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Guideline for calibration in analytical chemistry- 
Part 1. Fundamentals and single component 
calibration 

Synopsis 
This IUPAC nomenclature document has been prepared to establish a uniform and meaningful 
approach to terminology, notation, and formulation for calibration in analytical chemistry. In 
this first part, general fundamentals of calibration are presented, namely for both relationships 
of qualitative and quantitative variables (relations between variables characterizing certain 
types of analytes and measured signals in certain positions of a measured function on the one 
hand and between variables characterizing the amount or concentration of the chemical species 
and the intensities of the measured signals, on the other hand). On this basis, the fundamentals 
of the common single component calibration which models the relationship y = f(x) between 
the signal intensities y and the amounts or concentrations x of the analyte under given con- 
ditions are represented. Additional papers will be prepared dealing with extensive relationships 
between several signal intensities and analyte contents, namely with multivariate cal ibratiqg 
and with and gxperimental des ign. 
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Calibration in analytical chemistry-I 995 

1. INTRODUCTION 

In general, calibration is an operation that relates an output quantity to an input quantity for a 
measuring system under given conchtions. 

In the chemical measurement process (CMP [ l]), input quantities are given by analytical 
quantities characterizing certain types of analytes (chemical species) q, and their amounts or 
concentrations x. Output quantities are represented by measured values, i.e., certain signals in 
positions zJ with intensities y,. The common case, in which a relationship has to be determined 
by calibration between the amount (content) of a certain analyte xq, and a signal intensity yzr is 
only a special case of calibration. 

In a more general sense, calibration in analytical chemistry refers to the relation between an 
~ L Q Q  x = fc4, representing a pattern of analytes and their amounts or concen- 
trations in a given test sample on the one hand (see Fig. 1, left-hand side) and a neasured 
f u n c t i ~ ~ ~  y = g(z) that may be represented by a spectrum, chromatogram etc. (Fig. 1, right-hand 
side) [2]. 

Fig. 1 Relation between the analytical function x =f(q) and the measured function y = g(z) 

Therefore, there are four quantities q, x, z, andy that have to be related with one another. The 
situation is characterized in Fig. 2 by a quasi-four-dimensional representation. The foreground 
of the representation depicts the relationship between the species and its characteristic signal, 
while behind that, the relationship between signal and concentration is established. Taken 
together, these relationships establish the composition of the sample. These general connections 
are reflected in three analytically relevant applications: 

( 1) Calibration of quantities that characterize typical signal positions z (q-z-calibration) for 
identification of components and qualitative analysis 

: = f(d + e, = L . q  + ez (1) 

where f represents the underlying functional relationship, e ,  the measurement error of z, and L 
the (approximately) linear operator that transforms q (component-specific quantity like atomic 
number, mass number, or typical energy values) into 2. 

( 2 )  Calibration of quantities which characterize the intensity of an observed responsey b-x- 
calibration) for a given analyte yi in quantitative single component analysis 

where F represents the underlying functional relationship (the calibration function in a more 
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996 COMMISSION ON GENERAL ASPECTS OF ANALYTICAL CHEMISTRY 

Fig 2 Quasi-four-dunensional 
representatlm of the connechon 
between qualitatwe and quantlta- 
hve calibrahon The q-z-relahon- 
ship corresponds to a deterrmrushc 
funchon, see (I) Frequently there 
exlst em incal rehhOWhpS llke 
(a) and 61) 

(specie8 identification, 
quelirarive 8na/YSiS) 

narrow sense), ey the measurement error of y, and Mis  the (approximately) linear operator that 
transforms x into y. 

(3) Quantitative multicomponent calibration 

where Y represents the matrix of measured values, X the matrix of analyte amounts (contents), 
A the sensitivity matrix that transfornis X into Y, and E is an error matrix. Quantitative 
multicomponent calibration is carried out by means of multiple or multivariate regression 
techniques, respectively, and will be the subject of a second paper. 

2. FUNDAMENTALS 

ration in Analw Chem istry is the operation that determines the hctional relationship 
between measured values (signal intensities y at certain signal positions z , )  and analytical 
quantities characterizing types of analytes qi and their amount (content, concentration) x. 
Calibration includes the selection of the model (its functional form), the estimation of the 
model parameters as well as the errors, and their validation. 

2.1 Calibration function for sDecies identification and aua litative analvsis (q-: calibration, 
more specifically: calibration of such analytical parameters which characterize types of 
chemical species) is the establishment of a model (its parameter estimation and validation) of 
the relation between : and q for the purpose of identification and qualitative analysis on the 
basis of Eq.( 1). 

0 1998 IUPAC, Pure and Applied Chernistry70,993-1014 



Calibration in analytical chemistry-I 997 

In analytical practice, q-z calibration refers to the position of signals on energy or energy-pro- 
portional scales, such as wavelength-, frequency- or masskharge coordinates of spectrometers 
or time coordinates of chromatograms, respectively, as a characteristic signal pattern caused by 
the species present. 

The linear operator L in identification and qualitative analysis may be [2]: 

(i) a deterministic function on the basis of natural laws, z =fde,(q), e.g., Moseley's law of 
the dependence of X-ray frequencies on the atomic number [3], or 

(ii) an empirical function, : = LmP (q) ,  like Kovats' indices of homologous compounds in 
their dependence on retention data in gas chromatography [4], or 

(iii) an empirical connection, : = emp(q), represented by tables and atlases, e.g., by 
Colthup's table of characteristic vibrations [ 5 ] ,  iron-atlases in atomic emission 
spectroscopy [6], and other types of wavelength tables [7]. 

While the relations z =he, (4) are known on the basis of natural laws, the estimation of an 
empirical function z = j& (q)  for the purpose of identification and qualititative analysis is 
mostly carried out by (linear) least squares to fit the observed z-values for a set of pure 
component standards or a multicomponent standard (frequently mixed in an "intensity- 
normalization" relation). On the other hand, calibration on the basis of empirical relationships 
z = emp(q) in the form of tables, atlases and graphs are developed by classification of 
experimental results. 

2.2 Calibration funct ion for quantitative a n a l w  ' is the determination of the functional relat- 
ionship between y and x in the form 

y = F(x) + ey (2) 

where F is the calibration function. In most cases, the calibration function has to take into 
account the response relations for all relevant constituents and interferences. Then y depends on 
a vector x = (x, , xb ... x, , x, ... xq) consisting of the amounts of the analyte under direct 
interest, x,, of accompanying components (xb . . . x,) and of influencing factors (x, . . . XJ 

y = F(x) + e,, (4) 

Under the best circumstances, Eq.(4) is a linear vector equation. The estimation of models 
according to Eq.(4) is subject of experimental design and optimization which will be addressed 
in a third report. 

In the simplest case of calibration according to Eq.(2), for a given amount of .r = x, where no 
other components and factors have to be considered, y is a scalar quantity. More generally, y 
may be a function of the characterizing variable z. The basic relation then takes the form 

and represents a characteristic pattern, e.g. a spectrum of a pure component. 
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2.3 w o n  Funct ion [ I ,  81 
In general, the evaluation function (analytical function) is the inverse of the calibration 
function, Eq.(2) 

x = F-'(yl ( 5 )  

provided that the relationship between measured value y and analyte amount x has been created 
by calibration which is mainly the case in analytical chemistry. However, there are also other 
types of evaluation procedures, e.g. on the basis of natural laws, depending on the nature of the 
analytical method. The determination of the amounts of analytes can be based on absolute, 
relative or reference measurements [9]. 

Absolute, dejinitive and reference measurements are based on equations of the general type 

~ = A ' x  (6) 

where the sensitivity A in analytical chemistry generally is defined as the differential coefficient 
dydr. In the case of linear models, A is given by Ay Ax [I]. For the three mentioned types of 
analytical measurements the sensitivity is given by mathematically well-defined relations, 
namely in the case of 

(a) Absolute measurements by fundamental quantities like Faraday constant and quotients of 
atomic and molar masses, respectively; 

(b) Definitl 've measu rements by fundamental quantities in combination with well-known 
empirical (transferable) constants (e.g. molar absorption coefficient, conductivity at definite 
dilution, diffusion coefficients for given media) sometimes complemented by an empirical 
factor (e.g. titre); and 

(c) Direct reference measurements by the relation of measured value to concentration (content) 
of a reference material (R) 

A = y , ' x ,  (7) 

Accordingly, absolute measurements do not need (permanent) calibration' and definitive and 
direct reference measurements need only a comparison measurement (e.g. titrimetric standard) 
or reference measurement (reference material or spiked sample). 

On the other hand, indirect reference measurements are based on empirical calibration 
functions, frequently based on linear models 

y = B +- A x  + ey (8) 

where the intercept R corresponds to the experimental blank and the slope A to the experi- 

' Apart from the fact that both the sensitivity constants A and the conditions under which they are valid (e.g. 
under which a reaction proceeds quantitatively) sometime were found theoretically or experimentally 
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mental sensitivity . The parameters A and B are usually estimated by least squares fitting2, ey is 
the error of the y-measurement. In analytical practice, also some methods using definitive 
measurements, in principle, are calibrated by least squares estimating (e.g. spectrophotometry, 
polarography) to provide reliable estimates of A .  

Calibration fhctions corresponding to Eq.( 8) are not generally transferable over long times and 
not from one laboratory to another. However in the case of blank-free or blank-corrected 
relations 

y = A x  + ey (9) 

methods can be robustly calibrated under fixed experimental conditions. The experimental 
sensitivity coefficients (sensitivity factors) are transferable over time and between laboratories 
under standardized operating conditions. Because of this transferability, such methods are 
occasionally called f’stundard,free’f. Such standard-free methods have been developed, e. g., in 
the field of optical emission spectrography [ 101, in spark source mass spectroscopy [ 1 I], and in 
X-ray fluorescence spectroscopy [ 121 for semi-quantitative multielement analysis. Standard- 
free methods are to be distinguished from the “culibrution-free“ methods using absolute 
measurements as mentioned above [9]. 

3. LEAST SQUARES CALIBRATION 

3.1 Linear calibration model 

On the condition that the errors of the measurement have a zero mean and are uncorrelated, a 
linear function (8) can be fitted to the measured values by means of -es e- (u, or ordinary least squares estimation, U, respectively). 

. .  

With the fundamental relations 

*Model: 
* Estimate: yi  = B + A xi  

y i  = B + A xi + eyi = E(yi) + eyi 
. . A  

(where E(yJ is the expectation of y,) the general least square criterion expressed by the sumd 
, SSD, reads [ 131 

where 0, is the standard deviation at the given point i and m the number of calibration 

* Graphic4 me$& are still applied pccasionally; in recent time, neyal networks also have been used to budd 
experimental cahbratron models, especially m the case of nonhear relanonshps 

’ The sum of squares comes from the Likelihood function 
L = (tsr).’ 0;’ pi’ ... 0;’ exp(-!/2 SSD) 
as the product of probabilines that all the measured values y,  correspond with the estimates 
S S f I  becomes a mmimum if L becomes a m&mum 

as exact as possible. 
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measurements (see Eq420)). 

Note 1 : A corresponding criterion can be formulated for the determination of x 
= By + 2,. y. This from (error-free) y by means of the estimate 

model, however, usually has no relevance in analytical calibration. 

The SSD has to be minimized according to Eq.( 13) 

m ! 
C(d, q)’ = min 
1= 1 

The symbol 1 means that the expression on the lefi-hand side has to be a minimum. Depending 
on the fulfillment of the following conditions the least squares criterion has to be modified as 
follows: 

(1) The errors are only or essentially in the measured values y as the dependent variable: 

A q << a, (13) 

and in addition, the errors a, are constant in the several calibration points (Homoscedasticity): 

UVl2 = or; = ... = u,’ = 0; U4a) 

or, expressed by the estimates of u 

a_ 2 4  2 - syn s y  

a 
where = means equality for a given statistical risk of error a. Only in this homoscedastic case 
and if errors in x can be neglected according to Eq.( 13) is the LS criterion reduced to 

I m 
= min 

i= 1 

and the classical Gaussian LS criterion (normal or ordinary least squares, LS, NLS, or OLS) can 
be applied. 

(2) In case that the measuring errors u, vary and heteroscedasticity must be assumed (Eqs.( 14) 
are not valid) the least squares (LS) Criterion (12) turns into 

m ! 
1 (dJ oJz = min . 
i= I 

The model of weighted least squares (WLS) results from this criterion as will be shown in 
paragraph 3.3. 

0 1998 IUPAC, Pure and Applied Chemistry 70,993-1014 
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(3) In the most general case, if both variables are subject to error and, therefore, Eq.( 13) is not 
fulfilled, we have 

(17) u12 = ay2 + A' uyl 2 

In this case, in which there are errors in both variables, viz. the measured value and the ana- 
lytical quantity (concentration), the sum of the dX+;, see Fig.3, has to be minimized and 
orthogonal least squares fitting must be carried out, e.g. according to paragraph 3.4. The differ- 
ent least squares models that can be calculated are schematically shown in Fig.3. 

Which model has to be used in 
analytical calibration depends on the 
fulfilment of the conditions ment- 
ioned above and on the procedure in 
calibration. 

According to Eq.(2) experimental 
calibrations are mainly carried out by 
measurement of a set of calibration 
samples containing the analyte under 
investigation in suitably graduated 
amounts. If possible, analysts use 
materials whose concentrations are 
known with maximum reliability, i.e. 
with both high precision and trueness. 
In analytical practice, certified 
reference materials, single- and 
multi-component standards, and 
synthetic standard materials are used 
as calibration samples. 

_. -. . 
Y l  x = B y  A ,  y 

- x  - ,  

A A A  f\ 

Fig. 3 DifFerent linear least squares models. By, Bx, 4, and A, 
are the estimates of By, B,, A,, and A, 

The concentrations (contents) of the calibration samples can be regarded as 'Yrue" and error- 
free or it can be assumed that, according to Eq.( 13), the random errors of x are negligible 
compared with that ofy. Under this condition, the specified calibration function (1 8) has to be 
used 

y = B , + A , x + e ,  (18) 

and the parameters B, and A ,  are estimated by the Gaussian (normal) least squares algorithm in 
case of homoscedasticity, see [14, 151, 

where m is the total number of calibration experiments (indexj) when obtaining the calibration 
hc t ion  and with the following sums: 

0 1998 IUPAC, Pure and Applied Chemistry70,993-1014 
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The correlation coefficient 

rv = QJ- (22) 

which is a measure of relationship of two random variables, has no meaning in calibration 
under the conditions mentioned above because the values x are not random quantities in the 
calibration experiment. 

Note 2: The correlation coefficient rv can be meaningful for the relationship 
between random variables, but it should not be used in calibration [ 11. 

For the evaluation of analytical measurements usually the inverse function of the calibration 
function (Eq.( 18) is applied 

provided that the requirements (1) and (2) mentioned above are correct. 

Note 3: In reality, the relationship between the measured values y and analyte 
amounts (concentrations) x has to be characterized by means of a three- 
dimensional calibration model [2]: 

Y = f k r l u ?  XeSttD) 6)  
where x,, is the concentration of the (certified) reference materials used 
for calibration and considered to be "true" ("error-free"). On the other 
hand, x,, = x^ is a random variable affected by errors. Whether the con- 
dition (13) is fulfilled for x,, or not, cannot be fixed a priori. 

From the three-dimensional model (i) the foIlowing three two-dimensio- 
nal relations result: 
the -function: 

Y = fc &IllJ + ey 

the Q-: 

(ii) 
e.g. according to Eq.( 18), 

x,, = A l ( y I  + ex (iii) 
e.g. following Eq.(23), and 

the (bias function, recovely function): 

(iv) 
which characterizes the accuracy of analytical results. For validation 
functions x,, = x,, - and only in this case - the three-dimensional 
relationship (i) becomes two-dimensional and the common least squares 
calibration is justified. 

Xesm = h(XtN3 + e* 

0 1998 IUPAC, Pure and Applied Chemistry70,993-1014 
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. .  . .  3.2 FIT0 rs in linear -d e valuation bv ordinav LS estimat ion 

Fundamentally, the uncertainties of measured values y estimated by calibration, e.g. according 
to Eq.(18), on the one hand and of analytical results (analyte amounts, concentrations) 
estimated by means of calibration models, e.g. according to Eq.(23), on the other hand differ 
from one another. The uncertainty of y values in calibration is characterized by the confidence 
interval cnfb) = Ayc whereas the uncertainty of estimated x values is characterized by the 
prediction interval prd(x) = Axp The prediction interval of the measured value y, prdb) = Ay, 
also plays a role, namely for the definition of the critical value (limit of decision), limit of 
detection, and limit of quantification [ 1,16- 191. 

The precision of calibration is characterized by the following special errors 

3.2.1 Residual standard deviation 

Note that the number of degrees of freedom isf= m - 2 in this case of a two-parametric model 
according to Eq.(8). In the case of linear calibration through the coordinate origin according to 
Eq.(9) f = m - 1. 

3.2.2 Estimated standard deviation of the estimated intercept plank) B 

sB = sy.x d llm + X2/’Qxu 

3.2.3 Estimated standard deviation of the estimated slope A 

sA = s y . x ’ J z  

3.2.4 Estimated standard deviation of an estimated mean ye at position xi 

sYe = s ~ , ~  d l /m  + (xi - ,?j2 .Q, 

3.2.5 Estimated standard deviation of a predicted single value yp at position xi 

sy.x J 1 + llm + (xi - F)’:’Qxu SYF - 
- 

3.2.6 Estimated standard deviation of a predicted mean y’, from n repetitions in position xi 

sh = s,,~ J lln + Urn + (xi - x)’ ,‘ Qxu 

3.2.7 Estimated standard deviation of a predicted mean from n repetitions in position xi 

0 1998 IUPAC, Pure and Applied Chemistry70,993-1014 
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- x  

Fig. 4 Calibration straight line with relevant confidence and prediction bands; ,vup upper prediction limit, y, upper 
confidence limit, y,< lower confidence limit, y,p lower prediction limit 

The confidence band, CB, o f  the entire calibration straight line as shown in Fig.4 is given by 

CB = y f sye J 2 Fa;fl=2;f2=m.2 (3 1) 

The following uncertainty intervals resulting from (24) to (30) are of practical interest: 

3.2.8 Confia'nce interval of the intercept (blank) B 

Cnf(B) = B f SB ta,gm-2 

3.2.9 Predzction interval prd(R) of a single B value by Eq.(33) and that of an average from 
n repetition measurements according to Eq.(34). The latter one is important with regard to the 
estimation of the detection limit from blanks 

prd(R) = R f sy.x t,,,,, J 1 + I/m + x7/Q, 

prd(i) = 

(33) 

(34) f s , , ~  ta,f=m-2 J lln + l/m + P/Q, 

3.2.10 Corlfidence interval of an estimated mean Ke at position xi 

cnf( jJ = f sy,x J l/m + (xi - 3' / Q ,  (35) 

prdQJ = yip f sy,x ta;f=m2 J 1 + l/m + (xi - Fj2 1 Q, 

3.2.1 1 Prediction interval of a single value yip at position xi 

(36) 

3.2.12 Prediction interval of a mean &,from n repetitions in position xi 

3.2.13 Prediction interval of a mean qP from n repetitions for a mensured vnhre yi 

prd(FJ = < f S ~ , ~ / A  ta:f=m-2 J Iln + Ilm + Qi - U)','(A' Q.&l (38) 

0 1998 IUPAC, Pure and Applied Chemistry70,993-1014 
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3 . 3  Weighted linear least squares estimation (WLS) 

In cases in that homoscedasticity according to Eq.(15) is not given, the estimated standard 
deviation s,, is frequently a hnction of the measured quantity, s,, = fb), strictly speaking a,, = 
f[E@)]. That means that the standard deviation can be a function of the expected y value. In this 
case the calibration system is heteroscedastic and weighted least squares fitting has to be applied 
[20, 211. By means of weighting, the different variances of the certain calibration points are 
considered. In variance weighting, the weights are 

for p calibration points (index i) and the minimization criterion (16) becomes 

The calibration coefficients are calculated analogous to Eqs. (19) and (20) by means of the 
weights wi = wp: 

m C w ,  xi yi - C wi xi C wi yi 

m C w i  xi2 - ( C w i  xi)' 
A,, = ________________________________________-- 

B,, = (Cy yi - A , ,  C w i  xi)'m (42) 

The estimate of the residual standard deviation is 

sy,+w = JCWi0,  - y ) * / ( m - 2 )  (43) 

Other quantities characterizing uncertainties can be estimated in analogy to Eqs. (25) to (38). 
Some s o h a r e  packages for regression analysis allow one to enter an estimate of the functional 
dependence uy =f[E(y l]  and to carry out a suitable weighting with this function. 

The decision on weighted or unweighted least squares can be reached on the basis of a statistical 
test or on the basis of a theoretical model. 

3.4 Linear least squares fitting for errors in both variables (orthogo nal LS) 

In Fig. 3, three calibration lines are given. First, the model to estimate y from (practically) error- 
flee x values. This relationship is commonly used for calibration in form of ordinary least squares 
fitting: 

y = B , + A , x  (44) 

0 1998 IUPAC, Pure and Applied Chemistry 70,993-1 01 4 



1006 COMMISSION ON GENERAL ASPECTS OF ANALYTICAL CHEMISTRY 

Another model can be formulated to estimate x from y values under the condition that sy << 
A ' S , :  

Note 4: It should be explicitly noted that Eq.(45) is not the inverse function of 
L A  

(44) and, therefore, i, + - B, 1 A ,  and Asy * 1 a,. 
Note 5 :  In analytical chemistry, Eq.(45) has no practical relevance, as a rule. 

It serves only as a means to estimate the orthogonal calibration line 
according to Eq.(46). 

The calibration function in case where errors in both variables exist 

has to be determined by orthogonal least squares minimizing, that means the errors in both the 
dependent and the independent variable are minimized simultaneously. This orthogonal least 
squares calibration has to be applied if both the measured values y and the analytical values x 
(concentrations) are error-affected quantities. The model (46) cannot be determined directly but 
only by approximations, e.g. the slope A can be estimated as the geometric mean (GM) of the 
straight lines (44) and (45) [ 131 by 

A* = tan[% (tan-la, + tan-'A^,)] (47) 

with 2 according to Eq.( 19) and 2 = Q, / Qyy. The estimate of B is obtained from (46) 
analogously to (20). ho ther  procedure for the esbmation of A was proposed by Wald [22] 

where m is the number of calibration measurements and g = m '2 = h - 1 for even m and 
g = (rn + 1) / 2 = h when m is uneven. Furthermore it should be mentioned that the first 
principal component p ,  of a principal component analysis (PCA) [23-251 gives a good 
approximation of the orthogonal calibration line. 

Several approximation models for orthogonal calibration procedures have been compared [28], 
the problem is also dealt with in other studies [29-3 I]. 
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4. STATISTICAL TESTS 
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For the application of the proper calibra- 
tion model, it is important to test whether 
the conditions given in section 3.1 are 
fulfilled. For a first information, by means 
of commercial software packages one can 
examine visually the residual errors of a 
given calibration model and get pre-infor- 
mation on the character of the residual 
errors. Typical plots as shown in Fig.5 also 
give information on tests that have to be 
carried out, such as randomness, normality, 
linearity, homoscedasticity, etc. 

I . 

4.1 Linearity: Whether the chosen linear m a  a *  

model is adequate can be seen fiom the 
residual deviation distribution over the x 

a a * I  
x - j  

values. In Fig. 5a the errors scatter rand- 
omly around the zero line indicating that 
the model is suitable. On the other hand, 
in Fig. 5b it can be seen that the errors show systematic deviations and even in the given case 
where the deviations alternate in the real way, it is indicated that the linear model is inadequate 
and a nonlinear model must be chosen. The hypothesis of linearity can be tested 

Fig. 5 Typical plots of residual deviations 

(a) a priori (no actual nonlinear model is considered) by comparison of the deviations of the 
means fiom the calibration line (the residual standard deviations sy.x (24)) with that of the y 
values from their means (s,) 

SY 

(49) 

(mi number of measurements in thep calibration points; 5 mi = m , usually m = m 2  = ... 
= m, and p * m i  = m). The test is carried out by combarison of the quotient (49) with 
Fa,  fl-p2. Q=m-p . 

(b) Q P O S  teriori (comparison with a certain nonlinear model) by comparison of the residual 
standard deviations of the linear model with that of the nonlinear model: 
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The number of the degrees of freedom in case of linear models is f;m = m - 2 or m - 1, 
respectively, depending on whether two parameters are estimated according to Eq.(8) or one 
parameter according to Eq.(9). In the nonlinear casef,, results from the actual model (e.g. for 
a quadratic equation y = a + b x + c x2,  fm = m - 3). A suitable test for (50) can also be carried 
out according to Mandel [32] 

by comparison with F,, f,=l, 

applied. 

4.2 Homosc- : Unequal variances are recognizable from residual plots as in Fig. 5c 
where frequently d ,  is a function of x in the given "trumpet"-like form. In such a case, the test 
of homoscedasticity can be carried out in a simple way by means of the Hartley-Test [33] (for 
equal mi in the p calibration points) 

In each case where F 2 F,, *, the linear model cannot be 

. .  

In cases in which the situation is more obscure as represented in Fig. 5c, the Bartlett-Test of 
homogeneity of variances [34] has to be applied 

P 

x2 = 2.303/'cCflgs' - CLlIgSi2) 
i=l 

(53) 

where f = m - p = C A  is the total number of degrees of freedom (p is again the number of 
calibration points in each of which m, repeated measurements are carried out), s = c cf; s : / f )  
the weighted variance, s: the variances of the i-th group (point) with the degrees of freedomx 
and c is a correction constant that should be calculated according to c = {c (1 .'f; - 1 If) 
[3(m - l)] + l} when the number of degrees of freedom is low. 

x2 has to be compar$d with the critical value x2,, and the null hypothesis s , = s = ... = sp 
must be rejected if ,y2 L ,y2u,f .  

4.3 Test ofcal ibration parameten : In some cases, it may be useful to compare experimentally 
found calibration parameters A and B, respectively, with theoretically expected values a andJ. 
The comparison is camed out by means of Student's t-Test 

With regard to validation, especially the null hypotheses a = 1 and JI = 0 are of interest. The 
respective hypothesis must be rejected if I;? f a i f .  
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5. VALIDATION OF CALIBRATION 
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As a rule, the trueness of analytical results is guaranteed by validation experiments. Validation 
of a calibration procedure is based on the validation function (recovery funcion) xcntm= f’(x,J, 
see Eq.(iv) section 3.1, note 3. Two practical ways are used to investigate the trueness of 
analytical results: 

5.1 A~ (CRM’s) with “true“ contents. The validation 
function is estimated by normal LS regression 

where a and b are *n coe fficienb with the analytical meaning of a constant bias (b) and 
a proportional bias (a). The estimates of a and b can be determined by Eqs. (19) and (20). By 
testing the null hypotheses a = 1 and b = 0 according to Eqs. (54) and (55) the absence of 
biases of the analytical results can be verified. 

Systematic deviations are also detected if the corresponding confidence intervals of the 
validation coefficients do not include 0 or 1, respectively, namely 

(i) an additive bias if b + A b  < 0 or b - A b  > 0 
(ii) a proportional b iaS if a + A a  < l o r  a -Aa > 1  

(b’ I A b  I )  
( a >  IAa I )  

5.2 Analvsis of a given set of test samples with graduated concentrations bv two independent 
m&&, the one, I, for which accuracy is to be verified, in direct comparison with another 
method, 11, which is known to be accurate. The special recovery function in this case holds 

Because both quantities, x- and xu.- are subject to error in h s  processing, orthogonal least 
squares fitting according to Eqs. (47), (48), principal component analysis or robust fitting must 
be applied. The tests on significant deviations from a = 1 and b = 0 are carried out as above. 

6. ROBUST CALIBRATION 

If the basic conditions for the use of least squares fitting are not fulfilled or if strongly deviating 
calibration points appear (“outliers“ or, more exactly, leverage DO ints), the ordinary least 
squares method fails, i.e., the estimated parameters are biased and, therefore, are not 
representative of the relation between x and y. Whereas normality of the measured values can 
be frequently obtained by a suitable transformation, especially in the case of outlying 
calibration points [35], robust calibration has to be applied. In the simplest case the robust 
parameter estimation can be carried out by means of median statistics. Between all the 
calibration points all possible slopes A, = (yj - yJ (xj - xi) for j > i are calculated. After 
arranging the A, according to increasing values, the average slope can be estimated as the 
median by 

A“ = med ( A , }  
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and the intercept 8 will then be obtained by 

B = m e d b i - i x i }  ( 5 9 )  

Estimates of the variances and uncertainty intervals in robust calibration can be taken from the 
literatur [35,36]. 

Note 6: Robust calibration corres- 
ponds in most cases to the problem 
of outlying calibration points 
(leverage points). In consideration 
of that, attention must be directed to 
the linearity of the relationship in 
general and the (residual) random- 
ness. 

The relationship between the most im- 
portant calibration models depending on 
the fulfilment of certain conditions are 
represented schematically in Figure 6. As 
outlined above, the ordinary least squares 
estimation can only be applied if the 
measured values are independent and 
normal-distributed, free from outliers or 
leverage points and characterized by 
homoscedastic errors. Additionally, the 
values in the analytical quantity (concen- 
tration) must be practically error-free. 

Calibration 
No A Normality =~ NO Robust 
P Outlier-free 

Weighted 
Homoscedasticrty - LS ~ ~ t i ~ ~ t ~ ~ ~  

~- 
Weighted Homoscedasticrty - LS ~ ~ t i ~ ~ t ~ ~ ~  _- 

Normal Calibration 

Fig. 6 Dflerent calibration models m dependence 
on the fulfillment of c e m  mrnsncd and chemcd 
Mndmons 

From the chemical point of view, in cases where matrix effects appear and no suitable certified 
reference materials (CRM’s) are available, the calibration can be performed in the sample 
matrix itself by means of standard addition. 

7. CALIBRATION BY STANDARD ADDITIONS 

When matrix effects appear or are to be expected and matrix-matched calibration samples are 
not available, the standard addition method (SAM) can be the calibration method of choice. 
Especially in the case of environmental and biochemical systems and generally in ultra trace 
analysis, SAM is frequently used. By addition of standard solutions to the sample a similar 
behaviour of the calibration set and the sample is created provided that the analyte is added in 
the form of Same spec ies. 

The model of standard addition is based on the prerequisite that blanks do not appear or can be 
eliminated, see Eq.(9). For the initial concentration xo of the analyte in the sample under inves- 
tigation it holds 
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1 

I where yo is the measured value 
of the unspiked test sample. 
Known amounts x, of the analyte 
are added to the sample; in 
doing so it is recommendable to 
use equimolar amounts of x, in 
the range of xI = xo , x, = 2 x I  , 
..., xp =p x, (frequentlyp = 3 or 
4 is used). Therefore, some ideas 
about the initial concentration x, 
should exist. 

Li 

yo 

The standard addition (SA) 
calibration function is estima- 
ted by least squares fitting. The 
slope is obtained by 

Fig. 7 Calibration by standard addtion 

A ,  = (V,-Y,)t’x,. 

This procedure is justified if the sensitivity of the determination of the species in the sample is 
the same as of the species added: A , = Ay / A x  = y o  xo = (c - Y,) 1 xp (p is the number of 
samples with standard additions). The solution for x is given by the (SA) analytical function 
whose extrapolation for y = 0 yields 

with the confidence interval 

which is wider as compared to normal calibration (see Eq.35 divided by A .) because of the 
extrapolation to x, = - x,, The number of calibration measurements m results from mo + p * m, 
or mo + Cp mi , respectively, where m, is the number of measurements ofy,. 

When a blank appears, it must be estimated from a sufficiently large number of blank 
measurements and the measured values must be corrected in this respect. To ensure the 
adequateness of the SA calibration model, p 2 2 additions should be carried out. Only in the 
case when it is definitely known that the linear model holds true, then one single addition (m, 
times repeated) may be carried out. In general, linearity can be tested according to Eqs.(49) to 
(51). 

Although standard addition calibration is an unsafe method if linearity in the range x < xo is 
not experimentally verified but only supposed, there is scarcely an alternative when matrix 
effects are seriously suspected. 
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SUMMARY 

The hndamentals of calibration in analytical chemistry are represented. For several analytical 
methods the calibration data may have different statistical characteristics. Depending on 
whether the data are normally distributed, error-free in the independent variable (the content of 
the calibration standards), and homoscedastic, the calibration has to be carried out by means of 
normal or ordinary least squares (LS, NLS, or OLS), weighted least squares (WLS), orthogonal 
least squares (treatment of errors of both variables), or by robust calibration as shown in the 
flow chart, Fig. 6. 

In most practical cases, ordinary (Gaussian) least squares calibration may be applied. Errors in 
both variables have to be considered and, therefore, orthogonal least squares fitting has to be 
applied especially when the results of two methods have to be compared in the course of 
validation procedures. 
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