility, which can be done readily from experimental data; 
calculation of the excess logarithmic activity coefficient if possible, especially in very dilute solutions, 
where this contribution is both smaller and more certain in its calculation; calculation of the excess 
standard chemical potential. The calculations must, of necessity, be done in the order just given, 
and should be amply supported by reliable ancillary data. 
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