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Abstract: Data of thermodynamic properties of polymers have in the past been 
neglected by main-stream collections. The well-founded reason for this is the 
common non-existence of equilibrium in polymeric materials. In the meantime, 
however, extrapolation methods and special polymerization and crystallization 
techniques have been developed to assess the equilibrium properties of polymers. 
The ATHAS data bank, for example, contains such equilibrium information on 
heat capacities from 0 to 1000 K, vibrational spectra, transition parameters, 
enthalpies, free enthalpies, and entropies for over 200 polymers and polymer- 
related materials. The availability of such data for polymers proved of great 
importance for the analysis of metastable states. With reference to the 
equilibrium limit, stability estimates can be made and detailed studies are 
possible of the superheating on melting and supercooling on crystallization. 
Comparisons of the vibrational heat capacities with measured data reveal 
conformational motion in polymers. A new mesophase, that of condis crystals, 
could be defined. A new glassy state, the rigid amorphous state, could be 
identified. For the first time, it became even possible to analyze drawn fibers 
using a multi-phase approach based on thermal and structural analyses. 

INTRODUCTION 

Flexible linear macromolecules, usually simply called polymers, owe their special place among 
materials to their overriding importance of conformational motion and disorder. The basis of the 
understanding of polymers was developed between 1920 and about 1950. The Advanced THermal 
Analysis System, ATHAS, had its start in 1975, but work in thermal analysis by the author, initially 
under the direction of Professor Malcolm Dole, dates back to 1955 [l]. At that time the total 
scientific literature on heat capacities of linear macromolecules was no more than perhaps 10-20 
publications. We observed early that the problem of thermal analysis of linear macromolecules 
rested with metastable and unstable samples. It was necessary to convert the slow, adiabatic 
calorimetry to fast scanning techniques [2] that permitted the evaluation of the thermodynamic 
properties under zero-entropy-production conditions, i.e. conditions that allow analysis without change 
in stability of the system [3]. Into this time period falls also the first detailed interpretation of the 
heat capacity of polyethylene [4]. A first review of the topic [5] coupled with initial attempts at 
empirical addition schemes [6] rounded out the early work on thermal analysis of macromolecules. 

This first effort was followed by an extensive study of nonequilibrium melting and glass 
transitions. Work on melting transitions led to the discovery of superheating and the development 
of various techniques to analyze nonequilibrium crystals, summarized in Ref. [7]. The glass transition 
effort centered about a rule of constant increase of heat capacity at the glass transition temperature 
[8], a study of the hysteresis phenomena [9], and the effect of pressure on vitrification [lo]. 

By 1975 it became increasingly obvious that a major effort in combining all knowledge and 
data on the thermal analysis of linear macromolecules could bring considerable progress to the field. 
The first summaries of ATHAS are given in Refs. [ll]. The ATHAS effort led first to the 
establishment of a critically reviewed data bank of experimental heat capacities [12]. Based on the 
knowledge drawn from this data bank, a rigid amorphous state was discovered in semicrystalline and 
drawn macromolecules [ 131, and conformationally disordered states (condis states) could be identified 
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as a new type of phase [14]. Much of the text and many of the figures for this review are based on 
the Textbook "Thermal Analysis," that summarizes the present state [ 151. 

Experimental Heat Capacities of Crystalline and Amorphous Polymers 

Linear macromolecules do not normally crystallize completely, they are semicrystalline, and thus 
present a nonequilibrium system. Kinetic and structural reasons cause the partial crystallization. The 
two main kinetic restrictions are incomplete transfer of the randomly coiled and entangled molecules 
to the crystal, and incomplete extension to the equilibrium, extended-chain macroconformation once 
the molecules are in the crystal (chain-folding principle) [7]. The structural reasons for the hindrance 
of crystallization lie in irregularities within the molecular chains. Copolymers and stereoirregular 
polymers may, for example, remain amorphous at all temperatures. 

The first step in the analysis of the thermal properties of linear macromolecules must be to 
establish the crystallinity dependence of the heat capacity. Polyethylene, the most analyzed polymer 
[12], is treated as an example. The fact that polyethylene, (CH,-X, is semicrystalline implies by 
itself that the sample is metastable, te.  not in equilibrium. Thermodynamics requires that a one- 
component system like polyethylene can have a two-phase equilibrium only at the melting 
temperature (phase rule [IS]). The weight fraction crystallinity, w,, can be established from density 
measurements (dilatometry): 

where p is the density in Mg/m3, subscript c designates the completely crystalline state (determined, 
for example, by X-ray crystal-structure-analysis), and subscript a, the amorphous state (glassy or 
liquid). Plotting the measured heat capacities of samples with different crystallinity results often in 
linear relationships. Such plots allow the extrapolation to crystallinity zero and 1.0 to find the heat 
capacities of the amorphous and crystalline states, respectively, even if these limiting states are not 

wc = (P,/P)[(P~ - Pa)/(P - pa)] (1) 

experimentally accessible. 
Figure 1 illustrates in its left 

graph the experimental heat capacities 
for polyethylene at very low tempera- 
tures. The crystallinity dependence of 
the heat capacity for a number of 
other polymers is described in the 
ATHAS data bank of experimental 
heat capacities [12]. For the fully 
crystalline polyethylene (w, = 1.0) 
there is a temperature dependence 
of the heat capacity up to about 10 K 
(single point in the graph). Such 
temperature dependence is required 
for the low-temperature limit of a 
three-dimensional Debye function [ 161 
that describes heat capacities of solids. 
It is caused by a quadratic increase in 
number of vibrators with increasing 

Heat Capacity of Polyethylene a s  a 
Function of Crystallinity 

I 
0 0.25 0.50 0.75 1.0 

Crystallinity wc Crystallinity wc 

FIGURE 1 

Y 

frequency, v. The amorphous polyethylene (w, = 0) seems, in contrast, never to reach a T3 
temperature dependence of the heat capacity. The curves of the figure do not even change 
monotonously with temperature. 

As the temperature is raised, the crystallinity dependence of the heat capacity becomes less, 
and is only a few percent between 50 to 200 K. In this temperature range the heat capacity is largely 
independent of the physical structure. Glass and crystal have almost the same heat capacity. This 
is followed, again, by a steeper increase in heat capacity as the amorphous polymer undergoes its 
glass transition at about 230-250 K. The bottom lines in the right graph of Fig.1 show the 
crystallinity dependence in the glass transition region. It is of interest to note that the fully 
amorphous heat capacity at 260 K from this graph agrees well with the extrapolation of the heat 
capacity of the liquid from above the melting temperature (414.6 K). 
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Extrapolated Heat Capacities of 
Polyethylene to the Fully Amorphous 

and the Fully Crystalline States 

O O  1 0 0  200 300 400 500 800 
Temperature (K) 

I 
FIGURE 2 

Above about 260 K, melting of 
small, metastable crystals causes the 
abnormal, nonlinear deviations in the 
heat capacity vs. crystallinity plot. The 
measured data are indicated by the 
heavy lines in the figure. The thin, 
broken lines indicate how continued 
additivity without melting would look. 
All contributions above the broken 
lines must, thus, be assigned to the 
nonequilibrium melting and excluded 
from the data bank heat capacities. 

The results of the extrapolations 
of Fig. 1 are shown in Fig. 2. The 
glass transition is obvious in curve for 
the amorphous heat capacity (237 K), 
the equilibrium melting point is known 
to be 416.6 K from separate measure- 

ments and extrapolations. The latent heat (heat of fusion) is extrapolated to crystallinity 1.0 and the 
equilibrium melting temperature and added to the enthalpy of thermal motion (H - H," = JC, dT). 
Entropy (S = JCJT dT) and Gibbs function (free enthalpy, G = H - TS) can similarly be 
determined and f i r  the ATHAS data bank in 
form of tables and graphs, as shown in Fig. 3. 

Thermodynamic Functions of Polyethylene 
Interpretation of the Heat Capacity 

An important aspect of the ATHAS data bank 
is a theoretical or empirical interpretation of 
the critically reviewed experimental data when- 
ever possible. The p-dependence of C, of 
crystalline polyethylene in Fig. 2, for example, 
indicates that in the limited temperature range 
between 0 and 10 K the three-dimensional 
Debye model holds. It links heat capacity to a 
vibrational spectrum, as will be shown below 
[Eq. (8)]. Next, there is a change to a linear 
temperature dependence of C of both, crystal- 
line and amorphous solids tiat continues to 

I Temperature (K) 
FIGURE 3 

about 200 K. Such temperature dependency fits a one-dimensional Debye function that is based on 
a constant number of vibrators over a range of frequencies going from 0 to el [16,17], with 8,  
representing a characteristic frequency expressed in temperature (1 Hz = 4.80x10-" K, 1 cm-' = 
1.44 K): 

(2) 

(3) 

e = h v / k  (4) 

Cd3N = Dl(e/Tl) 
(W-1) 

D W T J  = (T /eJ  J {[(e/T)2exP(e/T)l/[exP(e/T) - 1I2>d(e/T) 
0 

Between 200 and 250 K one notices a slowing of the increase of the crystalline heat capacity with 
temperature, to show a renewed increase above 300 K, to reach close to the melting temperature 
values equal to and higher than the heat capacity of liquid polyethylene. 

The heat capacity of the glassy polyethylene shows large deviations from the heat capacity of 
the crystal at low temperature. At these temperatures, the absolute value of the heat capacity is so 
small that it does not show up in Fig. 2. The reason for the deviation from a three-dimensional 
Debye function, seen in Fig. 1, is not well understood. After a long temperature range of close to 
equal heat capacities of crystal and glass, the glass transition is obvious at 237 K. A small increase 
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in the amorphous heat capacity beyond the values of the crystals starts already at about 110 K and 
has been linked to the y-transition that is caused by a local conformational motion [4]. In the liquid 
state, the heat capacity is linear over a very wide temperature region. Only first efforts have been 
made to develop a detailed description of the motion in the liquid state [18]. 

This quite complicated temperature dependence of the solid heat capacity is to be linked next 
to a more detailed, approximate microscopic model of thermal motion. The basic equations linking 
vibrational frequencies to heat capacity are the Einstein function [ 19,201: 

CV/N = E(e/T) ( 5 )  
(6) 

Cv/3N = D3(e/TJ (7) 

(8) 

E(e/T) = [(e/T)2exp(e/T)l/[ex(e/T) - 112 
and the Debye functions [16,17,21,22] of which the one-dimensional one was given as Eq. (3) and the 
three-dimensional one is: 

W T 3 )  

D3(0/T3) = 3(T/ed3 J {[(e/T)4exP(e/r)l/[exP(e/T) - 1I2>d(e/r) 
0 

As an initial try, one can invert the vibrational spectrum of crystalline polyethylene, known in some 
detail from normal mode calculations using force constants derived from infrared and Raman 
spectroscopy [23]. Using a different Einstein function for each normal mode vibration [Eq. (6)], one 
can compute a heat capacity. The heat capacity of the crystalline polyethylene shown in Fig. 2 can 
be reproduced in this way, but only above about 50 K. Below 50 K the experimental data show 
increasing deviations, an indication that the computation of the low-frequency skeletal vibrations 
cannot be carried out with sufficient precision [24]. To overcome the error in Cp when computed 
from the low vibration frequencies, a method of generating approximate spectra was developed. 

Calculation of Heat Capacity of Solid Polymers from an Approximate Frequency Spectrum 

For polyethylene and most other polymers one can distinguish between skeletal and group vibrations. 
The first reach from 0 to approximately 2x1013 Hz. Polyethylene shows two degrees of freedom ( N )  
in this frequency range. The motion involved in these vibrations can be visualized as torsional and . -  
accordion-iike motions of the CH2- 
backbone, as illustrated in sketches 1 
and 2 of Fig. 4. The torsion involves 
mainly bond rotation, the accordion- 
like motion bending of the C-C-C- 
bonds. Their frequencies are such that 
they contribute mainly to the increase 
in heat capacity from 0 to 200 K. 

The group vibrations occur at a 
somewhat higher frequency. This gap 
in the frequency distribution is respon- 
sible for the levelling of the heat ca- 
pacity between 200 and 250 K (see Fig. 
2). In the plateau region Cp is of the 
proper order of magnitude for the 
assumed two degrees of freedom (ie. 
about 16- 17 J/(K mol) or 2R). 

The group vibrations originate 
from the relatively isolated groupings 
of atoms along the backbone chain. In 

I gum 7. 

/=+ / 
C 

c-c- 
stretching 

9. 

?y?! 
/ \  

symmetric 
C-H stretching 8 i3 8 8 

'K 'K u u  
8. I bending rocking wagging twisting 

/ \  

4. 5. 6. asymmetric I 3. C-H stretching 
FIGURE 4 

the first set of group vibrations, between 2 and 5 ~ 1 0 ' ~  Hz, there are five degrees of freedom, 
involving mainly C-H-bending and C- C-stretching motions. The sketches 3 - 6 in Fig. 4 illustrate 
the approximate C-H-motions of the bending vibrations. The stretching vibration of the C-C-bond 
[sketch (9)] falls into the same frequency range as the C-H-bending. Due to the close to 90" bond 
angle (lloO), the C-C-stretching is not coupled sufficiently along the chain to result in a skeletal 
vibration of broad frequency distribution. These latter five vibrations are responsible for the renewed 
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increase of the heat capacity in Fig. 2 starting at about 300 K. Below 200 K their contributions to 
the heat capacity are small. 

Finally, the CH,-groups have two more group vibrations of very high frequencies, above 8 ~ 1 0 ' ~  
Hz. These are the C-H-stretching vibrations, given by the bottom sketches (7) and (8) of Fig. 4. 
These frequencies are so high, that at 400 K their contribution to the heat capacity is still small. The 
total of nine vibrations possible for the three atoms of the CH,-unit would, when fully excited, lead 
to a heat capacity of 75 J/(K mol). At the melting temperature, only half of these vibrations are 
excited, C, is about 38 J/(K mol). 

A full analysis and computation of heat capacities for the ATHAS data bank involves, then, 
the following steps: The experimental heat capacities are, naturally, measured at constant pressure, 
le.  are Cp, while Eqs. (2-8) yield the heat capacity at constant volume, C,. Their conversion is 
accomplished using standard thermodynamic relationships or, if compressibility and expansivity, 
needed for the conversion are not available, the Nernst-Lindemann approximation [24]: 

with Tmo representing the equilibrium melting temperature, and A ,  = 3 . 9 ~  (K mol)/J, an 
approximately universal constant. The total experimental C, is then separated into the part due to 
the group vibrations and the part due to the skeletal vibrations: 

The heat capacity due to the group vibrations is calculated from an approximate spectrum obtained 
independently, as discussed with help of Fig. 4 for polyethylene, and listed for polyoxymethylene 
[(CH,-O-)J in Table I [25]. The group vibrations of polyethylene can also be taken from Table 
I since their frequencies (as group vibrations) are changed only little by introducing the ether oxygen. 
To increase the precision, some of the group vibrations that spread over a wider frequency ranges 
are approximated by box-distributions. The heat capacity contribution is computed with the help of 
two one-dimensional Debye functions [16,17] of Eq. (3): 

The lower frequency limit is given by eL, the upper one by 8,. Subtraction of all heat capacity 
contributions of the group vibrations from the measured C, yields the experimental, skeletal heat 
capacity contribution [Eq. (lo)]. 

Cp - C, = 3 R A 0 C p T ~ m 0  (9)  

C,(total) = C,(skeletal) + C,(group vibrations) ( 10) 

C"(bW = "eu/(eu - eL)l[Dl(~u/T) - (e"/eL)Dl(eL/T)l (11) 

Table I 
The last step in the ATHAS 

analysis is to assess- the skeletal heat 
capacity. The skeletal vibrations are 
coupled in such a way that their distri- 
bution stretches to zero frequency (ie. 
to the acoustical vibrations). In the 

Approximate Vibrational Spectrum of Polyoxymethylene 
(CH2-0-lx 

Skeletal Vibrations: 
N = 2: 91 = 232 K; 93 = 117 K: 

addition, consider that the vibrations 
will couple intermolecularly. The 
wavelengths of the vibrations become 
larger than the molecular anisotropy of 
the chain structure. As a result, the 
detailed molecular arrangement is of 
little consequence at these frequencies. 
A three-dimensional Debye function as 
written in Eqs. (7 and 8) should apply. 

Vibration Type 
CH2 symrn. stretoh 
CHZ asyrn. swatoh 
CHZ banding 
CHZ wagglng 
CHZ twisilng 
CHZ rooming 

c-0 stretalng 

ohaln bending 

BE s BL. BU (K) 
4284.7 
41 68.2 
2104.5 
201 8.6 
1921 .9 
1624.7 
1707.2 

1624.7-1 707.2 
1386.1 
1632.1 

1304.6 
869.7 
666.0 

369.7- 666.0 

1386.1-ioa2.i 

569.7- 440.2 

0.20 
0.24 
0.66 
0.22 

0.67 
1 .oo 
1 .oo 
0.29 

Only above ihis frequency range do& 
the linearity of the molecules suggest a 
constant number of vibrations for each frequency (as was also observed in Fig. 2). To approximate 
all skeletal vibrations of linear macromolecules, one should thus start out at low frequency with a 
three-dimensional Debye function and then switch to a one-dimensional Debye function. Such an 
approach was derived by Tarasov [26]. The skeletal vibration frequencies are, thus, separated into 
two groups, the intermolecular group between zero and v3, (characterized by a three-dimensional e- 
temperature, e3), and an intramolecular group between v3  and v1  (characterized by a one- 
dimensional 8-temperature, el): 

C~(Tarasov) = NR{Di(ei/T) - (e3/ei)[D~(%/T) - D3(%/T)]) ( 12) 

0 1995 IUPAC, Pure and Applied Chemistry, 67, 1019-1026 



1024 B. WUNDERLICH 

Equation (12) suggests the needed computations and reveals that by assuming that the fraction of 
vibrators in .the intermolecular part is 8,/8,, one has only two adjustable parameters. The 
approximate frequency distribution is 
thus fitted to the experimental skeletal 
Cp at low temperatures to get 8, (0 to 
8, K) and at higher temperatures, to 
get 8, (8, to 8, K). More precise 
computer programs that accomplish 
the fitting over the whole temperature 
region are available [27]. Recently 
neural network computations have 
been used for the evaluation of the e- 
temperatures [28]. For crystalline 
polyethylene the best fit was obtained 
for the 8,-temperature of 519 K, and 
the 8,-temperature of 158 K. The data 
for polyoxymethylene are listed in 
Table I. These frequencies are close 
to the end of the v'-dependence of the 
actual frequency spectrum [25]. Refer- 
ences to detailed discussions of the 

Heat Capacity of Solid Polyethylene 

0 100 200 300 400 500 600 700 
Temperature (K) 

FIGURE 5 

approximate spectra fitted to experimental heat capacities for over 100 polymers are given in the 
ATHAS data bank. Attempts to increase the precision of the description by separating the bending 
and torsional modes of Fig. 4 with separate 8-temperatures leads to more complicated fitting routines 
without significant increase in the quality of the description [14]. With the table of group vibration 
frequencies, the two &temperatures and the number of skeletal vibrators, N, it is now uossible, in 

I Computed Heat Capacities of Aliphatic Polyoxides 
I 

I Computed Heat Capacities of 
Solid Aliphatic Polyoxides 

me-$ = 
-0  

t 
CP 
J/(K mol) 

I Temperature (K) 

FIGURE 6 

turn, to calculate C, and Gith help of 
Eq. (9) also Cp. The computations 
cover now the whole temperature 
range and are fitted to the experiment 
only at two temperatures. 

Figure 5 shows such calculation 
for polyethylene. The contribution of 
the skeletal and group vibrations are 
shown separately. Deviations starting 
at about 300 K are linked to conforma- 
tional motion and disorder that could 
be studied by molecular dynamics 
simulations [29]. 

Since group vibrations are not 
much affected by changes in their 
chemical environment, it is possible 
from the data of Table I not only to 
compute Cp of polyoxymethylene, but 
also of all other aliphatic polyoxides. 

Figure 6 shows the results for a series of polyoxides for which some experimental data are available 
in the ATHAS data bank. The abbreviations are to be translated as follows: 

P08M = Polyoxyoctamethylene [0- (CH,-)& 
POM04M = Polyoxymethyleneoxytetramethylene 0 - CH,- 0 - (CH, -)4k 
P04M 
P03M 
POMOE 
POE = Polyoxyethylene [0 - (CH, -)& 
POM = Polyoxymethylene [0 - CH, - 1, 
PE = Polyethylene (polymethylene) [CH,-L. 

= Polyoxytetramethylene [0- CH - )4 I, 
= Polyoxytrimethylene [0 - (CL2-331, 
= Polyoxymethyleneoxyethylene [0 - CH, - 0 - (CH, -),L 
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Figure 7 shows furthermore, that the 8, and 8- values for the polyoxides are continuously 

Cp 

changing-with chemical composition. 
compositions, and to compute heat 
capacities of unknown polyoxides or 
copolymers of different monomers 
without reference to any measurement. 

Similar analyses were done for 
more than 100 macromolecules. The 
data for N, 8, and e,, together with the 
ranges of experimental Cp-data as well 
as full data tables of Cp, H, S, and G, 
as well as the transition parameters 
and group vibrations are collected in 
the ATHAS data bank. The precision 
of these computed heat capacities is 
for most polymers better than +5%. 

The strict additivity of the heat 
capacity contributions of the group 
vibrations and the continuous change 
in 8, with chemical composition led to 
the development of addition schemes 

Cp" = NC[17.91 + 0.0411 T] + NO[28.13 - 0.0071 T] 

It is this possTble to estimate e l  i n d  8, for intermediatk 

400 I " ' ' , . '  

I 
[J/(K 300 moll] Y 

PO% 

I WMOE 

200 <- 
WM04M - 

I I PO3: 

I POE 

I I . . .  I . .  

I I 

I 
100 - 

I I 
P O M  I 

I 
' PE 0 .  ' 

Change of Theta Temperatures with Composition 

400 

Molar Ratlo O / M 2  

300 

250 

0 0.2 0.4 0.6 0.8 1.0 
Molar Ratlo O/CH2 

FIGURE 7 

for heat capacities. As long as the contributions of the backbone groupings that make up the 
polymer are known empirically, an estimate of the heat capacity of unknown polymers and 
copolymers is possible. Detailed tables can be found in Refs. 30 and 31. 

Heat Capacity of Liquids 

The heat capacities of liquids are much more difficult to understand. The motion involves, besides 
the vibrations discussed in the last section, also large-amplitude rotations, internal rotations 
(conformational motion) and translations. Only a first beginning has been made in the more detailed 
discussion of the heat capacities of liquid macromolecules [ 181. 

Since in the liquid state, polymers are usually in equilibrium, measurements are more 
reproducible. It was discovered on hand of the large volume of data on liquid macromolecules that 
addition schemes can help to connect these heat capacities. Figure 8 shows the experimental data 
for the liquids of the same series of 
polyoxides as shown in Fig. 6 for the 
solid state. The equation at the top of 
the graph represents all the thin lines, 
the thick lines represent the experi- 
mental data [32]. The equation for C; 
was arrived at by least square fitting of 
all experiments. Again, the ATHAS 
data bank gives a listing for available 
data on other polymers. The heat 
capacities of many macromolecules are 
thus available through measurement, 
computation from approximate vibra- 
tion spectra, or empirical addition 
schemes. 
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