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Abstract: The Hyper Volume Monte Carlo (HVMC) method recently proposed by 
Fernandes and Ramalho (1) is reviewed. The geometrical and statistical roots of the 
method, its application to simple and to molecular systems, as well as a comparison 
with results from Molecular Dynamics, are presented. The spontaneous magnetization 
curve for a 2-dimensional Ising model, obtained by HVMC, is also shown. Finally, 
some potential applications of the HVMC method are pointed out. 

1. Introduction 

The Monte Carlo method introduced by Metropolis et al. (2) to sample the canonical ensemble has been 
extended to other ensembles such as NpT (3,4) and pVT (43) ensembles by a relatively straightforward 
introduction of the appropriate Boltzmann factors in the Metropolis algorithm. 
The constraint of constant total energy, E, in a microcanonical ensemble involves a &probability density 
hnction: 

f (N , V, E) = 6[ H(T) - E]( I d r  6[ H(T) - El)-' 

where 6 is the Dirac delta function, H is the Hamiltonian and r is the phase-space vector. Such a 
mathematical form is not amenable to numerical work. Thus, its introduction in the usual Monte Carlo 
procedure is not so straightforward. 
A short survey of the Monte Carlo methods to sample the microcanonical ensemble has been presented 
elsewhere (1). In this lecture, we review the Hyper Volume Monte Carlo (HVMC) method recently 
proposed by Fernandes and Ramalho (l), to perform microcanonical simulations by sampling the 
configurational and momenta spaces, and we present some applications of the method to simple (1) and to 
molecular (6) systems as well as a comparison with results obtained by Molecular Dynamics 0). We 
also present the spontaneous magnetization curve for a 2-dimensional Ising model, obtained by HVMC, 
with the critical point in close agreement with Onsager's analytical solution (7). Finally, we refer to some 
potential applications of the HVMC method and we point out that it is the full nondeterministic 
counterpart of the isoenergetic MD method . 

2. Geometry 

The volume of a n-dimensional hypersphere is given (8) by: 
V = Anrn 

where A, is a constant and r is the radius. In the particular case of a 3-dimensional sphere, A, = 413 x and 
n = 3 .  
The ratio of the volume of a spherical shell to the total volume of the hypersphere is: 

AV Ar 
V r 

If n is of the order loz3, then AV I V = 1 for values as small as A r I r = Therefore, the total volume 
of a spherical shell approaches the total volume of the sphere when n -+ ao. In the appealing words of 
Callen (8): " In an imaginary world of high dimensionality there would be an automatic and perpetual 
potato famine, for the skin of the potato would occupy essentially its entire volume." 

- n- 
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3. Statistical Mechanics 

It is well-known that, in a microcanonical ensemble, the entropy, S, can be defined through different 
formulas (9, 10) such as: 

S =  k,lnQ(N,V,E) 

S = k, In w(N, V, E) 
where k, is the B o l n  constant, 

Q(N, V, E) = C J J O[E - H(R, P)] dR dP 
is the phase-space volume and 

o(N, V, E) = CJJ 4 E  - H(R,P)] dR dP 
is the phase-space density. 
a x ]  = 1 if x>O and zero otherwise, is the unit step function; ax]# 0 ifx = 0 and zero otherwise, is the 
Dirac b-function andC is a constant. 
The phase-space volume is the number of states under the hypersurface of energy E. The phase-space 
density is the density of sates between the hypersurfaces with energies E and E - A, with A << E. In other 
words, the phase-space volume represents the " bulk of the potato" and the phase-space density represents 
the " skin of the potato"!. 
The equivalence of the two definitions of entropy means that, in the thermodynamic limit, the number of 
states with energies between E and E - A is essentially equal to the number of states with energies less than 
E, and this result is essentially independent of A . This counter-intuitive, but enormously useful result has 
its roots in the geometry of the high-dimensional space, as we have seen before. 
Thus, the calculation of the entropy in a microcanonical ensemble can be reduced to the evaluation of the 
hypervolume enclosed by the hypersurface of energy E, in alternative to combinatorial techniques, which 
are impracticable for complex systems. 
Therefore, the phase-space volume: 

Q(N, V, E) = C JJ O[E - H(R,P)] dR dP 

can be assumed as the microcanonical partition function. This is extremely useful, for the function o[x] is 
amenable to numerical work in contrast to the Dirac 6-function present in the phase-space density. 

4. The HVMC method 

The consideration of the phase-space volume, as the microcanonical partition function, allows us to set up 
the HVMC (Hyper Volume Monte Carlo) method to simulate the microcanonical ensemble by sampling 
the momenta and codigurational spaces: 
(i) Start from a configuration R and from a set of momenta P (for example P = 0) such that H(R, P) < E. 
(ii) Generate a new state (R ' ,P )  by giving random displacements to the position and momentum of 
particle i, taken at random or sequentially. 
(iii) Accept or reject the new state with probability: 

w[(R,P) + (R',P')] = mi 

that is to say, 

If H(R',P') < E then 

else 

end if. 

accept the new state as a new element of the ensemble 

reject the new state and count the old one as a repeated element of the ensemble 

(iv) Take averages of the dynamical properties over the generated ensemble. 

Note that the acceptance decision has no random numbers involved in contrast to the usual Monte Carlo 
methods. 
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The above algorithm is straightforwardly implemented, although there are some technicalities to be taken 
into account. We are not going into them, for they are filly described in the original article by Fernandes 
and Ramalho (1). 
In the following section we present and discuss some applications of the HVMC method. 

5. Applications and Discussion 

5.1. Simple Systems 

The Lennard-Jones (LJ) system is a standard model for testing theories and computer simulation methods. 
As such, we have carried out extensive calculations on that system, examining the dependence on the 
number of particles and eventual ergodic problems. To this end, we have performed, by MD-NVE, a series 
of calculations ranging from solid to fluid states with different number of particles. The final values of the 
total energy were the inputs for the HVMC program at the same MD densities. The complete set of results 
can be seen in the original article by Fernandes and Ramalho (1). Here, we only present a few ones. 

TABLE 1. Reduced thermal properties of the Lennard-Jones system from MD and 
HVMC methods: density (p), total energy (E), temperature (T), potential energy (LJ) 
and kinetic energy (K); N is the number of particles. The numbers in parentheses are 
the r.m.s. (standard deviations over the entire production runs) of the last digit($, so 
0.303(028) means 0.303 f 0.028. 

N P E T U K 
MD 32 0.88 -6.737(008) 0.303(028) -7.191(O45) 0.454(043) 

HVMC 32 0.88 -6.747(009) 0.305(030) -7.205(045) 0.458(045) 
MD 864 0.88 -6.646(001) 0.316(007) -7.120(010) 0.474(010) 
HVMC 864 0.88 -6.646(000) 0.3 14(006) -7.1 18(010) 0.472(010) 
MD 32 0.60 0.500(016) 2.634(170) -3.452(254) 3.952(256) 

HVMC 32 0.60 0.417(081) 2.607(168) -3.494(243) 3.91 l(251) 
MD 256 0.60 0.134(002) 2.464(056) -3.561(085) 3.695(085) 
HVMC 256 0.60 0.125(009) 2.445(054) -3.543(081) 3.668(081) 

The agreement between the results from MD and from HVMC methods is excellent for all the 
thermodynamic states and number of particles. The fluctuations of the potential and kinetic energies 
obtained by the HVMC method are equal, as they must be in a true microcanonical ensemble, and similar 
to the ones obtained by MD. Therefore, the specific heats, not explicitly indicated in Table 1, are also 
similar in both methods. 
The following figures show the radial and speed distribution functions obtained by MD and HVMC 
methods. 
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Fig. 1 Radial distribution functions of the LJ 
system (N=108, p = 0.88, Tm0.3 ). 

Fig. 2 Speed distribution functions of the LJ 
system ( N=256, p = 0.6, Tm2.4 ). 
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The structure of the system, obtained by MD, is totally reproduced by HVMC as well as the speed 
distribution function. Note that an interesting characteristic of the HVMC method is the possibility of 
obtaining velocity distribution functions. This is in contrast to the usual Monte Carlo methods where no 
sampling over the momenta space is performed. 
Finally, the results do not appear to be significantly sensitive to the number of particles used in the 
simulations [32-8641 and the excellent agreement between the results obtained firom MD and HVMC 
suggests that ergodic problems are absent, at least for the present simulations. 

5.2 Molecular Systems 
Liquid methyl chloride, in a series of thermodynamic states, has been simulated by MD and HVMC 
methods. 
The model consists of a CH, pseudoatom and of a chlorine atom separated by the experimental bond 
length (1.78 1 A ). The interaction between two CH,CI molecules A and B is described by 

U, = C CEij[(oij /rij)12 -(oij /rij16]+qiqj /rij 
i aA  J E B  

with parameters referred to by Freitas et al. (1 1). 
Cubic periodic boundary conditions with 108 molecules have been used. Equilibration runs with 10000 
cycles have always been followed by production runs with 20000 cycles. In TABLE 2 we present some 
thermal properties obtained by MD-NpT and MC-NVT (1 1) and by HVMC (6). 

TABLE 2. Thermal properties of liquid CH,CI from MD-NpT, MC-NVT and HVMC 
methods: density (p), potential energy OJ). kinetic energy (K), total energy (E), temperature 
(T), pressure (p). The numbers in parentheses have the same meaning as in Table 1 .  The 
subindices trans and rot mean, respectively, translational and rotational. 

p gcmJ 
1.07 1.04 1.01 0.98 

u / klrnor' MD -24.57(34) -23.66(36) -22.85(38) -21.74(46) 
MC - -23.76(22) -22.89(23) - 

HVMC -24.65( 16) -23.7 1 (1 7) -22.88( 18) -21.8 l(20) 
K / klrnol-' MD 3.65 4.17 4.60 5.21 

K,/WrnoK1 MD 2.19 2.49 2.74 3.11 

K,,,,,/ H m o P  MD 

HVMC 3.7 1 (1 6) 4.21( 17) 4.6 1 ( 18) 5.26(20) 

HVMC 2.23(14) 2.53( 16) 2.76( 17) 3.13(20) 

HVMC 1.48( 12) 1.67( 14) 1.85( 16) 2.13( 18) 
1.47(14) 1.68( 16) 1.86( 18) 2.10(20) 

E / WmoP MD -20.92(34) -19.49(39) -18.25(41) -16.53(51) 
HVMC -20.93(01) -19.51(01) -18.27(02) -16.55(02) 

T/K MD 176(7) 201(8) 221(9) 25 1( 10) 
HVMC 179(7) 202(8) 222(9) 253(9) 

TIr- 1 K MD 175.4 200 220 249.39 
HVMC 179(11) 203(13) 221(14) 25 1( 16) 

T a / K  MD 177(17) 202( 19) 224(22) 252(25) 
HVMC 178(15) 20 1 (1 7) 223(19) 257(22) 

P I M P @  MD O(3 7) (439) O(39) O(39) 
MC - 26(28) 26(29) 

The agreement between the results obtained by HVMC and by MD is excellent. The fluctuations of the 
kinetic and potential energies are equal, as they must be in a true microcanonical ensemble. The agreement 
between the translational and rotational temperatures is also excellent and it reflects a correct equipartition 
of energy among the different degrees of fieedom of the model: 3 translational and 2 rotational. 
The structure of the system has been analysed through different site-site distribution fimctions (6) and in 
Figure 3 we show the CH,-CH, distribution functions. In Figure 4, the speed distributions functions ,at 
200 K, are also displayed. 
The structure of the system, obtained by MD, is totally reproduced by HVMC as well as the speed 
distribution function. Finally, we have checked out that the most probable molecular speeds obtained by 
HVMC are in accordance with the ones theoretically predicted, which is a further demonstration of a 
correct equipartition of energy. 

- 
HVMC 24(20) 23(23) 29(24) 31(24) 

0 1996 IUPAC, Pure and Applied Chemistry68.1509-1514 



A new microcanonical sampling method 1513 

2.0 

1.6 

1.2 

h CI v 
M 

0.8 

0.4 

0.0 
0 2 4 6 0 10 12 

r l W  
0.0 1 .o 2.0 3.0 4.0 5.0 

speed 

Fig. 3 Site-site radial distribution functions Fig. 4 Speed distribution functions of liquid 
ofliquid CH3Cl (N=108, T=200K, p ~ 0 ) .  CH3C1(”=108, T%200K, p=O). 

5.3 Ising Model 

The 112 Ising model (7,9,12), without applied magnetic field, has been simulated in two dimensions by 
HVMC (6). The Hamiltonian of the system is: 

H = -JZsi  sj  

where J is the interaction constant, taken equal to 1 in the present work, and s = f 1 is the spin variable. 
The summation is extended to the nearest neighbours. 
A 100 x 100 spin lattice has been considered and equilibration runs with 10000 cycles have always been 
followed by equilibration runs with the same number of cycles. 
The potential energyhpin has been varied between 0 and -2 ( the later value is the ground state of the 2- 
dimensional model). The magnetization of the system is defined as: 

M = <  Z s i  /nospins> 

The existence of a continuous phase transition in this 2-dimensional model was analytically demonstrated 
by Onsager (7) a long time ago. Our results, displayed in Figure 5,  show the spontaneous magnetization of 
the system, characterized by a critical point in the range [-1.4, -1.11 of the potential energyhpin. This is in 
agreement with the prediction of Onsager. The simulation of the 2-dimensional Ising model has been 
performed before by other methods (12). The purpose of the present calculations is to check out the ability 
of the HVMC method to detect the critical point of the model. 
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Fig. 5 Magnetization versus potential 
energylspin. 
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6. Final Remarks 

The HVMC method is theoretically correct and of simple computational implementation. It only needs 
some straightforward alterations in the code of a NVT Monte Carlo program. 
The overall agreement of our HVMC results with the results from MD and the analytical results of 
Onsager is excellent. Although the equivalence between the phase-space density and phase-space volume is 
strictly proven in the thermodynamic limit, our results show that the equivalence is valid, to a good extent, 
with a relatively small number of particles. 
How small the number of particles has to become before the method becomes inaccurate?. We have in 
progress a systematic study involving clusters of atoms and molecules and the results will be reported in a 
future communication. However, we should mention, as a very preliminary result, that we have 
equilibrated, by MD-NVE, a microcluster of 8 ions of KCl at 9.9 K, obtaining a total energy of -620.240 
f 0.003 kJ mol-'. The values obtained by HVMC were, respectively, 9.3 K and -620.261 f 0.021 kl mol-'. 
Although the agreement is apparently very good, it is necessary, of course, to consider more 
thermodynamic states and to carry out a thorough analysis before any sound conclusion can be drawn. 
The HVMC method is the 1 1 1  nondeterministic counterpart of the isoenergetic Molecular Dynamics 
method. Their equivalence, in the present simulations, is a hrther demonstration that deterministic chaos 
may be generated by the coupled Newton's equations of motion. Note that the HVMC method does not 
involve the integration of motion equations. 
As the HVMC method does not require previous integrations over the momenta space it can be used with 
any form of Hamiltonian. Some potentially important applications of the microcanonical Monte Carlo have 
been pointed out by Frenkel(l3), Creutz (14) and Ray (1 5) such as: the study of flexible molecules with 
constraints, the simulation of the Ising model under the influence of a magnetic field, the study of solid + 
solid phase transformations, cases where the force calculation is complicated (e.g. 3, 4 and higher body 
forces or in density-functional molecular dynamics approaches) and simulated annealing. 
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