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Abstract: The Rossini lecture affords the lecturer an opportunity to review his 
contributions to a subject and to reflect on them from the perspective of an 
extended career. The subject here is vapor/liquid equilibrium, and the topics re- 
viewed include property relations, experimental measurements, consistency tests, 
and data reduction and correlation. 

In the first of these lectures Dr. Rossini remarked that the sponsoring group was named the Com- 
mission on Thermodynamics rather than the Commission on Chemical Thermodynamics so that 
engineering thermodynamics could be included. I am, however, the first engineer to give this lecture, 
a possible exception being Dr. Rossini himself. His B.S. degree was in fact in chemical engineer- 
ing; however, he immediately turned to graduate work in chemistry, and certainly considered himself 
a chemist during his professional career. So it would seem that all of my predecessors have been 
chemists, very distinguished chemists, who have set a high standard indeed for this lecture. As the 
tenth Rossini lecturer I am expected to draw upon contributions I have made to thermodynamics. Of 
greatest practical interest no doubt are those relating to vapor/liquid equilibrium (VLE). I propose 
therefore to expound on the thermodynamic treatment of VLE data, with consideration limited to 
binary systems at  low to moderate pressures, a scope suited to the occasion. This topic is more 
complex and less widely understood than might be supposed. 

PROPERTY RELATIONS 

Central to the correlation of VLE data are the thermodynamic excess properties,  which describe the 
behavior of the liquid phase. These properties, introduced during the mid-l930’s, express the dif- 
ferences between actual property values of a solution and the values which would be exhibited by 
an ideal solution at  the same temperature, pressure, and composition. The equation interrelating 
these properties was derived in one of my earliest papers on thermodynamics (1). Now known as the 
fundamental  excess-property relation, it is an integral part of the thermodynamic structure that we 
lay before undergraduate students (2): 

nVE n H E  
RT RT2 d ( n g )  = -dP - -dT + lnyi dni  

where yi is the activity coefficient of species a in solution and 

g = GE/RT 
Implicit in Eq. (1) is the relation, 
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which identifies lnyi as a partial property with respect 
summability relation characteristic of partial properties: 

to g. These quantities therefore obey the 

- C ni In yi ng=--  nGE 
RT 

General differentiation gives 

Comparison with Eq. (1) yields the Gibbs/Duhem equation for excess properties: 

nVE nHE 
-dP- -dT = z n i d l n y i  RT  RT2 

Applied to one mole of a liquid phase containing species 1 and 2, Eqs. (1) and (4) become: 

VE HE 71 
RT RT2 7 2  

dg = -dP - -dT + In -dxl 

and 

For simplicity we invoke the following definitions: 

VE d P  
E p  = -- 

RT dxl 

-HE dT 
&* = -- 

RT2 dxl 

The equations which describe binary VLE are written either for constant T or constant P .  For the 
isobaric case, ~p = 0; for the isothermal case, ET = 0. Either way, only one E term is needed; thus for 
application to binary VLE we rewrite Eqs. (5) and (6) as 

and 
dlnyl dlnyz 

+x2- - E = 0 
dxi 21 - dxi 

where E is evaluated by Eq. (7) or Eq. (8) as appropriate. Equation (10) is the Gibbs/Duhem equation 
pertinent to this work. 

Equation (3) here becomes 

g = z1 h y l +  z2 11172 (11) 

Thus the treatment of binary VLE is based on three very simple equations [Equations (9), (lo),  and 
(ll)], of which any pair may be chosen as independent. 

EXPERIMENTAL MEASUREMENTS 

The directly measured variables in binary VLE are xl ,yl ,T,  and P. Experimental values of the 
activity coefficient of species i in the liquid are related to these variables by: 
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where 

In Eq. (12) the asterisk denotes an experimental value, determined primarily by the Raoult's-law 
factor yiP/xiPiSat, in which the vapor pressure Pisat is a strong function of temperature. For data 
at low to moderate pressure, the other factor @i is of relatively minor importance, incorporating 
quantities extraneous to the VLE data set. The fugacity coefficients & and $sat account for vapor- 
phase nonidealities, and are readily evaluated from second virial coefficients (2). The exponential is 
the Poynting factor. 

We write a simple summability relation analogous to Eq. (11) to define g* as an experimental 
value: 

g* = x1 lny; + x21ny,' (14) 

Because experimental measurements are subject to systematic error, sets of values of lny; and lny; 
determined by experiment may not exhibit partial-property behavior with respect to g*. Although 
partial properties obey the summability relation, summability does not confer partial-property char- 
acteristics, and Eq. (14) does not make lny; and lny; values into partial properties. Moreover, when 
we apply the analogs of Eqs. (9) and (10) to sets of experimental values, they become tests of the 
thermodynamic consistency of the data, rather than valid general relationships. 

AREA TEST FOR THERMODYNAMIC CONSISTENCY 

Once thermodynamics came to be applied in the correlation of VLE data, interest developed in test- 
ing the experimental values In $ and In y; for conformity with Eq. ( lo),  the Gibbs/Duhem equation. 
Implicit in this equation is a slope tes t  for thermodynamic consistency that compares slopes of curves 
drawn to fit data points on plots of lny; vs. x1 and lny; vs. 21. This test proved to be a tedious 
and uncertain business, and it never found serious application. Consistent data should also conform 
to Eq. (9), but again direct application requires measurement of slopes. A practical means to test for 
consistency is provided by the area test .  

Differentiation of Eq. (14) gives 

d In y; 
+In?; + x2- - lny,' 

dg* dlny; -- - x1- 
dXl dXl dXl 

or 

This equation may be integrated over the full composition range: 
x1=1 J dg* = J1 (In 

x1=0 0 7; 

But g* = 0 at both x1 = 0 and x1 = 1, making the left-hand integral zero. Therefore 

If in this equation the integrand of the second integral is everywhere zero as required by Eq. ( lo) ,  the 
Gibbs/Duhem equation, then both integrals are zero, and we may write: 

I I 

The presumption in this derivation is that the data are consistent. Given values of y;,y;, and E ,  this 
equation then represents a test of consistency that is very easy to implement. One merely plots values 
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of the quantity in parentheses vs. X I ,  and the test requires the net area be zero, i.e., the positive area 
(above the X I  axis) should equal the negative area (below the x1 axis). The test is almost always 
applied with E set equal to zero, an approximation acceptable for isothermal data, but less likely to 
be realistic for isobaric data. 

This area test  was proposed in 1947148 by independent publication in England by Herington (3) 
and in the United States by Redlich and Kister(4). It was immediately accepted because of its 
simplicity, and quickly became widely applied. And so it is until the present day. The original 
publications have been routinely referenced for 45 years, and are among the most cited of all papers 
on experimental thermodynamics. The area test  is a remarkable success; perhaps it is folly to inveigh 
against it, but that is my intent. Fortunately I can offer a new and far superior alternative. 

An immediate problem with the area test  is to decide just how close to zero the net area must be 
in order to justify a claim of consistency for the data. The criterion in general use is that the net  area, 
i.e., the area determined with due regard to sign, should be no more than 10% of the total area, i.e., 
the area determined without regard to sign. This is far from a stringent requirement, and has been 
happily accepted by experimentalists eager to sanctify their data. 

The area test  is a gross test applied to the data set as a whole, and as I pointed out many years 
ago ( 5 ) ,  it is merely a necessary, not a sufficient condition for consistency. The integrand of the second 
integral in Eq. (16) can exhibit positive values over part of the range of the integral and compensating 
negative values over the remaining part that reduce the value of the integral, even to the point of 
making it zero. It is entirely possible, indeed it is common, for data to meet the criterion of consistency 
adopted for the area test  when they are in fact seriously inconsistent with the GibbsIDuhem equation 
itself. 

The final problem attending use of the area test  depends on whether the VLE data are isobaric or 
isothermal. For data taken at constant pressure, E in Eq. (15) is 

- H E  dT 
& ET = -- 

RT2 dxl 

a quantity that cannot in general be regarded as negligible. However, the data required for its evalu- 
ation are often missing, and even when they are accessible the need to evaluate E is often dismissed. 
The result is that in virtually all applications of the area test  to isobaric data, E is treated as making 
a negligible contribution, and is omitted. 

For the far more useful case of data taken at constant temperature, E is given by 

V E  d P  
& = E p  = -- 

R T  dxl 

Here the assumption that E makes a negligible contribution is fully justified. The problem associated 
with isothermal data is of quite a different nature. 

The possibility that sets of values of 7; and 7; may fail to satisfy the Gibbs/Duhem equation 
arises only when the two sets are determined independently from experimental measurement of all 
the variables--21, y1, T ,  and P. However, the equilibrium state is fixed for given values of T and 
x1 when either P or y1 is known. Thus, measurement of both P and y1 is an overdetermination of 
the equilibrium state, which introduces the potential 
whether the measurements of P are consistent with 
experimental values of 7; and y; can be calculated, 
possible. 

When the ratio y;/y; is formed, P cancels: 

for inconsistency. Indeed, the real question is 
those of y1. Without both measurements, no 
and no test by the GibbsIDuhem equation is 

The pressures need not even be measured; they can be assigned any values at all, and the area test  
is unchanged. The minor factors cP1 and do depend on P, but an appropriate value is readily 
found by a simple iterative procedure. The area test  can therefore be applied to the y1- x1 subset of 
VLE data taken at constant temperature. So what does it test? Only whether the fixed value of the 
vapor-pressure ratio P:at/P:at is appropriate to the y1 - x1 data subset; it is otherwise worthless. 
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DATA REDUCTION 

Though the reason is hardly obvious, the subject of data reduction is relevant to further treatment of 
consistency. Data reduction is the process of finding a suitable analytic relation for g (= GE/RT) as 
a function of its independent variables T and XI, thus producing a correlation of VLE data. Although 
g is in principle also a function of P, the dependence is so weak as to be universally and properly 
neglected. 

When a binary liquid phase is in equilibrium with its vapor, there are but two degrees of freedom. 
Thus when T is fixed, then for any value of x1 we can calculate values for y1 and P .  These are 
BUBL P calculations. Similarly, when P is fixed and X I  is given, values for y1 and T are determined 
by BUBL T calculations. Both of these routine engineering calculations (2) are based on an ability to 
evaluate g,  PFat, PZsat, @I,  and Q.2. 

We assume the availability of an expression for g as a function of x1 and T that is inherently 
capable of correlating the data to within their experimental precision. An example is the 3-parameter 
Margules equation, an expression often useful for this purpose: 

where the parameters A21, A12, and C are functions of temperature. Equation (18) then represents 
derived values of g ,  and application of Eq. (2) provides derived values of the partial properties lnyl 
and In 7 2 .  

Data reduction is particularly simple for the isothermal case, where the parameters, here A21, A12, 
and C, are constants, and the objective is their evaluation. Given a computer, a nonlinear regression 
program, and starting values for the parameters, initial values for lnyl and In72 are found from 
Eq. (2). Written for derived values, Eq. (12) yields: 

x2y2p,Sat and y2P = sly1 pFat 
Ql Q 2  

YlP = 

By addition 

whence 

Thus for given values of the independent variables T and x1 these BUBL P calculations provide 
derived values for P and y1, in addition to the derived values of g, lnyl, lny2, and ln(yl/y2). The 
corresponding set of experimental values includes measured values of the dependent variables P* and 
y;, values of y; and y; calculated by Eq. (12) written as 

values of g* from Eq. (14), and values of 

We define a residual as the difference between a derived value and the corresponding experimental 
value. Sets of values for residuals 6P, 6y1, 69, S h y l ,  61ny2, and 61n(y1/y2) are readily calculated. 
The computer program can operate to adjust the parameters in the expression for g so as to minimize 
an objective func t ion  formed from the sum of squares of any one of these sets of residuals- C(6P)2,  
C ( ~ Y ~ ) ~ ,  C(Sg)2, etc. The result is an expression for g = g ( q )  with optimized parameters. Unless 
the data are perfectly consistent, each choice of objective function leads to a different set of optimized 
parameters. 
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Dealing with isobaric data is more difficult, because both T and XI ,  upon which g depends, are 
variables. Done properly, data reduction requires that g be expressed as a function of both T and XI. 

The process is similar to that used for isothermal data, though the required BUBL T calculations are 
more difficult than BUBL P calculations. Nevertheless, they are readily carried out, given appropriate 
data, and they yield the same sets of residuals as for isothermal data, except that 6T replaces 6P. 

DIRECT TEST OF THERMODYNAMIC CONSISTENCY 

Although the quantity ln(y;/$) itself provides an area test of very limited value, the residuals 
Sln(yl/yz) offer a unique opportunity for consistency testing. We write Eq. (15) as 

dlny; dlny,' 
+XZ------& 

dg* 7; _ -  - In - + E + XI- 
dXl 7; dXl dxi 

and subtract it from Eq. (9): 

In terms of residuals this becomes 

-- dlny; dlny,' 
- 61n - - xl-- + xZ- - E 

dXl y1 7 2  ( dxl dXl 
d(Sg) 

If a data set, either isothermal or isobaric, is reduced with C(6g)z as objective function so as to 
make the 6g residuals scatter about zero, then d(Sg)/dxl is effectively zero, and 

The right-hand side of this equation is exactly the quantity that Eq. (lo),  the Gibbs/Duhem equation, 
requires to be zero for consistent data. The residual on the left is therefore a direct measure of 
deviations from the Gibbs/Duhem equation. The extent to which values of this residual fail to scatter 
about zero measures the departure of the data from thermodynamic consistency. 

Thus is realized a long-sought goal-a simple direct test of thermodynamic consistency for 
each point of a VLE data set with respect to the Gibbs/Duhem equation itself. 

Although the area test fades into insignificance by comparison, its relation to the direct test is of 
interest. We return to Eq. (19), multiply it by dx1, and integrate: 

21=1 1 

J d(6g) = / 61n2dxl - A1 (XIF 
x1=0 0 7 2  

Since g and g" are both zero at both x1 = 0 and XI = 1, then Sg = g - g" is also zero at both 
conditions, regardless of the objective function chosen for data reduction. Thus the left-most integral 
is zero, and comparison of the resulting equation with Eq. (16) shows that: 

The integral on the right represents the area test of Eq. (17); the left-hand integral therefore prc- 
vides an alternative formulation of this test. Since the right-hand integral includes only experimental 
quantities, its value is independent of how the data are fit. It follows that the value of the left-hand 
integral is also independent of fit, independent of the choice of objective function, even though values 
of Sln(yl/yz) do themselves depend on this choice. Thus a plot of these residuals vs. "1, made to 
represent the direct test, also displays the urea test. However, for this specific purpose a more suitable 
objective function is C[6 ln(yl/y2)l2, because this causes the residuals to scatter about a horizontal 
line. Its ordinate is zero when the test is satisfied. 
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EXAMPLES 

The data of Mato et al. (6) for methyl tert-butyl ether[MTBE](l)/chloroform(2) at 313.15 K provide 
the first example. This is a superb set of data, atypical of what is found in the literature. One gets 
an immediate impression of the quality of a data set, though not necessarily of its consistency, by 
looking at a graph on which are shown the experimental values lny;,lny,', and g*/x1x2 plotted vs. 
xl, as shown by Fig. 1. We note that the points easily define smooth curves, and only slightly erratic 
behavior is exhibited by values at very high dilution. Such values are inherently uncertain, because 
limiting values at infinite dilution are indeterminate. However, with this data set extrapolation to 
reasonable infinite-dilution values is a simple matter. The values used for vapor pressures Pisat are 
here critical, and an advantage is often gained for high-quality data when these values are found by 
regression in the manner described by Abbott and Van Ness (7). This has been done here; hence the 
Pisat values used are slightly different from those reported by the authors. 

Figure 2 illustrates the graph traditionally required for the area test, where the experimental 
values ln(y;/y;) are plotted vs. X I .  The smoothness of the data is again evident, and the positive and 
negative areas clearly appear to be about equal. 

Data reduction depends on an equation for g as a function of x1 by which the experimental 
measurements are correlated. Equation (18), the 3-parameter Margules equation, is here entirely 
adequate, and may be applied to the data to yield sets of optimized parameters. With C(Sg)' as 
objective function, the S g  residuals scatter closely about zero, as required for the direct test. However, 
we see from Fig. 3 that this fit produces Sln(y1/72) residuals that fail to scatter about zero, indicating 
that the data are not perfectly consistent. Nevertheless, the residuals are very small, and a true 
indication of how close the data come to being consistent is given by the RMS value of these residuals: 
0.011. This set of data is therefore in the category of highest quality. The urea test is also represented 
on this plot by the net area under a smoothing curve drawn to correlated the points. However, if out 
of nostalgia one is seriously interested in the area test, then it is best to plot these same residuals 
as determined from a fit with [S1n(yl/y2)l2 as objective function. As is evident from Fig. 4 these 
residuals tend to scatter about a horizontal line, which in this case lies slightly above zero. 

Next we examine a set of data for the system methanol(l)/water(2) at atmospheric pressure 
reported by Kurihara et al. (8). Again we first examine a graph, shown by Fig. 5 ,  of the experimental 
values In$, In y,', and gi/x1x2 plotted vs. 5 1 .  This data set is evidently not of the highest quality, but is 
representative of many sets appearing in the literature. These data too are well fit by the 3-parameter 
Margules equation, in this case with temperature-dependent parameters. Excess enthalpy (heat-of- 
mixing) data for this system allow the temperature dependence of the parameters to be determined 
independent of the VLE data, and fitting to the VLE data then establishes the correlation. The direct 
test requires a fit of the S g  residuals, and the resulting Sln(yl/yz) residuals are shown by Fig. 6. The 
data clearly exhibit significant departures from thermodynamic consistency; the RMS value of the 
residual is 0.064, suggesting that the data are only of acceptable quality. Figure 6 also clearly shows 
that the area test is not satisfied, as is confirmed by Fig. 7. 

An older set of data for the methanol(l)/water(2) system at atmospheric pressure is that of Uchida 
and Kato (9). It has been treated exactly as the preceding set, and the corresponding plots are shown 
by Figs. 8 through 10. It is truly a dreadful set of data. This is immediately evident from the plots 
of experimental values shown in Fig. 8, and is further confirmed by the direct test as shown by Fig. 9, 
which produces the RMS value for the residual of 0.277, a totally unacceptable result. Astonishingly, 
the area test for this set of data is satisfied. This is suggested by Fig. 9, where the positive and 
negative areas appear roughly in balance, and is fully confirmed by Fig. 10, where the residuals are 
seen to scatter about zero. The information provided here by this test is clearly delusive. 

These results and other considerations suggest that a scale be established to indicate the quality 
of a data set as judged by its departure from thermodynamic consistency. The appropriate measure is 
the RMS value of Sln(ylly2) as determined from the direct test. TABLE 1 shows a proposed consis- 
tency index which starts at 1 for highly consistent data and goes to 10 for data of very poor quality. 
It replaces the totally inadequate +/- or yes/no designation presently employed to characterize the 
consistency of a data set. 
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Fig. 1 Experimental values. 
MTBE( 1) /chloroform(2), 313.15 K(6). 
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Fig. 2 Traditional area test. 
MTBE(l)/chloroform(2), 313.15 K(6). 
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Fig. 3 Data of Fig. 1, fit by Eq. (18). 
Direct test of consistency. 
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X1 

Fig. 5 Experimental values. 
Methanol(l)/Water(P) at 101.325 kPa(8). 

X1 

Fig. 4 Data of Fig. 1, fit by Eq. (18). 
Alternative area test. 

X1 

Fig. 6 Data of Fig. 5, fit by Eq. (18). 
Direct test of consistency. 
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Fig. 7 Data of Fig. 5, fit by Eq. (18). Fig. 8 Experimental values. 
Methanol( 1)/ Water(2) at 101.325 kPa( 9). Alternative area test. 
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Fig. 9 Data of Fig. 8, fit by Eq. (18). 
Direct test of consistency. 

Fig. 10 Data of Fig. 8, fit by Eq. (18). 
Alternative area test. 

TABLE 1. Consistency index for VLE data. 

Index 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

> O  5 0.025 
> 0.025 5 0.050 
> 0.050 5 0.075 
> 0.075 5 0.100 
> 0.100 5 0.125 
> 0.125 5 0.150 
> 0.150 5 0.175 
> 0.175 5 0.200 
> 0.200 5 0.225 
> 0.225 
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CORRELATION OF VLE DATA 

Although the objective functions employed in testing VLE data for thermodynamic consistency cer- 
tainly produce correlations of the data, they are usually not the best choices for the specific purpose 
of correlation. Pertinent to this topic are the relations among residuals. Variations in g for isothermal 
data and fixed liquid-phase composition are provided by differentiation of Eq. (11): 

dg = xldlnyl f 5 2 d l n y 2  

or 

Moreover, as a mathematical identity, we have: 

71 - d71 d72 dln-  = - - - 
7 2  71 7 2  

Variations in "yi in relation to variations in the experimental variables for isothermal data at fixed 
xi are found by differentiation of Eq. (12): 

Variations in the minor factor Qi are here neglected. Division by Eq. (12) gives: 

d7i dyi d P  
7i Yi 

(i = 1 , 2 )  = - + P  - 

Writing this equation for i = 1 and for i = 2 and combining the resulting expressions with Eqs. (22) 
and (23) gives after reduction: 

21 - Y1 S P  
SYl + - Sg = - P YlY2 

and 

where we have replaced differentials by residuals. Provided the residuals are small, this is an excellent 
approximation, and Eqs. (24) and (25) are in fact observed to apply regardless of the objective function 
used for data reduction. 

Equations (24) and (25) explain the diversity of results obtained when different objective functions 
are employed in fitting the same data set. If one adopts as objective function the sum of squares of the 
Sg residuals, then a satisfactory fit makes these residuals scatter about zero. This presumes that the 
equation representing g is capable of fitting the data, a premise fundamental to proper data reduction. 
For fully consistent data, the residuals Sy1 and SP also scatter about zero; for inconsistent data, they 
do not. Rather, they are forced to assume values such that the two terms on the right of Eq. (24) 
compensate each other, thus making the Sg residuals scatter about zero. This often results in inflated 
values of both the Syl and S P  residuals. However, the behavior of these residuals depends on the 
relative magnitudes of the two terms on the right of Eq. (24). The first of these terms contains the 
difference x1 - yl, a quantity that is small over the whole composition range for many systems of 
interest; this is true in particular for systems that form azeotropes. In this event the second term on 
the right of Eq. (24) contributes far more than the first to the residuals Sg. 

If the goal of data reduction is replication of measured values, then use of C(SP)2 or C ( S Y ~ ) ~  as 
objective function is suggested. In the former case the SP residuals are forced to scatter about zero. 
The measured y: values are not used in the calculations, but are needed to form the byl residuals, 
which then provide another consistency test (10). When they scatter about zero, then the data are 
consistent; when they do not, the data are inconsistent. As we shall see, the opposite procedure, 
based on z(S~1)~ as objective function, has little to recommend it. In any event, when a set of data is 
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C(W2 
C(W2 
c(SYl)2 

869 

0.028 0.0011 
0.026 0.0011 
0.072 0.0008 

TABLE 2. Residuals from data reduction by Eq. (18). 
Data of Mato et al. (6) 

Methyl tert-Butyl Ether(l)/Chloroform(2) at 313.15 K. 

I Objective function I RMS S P  kPa RMS 6y1 I 

inconsistent, no parameters exist for a suitable equation for g that make both the Syl and S P  residuals 
scatter about zero. 

The methyl tert-butyl ether( l)/chloroform( 2) system considered earlier does indeed form an azeG 
trope, and the first term on the right of Eq. (24) contributes little in comparison with the second. 
Thus we obtain virtually the same fit of the data by Eq. (18) whether the objective function is formed 
from the S P  residuals or from the 6g residuals. When the objective function is formed from the 6yl 
residuals, the fit forces the Syl residuals to be very small, but there is no constraint on the S P  and Sg 
residuals. Although they must be very nearly equal, they are free to inflate together. Thus TABLE 2 
shows that the fit based on the Syl residuals is inferior to that based on either the 6 P  or Sg residuals, 
even for this very excellent set of data. 

Equation (25) shows a direct relation between the Syl residuals and the Sln(yl/y2) residuals. 
Clearly, Eq. (20) and hence the direct test  for consistency have alternative forms based on the Sy1 
residuals. Furthermore, the area test  represented by the integral on the left side of Eq. (21) also has 
an alternative form. The remarkable thing about this is that when the area test  is not satisfied, it is 
not possible to make the residuals Sln(ylly2) and hence the quantities Syl/yly2 scatter about zero. 
In this event it follows that the Sy1 residuals themselves cannot be made to scatter about zero, even 
when the objective function is c ( S y ~ ) ~ .  Surprising as this may be, it is a further remon why c ( S y ~ ) ~  
is a poor choice of objective function. 

A number of objective functions, including those discussed here, are treated in detail by Van Ness 
et al. (11). The conclusion reached there is still valid-although the reduction of isothermal VLE data 
can be accomplished equally well by several methods, the unweighted least-squares technique based 
on the objective function C ( C ~ P ) ~ ,  called Barker's method, is at least as good as any, and is certainly 
the simplest and most direct. 

For isobaric data at fixed xi, differentiation of Eq. (12) gives: 

which may be divided by Eq. (12): 

- d"ii - dYi d In Pisat (i = 1,2) 
"ii Yi 

In combination with Eqs. (22) and (23) this ultimately yields: 

and 

Although Pisat depends strongly on temperature for each individual species, the ratio P:at / P,sat is 
insensitive to temperature, and Eq. (27) to an excellent approximation reduces to Eq. (25), exactly 
as for the isothermal case. 
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TABLE 3. Residuals from data reduction by Eq. (18). 
Data of Kurihara et al. (8) 

Methanol(l)/Water(2) at 101.325 kPa. 

I Objective function I RMS 6T K RMS 6yl I 

Equations (25) and (26) apply to the isobaric case in the same way that Eqs. (25) and (24) do 
for the isothermal case. Much the same discussion applies, except that 6T replaces 6P as a primary 
residual, and C(6T)2 becomes the preferred objective function. The data set of Kurihara et al. (8) for 
methanol(l)/water(2) at atmospheric pressure serves as an example. This system does not form an 
azeotrope, and the difference 51 - y1 is large enough that the two terms on the right in Eq. (26) both 
contribute importantly. Thus when the data are fit with C(6g)2 as objective function, the residuals 
that control these terms must either scatter about zero (consistent data) or must offset each other 
(inconsistent data). We have already seen that the data exhibit significant inconsistency, and in 
Fig. l l a  we observe offsetting residuals 6yl and ST. When the data are fit with C(ST)2 as objective 
function, the temperature residuals are forced to scatter about zero, as is evident in Fig. l l b .  The 
6yl residuals clearly do not scatter about zero, confirming the inconsistency already noted for this 
data set. When C(6y1)~  serves as objective function, neither set of residuals scatters about zero, as 
Fig. l l c  shows. The failure of the 6yl residuals to do so reflects the fact that this data set satisfies 
neither the direct test nor the area test for consistency. TABLE 3 shows the superiority of the fit 
wherein the objective function is formed from temperature residuals. 

REFLECTIONS 

In the early unsophisticated days of chemical engineering VLE data were taken at constant pressure for 
direct application in the design of distillation columns, which were treated as though they operated at 
uniform pressure. There is no longer any excuse for taking isobaric data, but regrettably the practice 
persists, and we have examined two such data sets. Rigorous thermodynamic treatment of isobaric 
data presents problems that do not arise with isothermal data. Their origin is the need to take into 
account not only the composition dependence of the excess Gibbs energy but also its temperature 
dependence. 

X1 X1 X1 

Fig. 11 Dataof Kurihara et al.(8), Methanol(l)/Water(P) at 101.325 kPa, fit by Eq. (18). Objective function: 
(4 c ( 6 g ) 2 ,  (b) C(SW, (4 C(6Yd2. 
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Equations (9) and (11) may be combined to eliminate either lnyl or Iny2, yielding 

These equations are valid for both isothermal and isobaric data. However, E is quite negligible for the 
isothermal case; our interest here is in data taken at constant pressure, for which E is given by Eq. (8). 
When pressure is fixed in binary VLE, there is but a single remaining degree of freedom, and x1 may 
be treated as the only independent variable. Thus in Eqs. (28) dgldxl is a total derivative. Moreover, 
it is entirely proper to write an equation that expresses g as a function of the single variable xl .  This 
does not mean that g is independent of T ;  only that the temperature dependence has been absorbed 
into the x1 dependence. It is of course not possible to extract the temperature dependence of g from 
such an equation, which is no more than a correlating expression for the constant-P data set. As such 
it is entirely suitable for use in the direct test for thermodynamic consistency. 

One may also write an equation that expresses g as a function of both temperature and composition. 
When combined with Eqs. (28), T in such an expression must be treated as a function of xl. Applied 
to the reduction of a constant-P data set, this leads to an equation for g that evidently shows both 
the temperature and composition dependence of g. However, such a result is not to be taken seriously. 
The temperature range of the data set is too small; moreover, T and x1 are strongly correlated, and 
no single set of constant-P data is adequate to the task of separating one influence from the other. 

For isobaric VLE data Eqs. (28) require evaluation of E ,  but this is, in fact, rarely done. The 
rationalization is that the temperature range of the data is small and therefore the temperature 
dependence of the parameters can be ignored. Nevertheless, when E is set equal to zero for isobaric 
VLE, an approximation is introduced in the calculation of activity coefficients by Eqs. (28). This may 
not degrade the quality of fit obtained in data reduction for any particular objective function, but 
quantities derived from the resulting equation for g reflect the approximation. At best it should be 
regarded as a data-smoothing procedure. 

An alternative to Eqs. (28) is developed as follows. For isobaric VLE, g is a function of both T 
and xl ,  but T is also a function of 21. We may therefore write 

As a consequence of Eq. (5) we have 

-HE (%) P,x 1 =RT2 
Combining this equation and Eq. (8) with Eq. (29) leads to 

Substitution into Eqs. (28) gives 

lnYP=g-xl  (a) 
T.P 

The derivative (ag /ax1) ,p  of course has no physical meaning within the context of binary vapor/liquid 
equilibrium, because x1 cannot vary at constant T and P. However, as applied to  an equation giving 
g as a function of T and x1 it certainly has mathematical meaning. Equations (32) are far more 
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convenient for such application than are Eqs. (28). Although E need not be evaluated, H E  data are 
required for proper evaluation of the temperature dependence of g through application of Eq. (30), 
the Gibbs/Helmholtz equation. 

First, however, we must have an equation for g that adequately represents both its x1 dependence 
and its T dependence. The Margules equation lends itself admirably to this application, as described 
in detail by Van Ness and Abbott (12). However, it is not suitable for some highly nonideal systems, 
and no adequate alternative is yet known. 

Another disadvantage of taking isobaric data is that the temperature dependence of the vapor 
pressures Pisat must be taken into account. These are the most important thermodynamic quantities 
in VLE, and correct values are essential to proper data reduction. They should in fact be measured 
over the temperature range of the data and carefully fit to adequate vapor-pressure equations. This is 
rarely done; rather correlating equations are taken from the literature and assumed valid, a practice 
that ignores the high sensitivity of the vapor pressures of chemical species to their purity. 

Given the problems that attend reduction of isobaric VLE data, the continued accumulation of 
such data makes little sense. An equivalent effort spent on taking isothermal VLE data would be 
far more useful. Once having decided on such a course, we face yet another problem: Just which 
variables do we measure? One can readily evaluate the parameters in an appropriate expression for 
g at fixed temperature from P - zl, y1 - 21, or P - y1 data subsets. Accurate measurement of y1 is 
by far the most difficult, and therefore experiments which produce P - x1 data subsets are favored. 
Since such measurements are sufficient to the purpose of data reduction, why would one also make 
the more difficult measurements of y1? The only logical reason is so as to subject the measurements 
to a test for thermodynamic consistency. Only when a full set of measurements is available is this 
possible, because such a set represents an overdetermination of the equilibrium state. If the data 
satisfy the direct test for consistency, then there is no problem; all data-reduction procedures produce 
essentially the same results, and Barker’s method is probably as reasonable a choice as any. Since 
the y1 values are not used in this procedure, they may as well not have been measured, except to 
show consistency. The catch is that such measurements are rarely made with an accuracy sufficient 
to  avoid introduction of inconsistency. In this event the various procedures of data reduction produce 
discordant results, and one must choose among them. Since the greatest uncertainly lies with the y1 
measurements, Barker’s method is again the logical choice. The moral is that measurements of y1 
are pointless unless they are made with sufficient care to be very accurate, and then their use is to 
validate the data set by the demonstration of consistency, not to improve the correlation. 

The thermodynamic mill grinds slowly, but it grinds exceeding fine. 
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