*Pure Appl. Chem.*, Vol. 72, No. 10, pp. 1851–2082, 2000. © 2000 IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ELECTROANALYTICAL CHEMISTRY\*

# POTENTIOMETRIC SELECTIVITY COEFFICIENTS OF ION-SELECTIVE ELECTRODES

## PART I. INORGANIC CATIONS

## (Technical Report)

Prepared for publication by YOSHIO UMEZAWA<sup>1</sup>, PHILIPPE BÜHLMANN<sup>1</sup>, KAYOKO UMEZAWA<sup>2</sup>, KOJI TOHDA<sup>1</sup>, AND SHIGERU AMEMIYA<sup>1</sup>

<sup>1</sup>Department of Chemistry, The University of Tokyo, Hongo, Tokyo, Japan; <sup>2</sup>Department of Chemistry, Ochanomizu University, Otsuka, Tokyo, Japan

\*Membership of the Commission during the preparation of the report (1995–1999) was as follows:

Chairman: R. P. Buck (USA, 1991–1999); Secretary: K. Tóth (Hungary, 1991–1995); S. Rondinini-Cavallari (Italy, 1995–1997); W. Kutner (Poland, 1998–1999); *Titular Members*: M. F. Camões (Portugal, 1996–1999); M. L'Her (France, 1991–1995); W. Kutner (Poland, 1996–1999); E. Lindner (Hungary, 1998–1999); S. Rondinini-Cavallari (Italy, 1992–1999); K. Stulík (Czech Republic, 1989–1997); Y. Umezawa (Japan, 1992–1999); Associate Members: A. M. Bond (Australia, 1989–1997); K. Cammann (Germany, 1989–1995); M. F. Camões (Portugal, 1987–1995); A. G. Fogg (UK, 1987–1997); L. Gorton, (Sweden, 1994–1999); W. R. Heineman (USA, 1991–1995); S. Kihara (Japan, 1992–1999); W. F. Koch (USA, 1991–1995); W. Kutner (Poland, 1989–1995); E. Lindner (Hungary, 1995–1997); R. Naumann (Germany, 1996–1999); K. W. Pratt (USA, 1996–1999); K. Stulík (Czech Republic, 1998–1999); K. E. Wang (China, 1987–1995); J. Wang (USA, 1992–1999); National Representatives: D. Bustin (Slovakia, 1994–1999); A. Covington (UK, 1988–1999); D. R. Groot (Republic of South Africa, 1994–1999); F. Kadirgan (Turkey, 1994–1997); H. Kim (Republic of Korea, 1994–1999); J-M. Kauffmann (Belgium, 1992–1999); F. Kadirgan (Turkey, 1994–1997); B. Pihlar (Slovenia, 1994–1999); P. Spitzer (Germany, 1998–1999); H. P. van Leeuwen (The Netherlands, 1994–1999); Y. Vlasov (Russia, 1996–1999).

Names of countries given after Members' names are in accordance with the *IUPAC Handbook 1998–1999* (Blackwell Science, Ltd).

Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

## Part I. Inorganic Cations

(Technical Report)

*Abstract*: Potentiometric selectivity coefficients,  $K_{A,B}^{pot}$ , have been collected for ionophore-based ion-selective electrodes (ISEs) for inorganic cations reported from 1988–1997. In addition to numerical values of  $K_{A,B}^{pot}$ , together with the methods and conditions for their determination, response slopes, linear concentration ranges, chemical compositions, and ionophore structures for the ISE membranes are tabulated.

#### INTRODUCTION

An earlier IUPAC data compilation of potentiometric selectivity coefficients,  $K_{A,B}^{pot}$ , for ion-selective electrodes (ISEs) was published in 1979 in *Pure and Applied Chemistry* [1]. It covered  $K_{A,B}^{pot}$  data reported during 1966–1977 and was later followed by another extensive compilation of such data in a handbook from CRC Press [2]. The latter covered most of the  $K_{A,B}^{pot}$  data reported during the years 1966–1988. An updated compilation reported in 1998 was limited to a number of particularly selective ionophores [3], which are lipophilic complexing agents that are incorporated into ISE membranes to selectively and reversibly bind analyte ions.

This paper presents the latest compilation of  $K_{A,B}^{pot}$  data for liquid-membrane, inorganic-cation ISEs based on neutral and charged ionophores, reported between 1989 and the end of 1997. Moreover, this new compilation also contains some older data that had not been included in the CRC handbook. The presented  $K_{A,B}^{pot}$  data are listed together with the methods and conditions for their determinations; also tabulated are response slopes, linear ranges, chemical compositions, and ionophore structures for the corresponding ISE membranes. This report constitutes the first part in a series. The second and third part, which will be published separately in forthcoming issues of *Pure and Applied Chemistry*, will cover ISEs for inorganic anions and organic ions, respectively.

### METHODS FOR THE DETERMINATION OF POTENTIOMETRIC SELECTIVITY COEFFICIENTS [4–7]

Potentiometric selectivity coefficients can be measured with different methods that fall into two main groups, namely (1) mixed solution methods, and (2) separate solution methods. The most commonly used approach is the fixed interference method, which is a mixed solution method. This method was recommended by IUPAC in 1975 [4], but other approaches have also been frequently employed. The details of the definition of each method are given below.

The potentiometric selectivity coefficients are expressed according to the Nicolsky-Eisenman equation as

$$E = E_0 + R T / (z_A F) \ln [a_A + \sum_B K_{A,B}^{\text{pot}} (a_B)^{z_A/z_B}]$$
(1)

where *E* is the measured potential;  $E_0$  is a constant that includes the standard potential of the electrode, the reference electrode potential, and the junction potential;  $z_A$  and  $z_B$  are charge numbers of the primary ion, A, and of the interfering ion, B;  $a_A$  and  $a_B$  are the activities of the primary ion, A, and the

interfering ion, B; and  $K_{A,B}^{pot}$  is the potentiometric selectivity coefficient for the primary ion A against the interfering ion, B. *R*, *T*, and *F* have the usual meanings. If  $K_{A,B}^{pot}$  is larger than 1, the ISE responds to the interfering ions more selectively than to the primary ions. In most cases,  $K_{A,B}^{pot}$  is smaller than 1, which means that such ISEs respond to the primary ions more selectively than to interfering ions.

The Nicolsky–Eisenman equation assumes a Nernstian response not only for the primary ion but also for the interfering ion. Obviously,  $K_{A,B}^{pot}$  is assumed to be constant. Several experimental methods for the determination of potentiometric selectivity coefficients are based on this equation. These methods will be explained in some detail in the following section. Notably, the Nicolsky–Eisenman equation does not correctly describe responses in the activity range in which primary and interfering ions of a different charge significantly contribute to the potential. More complex equations must be applied to describe correctly such mixed ion responses [8]. Among the four mixed solution methods, the matched potential method is unique in that it depends neither on the Nicolsky–Eisenman equation nor on any of its modifications; this method was recommended in 1995 by IUPAC as a method that gives analytically relevant practical  $K_{A,B}^{pot}$  values [6].

#### Mixed solution methods

#### Fixed interference method (FIM)

The electromotive force (emf) of a cell comprising an ion-selective electrode and a reference electrode (ISE cell) is measured for solutions of constant activity of the interfering ion,  $a_B$ , and varying activity of the primary ion,  $a_A$ . The emf values obtained are plotted vs. the logarithm of the activity of the primary ion. The intersection of the extrapolated linear portions of this plot indicates the value of  $a_A$  that is to be used to calculate  $K_{A,B}^{\text{pot}}$  from the following equation:

$$K_{A,B}^{\text{pot}} = a_A / (a_B)^{Z_A/Z_B}$$
<sup>(2)</sup>

where both  $z_A$  and  $z_B$  have the same signs, positive or negative.

#### Fixed primary ion method (FPM)

The emf of a cell comprising an ion-selective electrode and a reference electrode (ISE cell) is measured for solutions of constant activity of the primary ion,  $a_A$ , and varying activity of the interfering ion,  $a_B$ . The emf values obtained are plotted vs. the logarithm of the activity of the interfering ion. The intersection of the extrapolated linear portions of this plot indicates the value of  $a_B$  that is to be used to calculate  $K_{A,B}^{\text{pot}}$  from the following equation:

$$K_{A,B}^{\text{pot}} = a_A / (a_B)^{Z_A/Z_B}$$
(3)

#### Two solution method (TSM)

This method involves measuring potentials of a pure solution of the primary ion,  $E_A$ , and a mixed solution containing the primary and interfering ions,  $E_{A+B}$ . The potentiometric selectivity coefficient is calculated by inserting the value of the potential difference,  $\Delta E = E_{A+B} - E_A$ , into the following equation:

$$K_{A,B}^{\text{pot}} = a_{A} (e^{\Delta E \, z_{A} \, F \, / \, (R \, T)} - 1) \, / \, (a_{B})^{z_{A}/z_{B}}$$
(4)

#### Matched potential method (MPM)

This method does not depend on the Nicolsky–Eisenman equation at all. In this method, the potentiometric selectivity coefficient is defined as the activity ratio of primary and interfering ions that give the same potential change under identical conditions. At first, a known activity  $(a_A)$  of the primary ion solution is added into a reference solution that contains a fixed activity  $(a_A)$  of primary ions, and the corresponding potential change  $(\Delta E)$  is recorded. Next, a solution of an interfering ion is added to the reference solution until the same potential change ( $\Delta E$ ) is recorded. The change in potential produced at the constant background of the primary ion must be the same in both cases.

$$K_{A,B}^{\text{pot}} = (a_{A}' - a_{A}) / a_{B}$$
(5)

#### Separate solution methods

### Separate solution method $(a_A = a_B)$ (SSM)

The potential of a cell comprising an ion-selective electrode and a reference electrode is measured with two separate solutions, one containing the ion A at the activity  $a_A$  (but no B), the other one containing the ion B at the same activity  $a_A = a_B$  (but no A). If the measured values are  $E_A$  and  $E_B$ , respectively, the value of is calculated from the equation:

$$\lg K_{A,B}^{\text{pot}} = \frac{(E_{B} - E_{A}) z_{A} F}{R T \ln 10} + (1 - z_{A}/z_{B}) \lg a_{A}$$
(6)

which is equivalent to

$$K_{A,B}^{\text{pot}} = a_{A}^{(1 - z_{A}/z_{B})} e^{(E_{B} - E_{A}) z_{A} F / (R T)}$$
(7)

## Separate solution method ( $E_A = E_B$ ) [SSM ( $E_A = E_B$ )]

The loga vs E relations of an ISE for the primary and interfering ions are obtained independently. Then, the activities that correspond to the same electrode potential value are used to determine the  $K_{A,B}^{\text{pot}}$  value.

$$K_{A,B}^{\text{pot}} = a_A / (a_B)^{Z_A/Z_B}$$
(8)

#### ABBREVIATIONS

A complete list of abbreviations that are used in the following tables is given below.

| AcCh <sup>+</sup> | acetylcholine                                                  |
|-------------------|----------------------------------------------------------------|
| BBPA              | bis(1-butylpentyl) adipate                                     |
| BEHS              | bis(2-ethylhexyl) sebacate                                     |
| $c_{dl}$          | detection limit                                                |
| CHEMFET           | chemically modified field effect transistor                    |
| CP                | chloroparaffin                                                 |
| CWE               | coated wire electrode                                          |
| DBE               | dibenzyl ether                                                 |
| DBS               | dibutyl sebacate                                               |
| DBP               | dibutyl phthalate                                              |
| 2,3-DMNB          | 2,3-dimethylnitrobenzene                                       |
| DOA               | bis(2-ethylhexyl) adipate                                      |
| DOP               | <pre>bis(2-ethylhexyl) phthalate { 'dioctyl phthalate' }</pre> |
| DOPP              | dioctyl phenylphosphonate                                      |
| DOS               | bis(n-octyl) sebacate                                          |
| DPE               | diphenyl ether                                                 |
| emf               | electromotive force                                            |
| ETH 500           | tetradodecylammonium tetrakis(4-chlorophenyl)borate            |
| ETH 5373          | o-nitrophenyl dihydrophythyl ether                             |
|                   |                                                                |

| FIA                 | flow-injection analysis                                                             |
|---------------------|-------------------------------------------------------------------------------------|
| FIM                 | fixed interference method                                                           |
| FNDPE               | 2-fluorophenyl 2-nitrophenyl ether                                                  |
| FPM                 | fixed primary ion method                                                            |
| ISE                 | ion-selective electrode                                                             |
| ISFET               | ion-sensitive field effect transistor                                               |
| KTFPB               | potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate                            |
| KTmClPB             | potassium tetrakis(2-chlorophenyl)borate                                            |
| KTPB                | potassium tetraphenylborate                                                         |
| KTpClPB             | potassium tetrakis(4-chlorophenyl)borate                                            |
| M                   | mol dm <sup>-3</sup>                                                                |
| MPM                 | matched potential method                                                            |
| MSM                 | mixed solution method                                                               |
| N                   | Nernstian                                                                           |
| NaTFPB              | sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate                               |
| NaTpClPB            | sodium tetrakis(4-chlorophenyl)borate                                               |
| nN                  | near-Nernstian                                                                      |
| pNP                 | 4-nonylphenol                                                                       |
| oNPOE               | 2-nitrophenyl octyl ether                                                           |
| oNPPE               | 2-nitrophenyl phenyl ether                                                          |
| P <sub>O/W</sub>    | partition coefficient, P, of the ionophore between 1-octanol and water              |
| P <sub>TLC</sub>    | $P_{O/W}$ as estimated experimentally by use of thin-layer chromatography           |
| PVC                 | poly(vinyl chloride)                                                                |
| PVC-COOH            | poly(vinyl chloride) carboxylated                                                   |
| PVC-NH <sub>2</sub> | poly(vinyl chloride) aminated                                                       |
| r.o.o.g.            | read-out of graph (where data in original paper were in graphical rather than       |
|                     | numerical form)                                                                     |
| SSM                 | separate solution method (to be used for $a_A = a_B$ method)                        |
| SSM ( $E_A = E_B$ ) | separate solution method (to be used for $E_A = E_B$ method)                        |
| τ                   | life time                                                                           |
| t <sub>resp</sub>   | response time                                                                       |
| $t_{90}, t_{95}$    | time that elapses between the instant at which an ISE and a reference electrode are |
|                     | brought into contact with a new sample solution and the instant at which the poten- |
|                     | tial has changed to a value corresponding to 90% or 95%, respectively, of the       |
|                     | activity change                                                                     |
| TDDMA <sup>+</sup>  | tridodecylmethylammonium                                                            |
| TDDMACl             | tridodecylmethylammonium chloride                                                   |
| TEHP                | tris(2-ethylhexyl) phosphate                                                        |
| TOPO                | trioctylphosphine oxide                                                             |
| TSM                 | two solution method                                                                 |

### ACKNOWLEDGMENTS

This work was financially supported by Monbusho (Ministry of Education, Science and Culture, Japan) for Publication of Scientific Research Results. We thank Kang Ping Xiao, Noriaki Kato, Hiroshi Okuyama, Qin Hang Jin, Tsuyoshi Amano, and Yuhki Uchiya for their help in this data compilation.

### REFERENCES

1. E. Pungor, K. Tóth, A. Hrabéczy–Páll. Pure Appl. Chem. 51, 1913–1980 (1979).

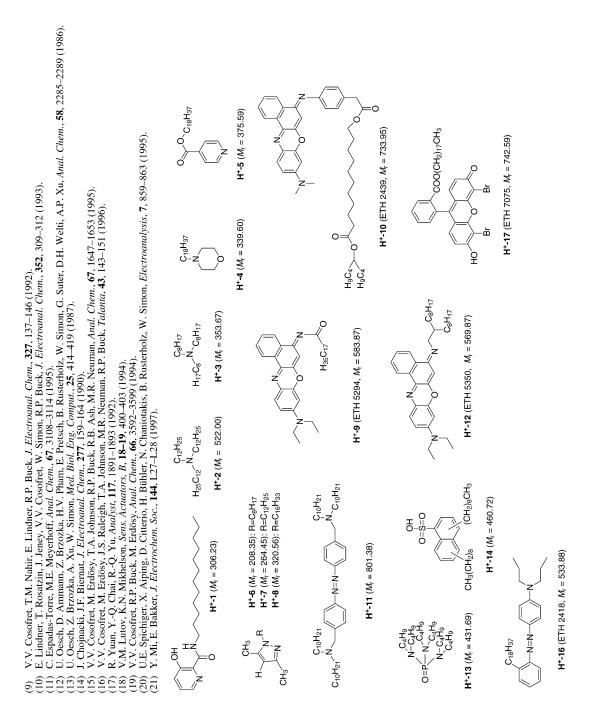
- 2. Y. Umezawa (Ed.). *Handbook of Ion-Selective Electrodes: Selectivity Coefficients*, CRC Press, Boca Raton, FL (1990).
- 3. P. Bühlmann, E. Pretsch, E. Bakker. Chem. Rev. 98, 1593–1687 (1998).
- G. G. Guilbault, R. A. Durst, M. S. Frant, H. Freiser, E. H. Hansen, T. S. Light, E. Pungor, G. Rechnitz, N. M. Rice, T. J. Rohm, W. Simon, J. D. R. Thomas. *Pure Appl. Chem.* 46, 127–132 (1976).
- 5. R. P. Buck and E. Lindner. Pure Appl. Chem. 66, 2528–2536 (1994).
- 6. Y. Umezawa, K. Umezawa, H. Sato. Pure Appl. Chem. 67, 508–518 (1995).
- 7. J. Inczédy, T. Lengyel, A. M. Ure. *Compendium of Analytical Nomenclature*, Blackwell Science, Oxford (1998).
- 8. M. Nägele, E. Bakker, E. Pretsch. Anal. Chem. 71, 1041–1048 (1999).

| ionophore | membrane<br>composition                                                                                                                                              | lgK <sub>H</sub> +,B <sup>n+</sup>                                             | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                          | remarks                             | ref.                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|-------------------------------------------------|-------------------------------------|----------------------------|
| H+-1      | <b>H+-1</b> ( <i>w</i> = 11.4 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 3.25 %),<br>BEHS ( <i>w</i> = 53.9 %), PVC ( <i>w</i> = 33.1 %)                               | Na+, -3.0; K+, -2.4;<br>Mg <sup>2+</sup> , -4.1; Ca <sup>2+</sup> , -3.8       | FIM    | Ĩ                           | 0.1                             | I                        | I                                               | I                                   | [1]                        |
| H+-2      | <b>H+-2</b> ( <i>w</i> = 1.0 %),<br>KTpCIPB ( <i>x</i> i = 63 %),<br>BEHS ( <i>w</i> = 65.6 %), PVC ( <i>w</i> = 32.8 %)                                             | Na <sup>+</sup> , -10.4; K <sup>+</sup> , -9.8;<br>Ca <sup>2+</sup> , <-11.1   | FIM    | I                           | 1.0                             | 57.8                     | 10-11.0_10-4.5                                  | 20 °C                               | [2]                        |
|           | <b>H+-2</b> ( $w = 1.0 \%$ ), DOS ( $w = 65.6 \%$ ), Na <sup>+</sup> , -10.7; K <sup>+</sup> , -10.1 PVC ( $w = 32.8 \%$ ), NaTpCIPB ( $x_1 = 65 \%$ )               | Na <sup>+</sup> , -10.7; K <sup>+</sup> , -10.1                                | FIM    | I                           | 1.0                             | 56.9                     | 10 <sup>-10.0</sup> -10 <sup>-4.0</sup>         | 25 °C                               | [3]                        |
|           | H+-2 ( $w = 4.8 \ \%$ ),<br>KTpCIPB ( $x_1 = 38 \ \%$ ),<br>silicone rubber ( $w = 90.0 \ \%$ ),<br>crosslinking agent KA-1 ( $w = 3.3 \ \%$ )                       | Na+, <-11.2;<br>K+, <-11.0; Ca <sup>2+</sup> , <-10.2                          | FIM    | I                           | $1.00 \pm 0.3$                  | 60.9                     | $3 \times 10^{-4}$ -10 <sup>-11</sup>           | 20 °C                               | [4]                        |
|           | $ \begin{array}{l} \textbf{H-2} \ (w=2.3\ \%), \ DOS \ (w=64.8\ \%), \\ \textbf{KTpCIPB} \ (v_1=53\ \%), \\ \textbf{PVC} \ (w=32.4\ \%), \end{array} $               | Na <sup>+</sup> , -10.70; K <sup>+</sup> , -10.50;<br>Ca <sup>2+</sup> , -9.90 | FIM    | I                           | I                               | I                        | I                                               | ISFET                               | [5]                        |
|           | <b>H+-2</b> ( $w = 10$ %), NaTPB ( $x_i = 11$ %),<br>PVC ( $w = 25$ %), DBS ( $w = 64$ %)                                                                            | Na <sup>+</sup> , -11.2; K <sup>+</sup> , -10.5;<br>Ca <sup>2+</sup> , <-11.3  | FIM    | I                           | 1.0                             | 58.3                     | I                                               |                                     | [9]                        |
|           | <b>H+-2</b> ( <i>w</i> = 10 %), NaTPB ( <i>x</i> <sub>1</sub> = 11 %),<br>DBS ( <i>w</i> = 64.3 %),<br>PVC-COOH ( <i>w</i> = 25 %)                                   | Na <sup>+</sup> , -11.0; K <sup>+</sup> , -10.5;<br>Ca <sup>2+</sup> , <-11.1  | FIM    | I                           | 1.0                             | 59.0                     | I                                               |                                     | [6]                        |
|           | <b>H+-2</b> ( $w = 10$ %),<br>DBS ( $w = 64.3$ %), PVC( $w = 25$ %),<br>C <sub>10</sub> H <sub>21</sub> COOH ( $x_i = 300$ %),<br>NaTPB ( $x_i = 10.7$ %)            | Na+, -11.1; K+, -10.9;<br>Ca <sup>2+</sup> , <-11.3                            | FIM    | I                           | 1.0                             | 56.4                     | I                                               |                                     | [6]                        |
|           | <b>H+-2</b> ( $w = 10$ %),<br>DBS ( $w = 64.3$ %),<br>PVC-NH <sub>2</sub> ( $w = 25$ %),<br>NaTPB ( $x_1 = 10.7$ %)                                                  | Na+, -11.0; K+, -10.7;<br>Ca <sup>2+</sup> , <-11.3                            | FIM    | 1                           | 1.0                             | 55.8                     | I                                               |                                     | [6]                        |
|           | <b>H+-2</b> ( $w = 10$ %),<br>DBS ( $w = 64.3$ %), PVC ( $w = 25$ %),<br>C <sub>18</sub> H <sub>37</sub> NH <sub>2</sub> ( $x_1 = 93$ %),<br>NaTPB ( $x_1 = 10.7$ %) | Na <sup>+</sup> , -11.0; K <sup>+</sup> , -10.9;<br>Ca <sup>2+</sup> , <-11.4  | FIM    | I                           | 1.0                             | 52.7                     | I                                               |                                     | [6]                        |
|           | <b>H</b> +-2 ( $w = 10 \%$ ),<br>NaTPB ( $x_1 = 11 \%$ ),<br>oNPOE ( $w = 89.3 \%$ )                                                                                 | Na+, -10.5; K+, -9.8;<br>Ca <sup>2+</sup> , -11.1                              | I      | I                           | I                               | 64<br>57                 | $10^{-4}$ - $10^{-6}$<br>$10^{-6}$ - $10^{-10}$ | $t_{90} = 10 \text{ s};$ microelec. | [7]                        |
|           | <b>H+-2.</b> PVC ( $w \approx 26 \%$ ),<br>DBS ( $w = 66 \%$ ), NaTPB ( $w = 0.7 \%$ )                                                                               | Na <sup>+</sup> , -11.2; K <sup>+</sup> , -10.5;<br>Ca <sup>2+</sup> , <-10.7  | FIM    | I                           | $1.0 \\ 0.055$                  | 56.6                     | $10^{-10.7} - 10^{-5.5}$                        |                                     | [8] continues on next page |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

Potentiometric selectivity coefficients of ion-selective electrodes

| (Continued)                                   |  |
|-----------------------------------------------|--|
| Table 1: H <sup>+</sup> -Selective Electrodes |  |


| e                             |                                                                                                                                                                              | lgK <sub>H</sub> +,Bn+                                                                                | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)                                                                | slope<br>(mV/<br>decade) | linear<br>range<br>(M)     | remarks                                                     | ref.      |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------|-----------------------------|------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-------------------------------------------------------------|-----------|
| H+-2<br>KTpC<br>oNPC          | $\begin{aligned} \textbf{H^+2} & (w = 1.0 \ \%), \ \text{PVC} & (w = 32.4 \ \%), \\ \text{KTpCIPB} & (x_1 = 51 \ \%), \\ \text{oNPOE} & (w = 66.0 \ \%) \end{aligned}$       | Na <sup>+</sup> , -10.4; K <sup>+</sup> , -9.8;<br>Ca <sup>2+</sup> , <-11.1                          | FIM    | I                           | I                                                                                              | I                        | I                          |                                                             | [6]       |
| H+-2<br>oNP(<br>KTp(          | <b>H+-2</b> ( $w = 1.0$ %), PVC ( $w = 32.4$ %),<br>oNPOE ( $w = 66.0$ %),<br>KTpCIPB ( $x_i = 70$ %)                                                                        | Li <sup>+</sup> , <-10.8; Na <sup>+</sup> , -10.4;<br>K <sup>+</sup> , -9.8; Ca <sup>2+</sup> , -11.1 | I      | I                           | I                                                                                              | 57.4                     | 10-12-10-5                 |                                                             | [10]      |
| H+-2<br>KTp6<br>aliph:        | <b>H</b> + <b>2</b> ( $w = 1.5$ %), DOS ( $w = 8.0$ %), KTpCIPB ( $x_1 = 49$ %), aliphatic polyurethane ( $w = 89.8$ %)                                                      | $Na^+, -9.1; K^+, -9.3; Ca^{2+}, -9.1$                                                                | FIM    | I                           | Na <sup>+</sup> , 0.140; 58.6<br>K <sup>+</sup> , 0.200; $\pm 1.0$<br>Ca <sup>2+</sup> , 0.100 | ± 58.6 ± 1.0             | 10-6.5-10-8.0              | $c_{\rm dl} = 10^{-10.0} \text{ M};$<br>22.0 ± 1.0 °C       | [11]      |
| H+-2<br>KTp<br>aliph<br>coate | <b>H+2</b> ( $w = 1.5$ %), DOS ( $w = 8.0$ %), <b>KTpCIPB</b> ( $x_1 = 49$ %), aliphatic polyurethane ( $w = 89.8$ %), coated with poly(ethylene oxide)                      | Na+, -9.0; K+, -9.1;<br>Ca <sup>2+</sup> , -9.1                                                       | FIM    | I                           | Na <sup>+</sup> , 0.140; 55.8<br>K <sup>+</sup> , 0.200; $\pm 1.9$<br>Ca <sup>2+</sup> , 0.100 | 55.8<br>±1.9             | 10-6.5-10-8.0              | c <sub>dl</sub> =<br>10 <sup>-9.9</sup> M;<br>22.0 ± 1.0 °C | [11]      |
| H+-2<br>KTp<br>aliph<br>Plur  | <b>H+2</b> ( $w = 1.5$ %), DOS ( $w = 8.0$ %),<br>KTpCIPB ( $x_1 = 49$ %),<br>aliphatic polyurethane ( $w = 79.8$ %),<br>Pluronic F108 ( $w = 10.0$ %)                       | Na <sup>+</sup> , -8.5; K <sup>+</sup> , -8.6;<br>Ca <sup>2+</sup> , -8.9                             | FIM    | I                           | Na <sup>+</sup> , 0.140; 53.9<br>K <sup>+</sup> , 0.200; $\pm$ 0.7<br>Ca <sup>2+</sup> , 0.100 | 53.9<br>± 0.7            | 10-6.5-10-8.0              | c <sub>dl</sub> =<br>10 <sup>-9.4</sup> M;<br>22.0 ± 1.0 °C | [11]      |
| H+-3<br>BEH                   | BEHS ( $w = 1.0 \%$ ),<br>BEHS ( $w = 65.6 \%$ ), PVC ( $w = 32.8 \%$ )                                                                                                      | Na+, -10.1; K+, -9.6                                                                                  | FIM    | I                           | 1.0                                                                                            | 58.0                     | $10^{-9.5} - 10^{-4.5}$    | 25 °C                                                       | [3]       |
| H+-3<br>BEH<br>NaTJ           | $\begin{array}{l} \textbf{H^{+.3}} & (w = 1.0 \ \%), \ \text{PVC} & (w = 32.8 \ \%), \\ \textbf{BEHS} & (w = 65.6 \ \%), \\ \textbf{NaTpCIPB} & (x_i = 37 \ \%) \end{array}$ | PVC (w = 32.8 %), Na <sup>+</sup> , -10.7; K <sup>+</sup> , -10.1<br>),<br><sup>7</sup> %)            | FIM    | I                           | 1.0                                                                                            | 56.9                     | $10^{-10.0}$ – $10^{-4.0}$ | 25 °C                                                       | [3]       |
| H+-3<br>BEH<br>KTp            | <b>H+.3</b> ( <i>w</i> = 1.0 %), PVC ( <i>w</i> = 32.8 %), Na <sup>+</sup> , -11.1; K <sup>+</sup> , -10.7<br>BEHS ( <i>w</i> = 65.6 %),<br>KTpCIPB ( $x_1 = 36$ %)          | Na <sup>+</sup> , -11.1; K <sup>+</sup> , -10.7                                                       | FIM    | I                           | 1.0                                                                                            | 59.9                     | 10-11.0_10-4.0             | 25 °C                                                       | [3]       |
| H+-4<br>KTp<br>oNP            | H+4 (w = 1 %), PVC (w = 30 %),<br>KTpcIPB ( $x_i \approx 70$ %),<br>oNPOE (w = 69 %)                                                                                         | Li+, <-11.2; Na+, -10.5;<br>K+, -9.4                                                                  | FIM    |                             | Li <sup>+</sup> , 0.06;<br>Na <sup>+</sup> , 0.14;<br>K <sup>+</sup> , 0.20                    | 1                        | I                          | 20 °C; [<br>lg <i>P</i> <sub>TLC</sub> = 13.8               | [12]<br>8 |
| H+-5<br>KTp                   | <b>H+5</b> ( <i>w</i> = 1 %), PVC ( <i>w</i> = 30 %),<br><b>KTpCIPB</b> ( $x_i \approx 70 \%$ ),<br>oNPOE ( <i>w</i> = 69 %)                                                 | Li+, -6.9 ; Na+, -5.6;                                                                                | FIM    | I                           | I                                                                                              | I                        | I                          | 20 °C; [<br>lg <i>P</i> TLC = 15.2                          | [12]      |
| H+-5<br>oNP(<br>KTp(          | <b>H+5</b> ( $w = 1$ %),<br>oNPOE ( $w = 68$ %), PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 76$ %)                                                                               | Li+, -6.9; Na+, -5.6;<br>K+, -4.4                                                                     | FIM    | I                           | Li <sup>+</sup> , 0.06;<br>Na <sup>+</sup> , 0.14;<br>K <sup>+</sup> , 0.20                    | I                        | I                          | 20 °C;<br>microelec.                                        | [13]      |
| H+-6<br>oNPo<br>PVC           | <b>H</b> +6 ( $w = 6$ %), KTPB ( $x_i = 29$ %),<br>oNPOE ( $w = 54.9$ %),<br>PVC ( $w = 36.1$ %)                                                                             | Na <sup>+</sup> , -8.55; K <sup>+</sup> , -8.40;<br>Ca <sup>2+</sup> , -9.45                          | FIM    | I                           | 0.1                                                                                            | I                        | 10-8.5-10-1.6              | 20 °C                                                       | [14]      |

| ionophore    | membrane<br>composition                                                                                                                                                                                         | $\lg K_{\mathrm{H^+,B^{n+}}}$                                                                           | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)                                                                                            | slope<br>(mV/<br>decade) | linear<br>range<br>(M)              | remarks                                                           | ref.    |                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|-------------------------------------------------------------------|---------|------------------------|
| <b>1</b> +−7 | <b>H+-7</b> ( $w = 6$ %), KTPB ( $x_i = 37$ %),<br>oNPOE ( $w = 54.9$ %),<br>PVC ( $w = 36.1$ %)                                                                                                                | Na+, -8.50; K+, -8.25;<br>Ca <sup>2+</sup> , -9.50                                                      | FIM    | I                           | 0.1                                                                                                                        | I                        | 10-8.5-10-1.6                       | 20 °C                                                             | [14]    |                        |
| 8-+H         | <b>H+-8</b> ( $w = 6$ %), KTPB ( $x_i = 45$ %),<br>oNPOE ( $w = 54.9$ %),<br>PVC ( $w = 36.1$ %)                                                                                                                | Na <sup>+</sup> , -8.45; K <sup>+</sup> , -8.40;<br>Ca <sup>2+</sup> , -9.45                            | FIM    | I                           | 0.1                                                                                                                        | I                        | 10-8.5-10-1.6                       | 20 °C                                                             | [14]    |                        |
| 6-+H         | <b>H+-9</b> ( $w = 1.0$ %), PVC ( $w = 32.4$ %),<br>KTpCIPB ( $x_i = 51$ %),<br>oNPOE ( $w = 66.0$ %)                                                                                                           | Li+, <-10.8; Na+, -10.9;<br>K+, -10.5; Ca <sup>2+</sup> , <-11.2                                        | FIM    | I                           | 1                                                                                                                          | 58.2                     | 10 <sup>-12</sup> -10 <sup>-4</sup> | $t_{\rm resp} < 10 \ {\rm s}$                                     | [6]     |                        |
|              | <b>H+-9</b> ( $w = 1.0 \%$ ), PVC ( $w = 32.4 \%$ ),<br>oNPOE ( $w = 66.0 \%$ ),<br>KTpCIPB ( $x_1 = 70 \%$ )                                                                                                   | Li+, <-10.8; Na+, -10.9;<br>K+, -10.5; Ca <sup>2+</sup> , <-11.2                                        | I      | I                           | I                                                                                                                          | 58.2                     | 10-12-10-4                          |                                                                   | [10]    |                        |
|              | H+-9 ,<br>PVC-NH2,<br>oNPOE<br>(weight ratio not reported)                                                                                                                                                      | Li <sup>+</sup> , <-10.9; Na <sup>+</sup> , -11.1;<br>K <sup>+</sup> , -10.5; Ca <sup>2+</sup> , -11.2  | FIM    | I                           | Li <sup>+</sup> , 0.060; 58.9<br>Na <sup>+</sup> , 0.140; $\pm$ 0.2<br>K <sup>+</sup> , 0.200;<br>Ca <sup>2+</sup> , 0.150 | 58.9<br>± 0.2            | 10-4-10-12                          | <i>c</i> <sub>dl</sub> <<br>10 <sup>−12</sup> M;<br>22.5 ± 0.5 °C | [15]    |                        |
|              | <b>H+-9</b> ( $w = 2$ %), oNPOE ( $w = 64.7$ %), Li <sup>+</sup> , -10.7; Na <sup>+</sup> , -10.6; <b>KTpCIPB</b> ( $x_1 = 49$ %), <b>K</b> <sup>+</sup> , -10.6         aliphatic polyurethane ( $w = 32.3$ %) | Li <sup>+</sup> , -10.7; Na <sup>+</sup> , -10.6;<br>K <sup>+</sup> , -10.6                             | FIM    | I                           | Li <sup>+</sup> , 0.060; 1<br>Na <sup>+</sup> , 0.140;<br>K <sup>+</sup> , 0.200                                           | 58.1                     | 10 <sup>-4</sup> -10 <sup>-11</sup> | 25.0<br>± 0.5 °C                                                  | [16]    |                        |
|              | <b>H+-9</b> ( $w = 2$ %), BEHS ( $w = 64.7$ %),<br>KTpCIPB ( $x_i = 49$ %),<br>aliphatic polyurethane ( $w = 32.3$ %)                                                                                           | Li <sup>+</sup> , -10.2; Na <sup>+</sup> , -10.4;<br>K <sup>+</sup> , -10.4                             | FIM    | I                           | Li <sup>+</sup> , 0.060; 1<br>Na <sup>+</sup> , 0.140;<br>K <sup>+</sup> , 0.200                                           | 57.8                     | 10-11_10-4                          | 25.0<br>± 0.5 °C                                                  | [16]    |                        |
| 01-+H        | <b>H+-10</b> $(w = 1.0 \%)$ ,<br><b>KTpCIPB</b> $(x_i = 51 \%)$ ,<br>oNPOE $(w = 66.0 \%)$ ,<br>PVC $(w = 32.4 \%)$                                                                                             | Li <sup>+</sup> , -9.3; Na <sup>+</sup> , -8.8;<br>K <sup>+</sup> , -7.4; Ca <sup>2+</sup> , -9.9       | FIM    | I                           | 1                                                                                                                          | 59.1                     | 10-10.5-10-2                        | $t_{\rm resp} < 10 \ {\rm s}$                                     | [6]     |                        |
|              | <b>H+-10</b> ( $w = 1.0$ %),<br>oNPOE ( $w = 66.0$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>PVC ( $w = 32.4$ %)                                                                                                       | Li <sup>+</sup> , -9.3; Na <sup>+</sup> , -8.8;<br>K <sup>+</sup> , -7.4; Ca <sup>2+</sup> , -9.9       | I      | I                           | 1                                                                                                                          | 59.1                     | 10-10.5_10-2                        |                                                                   | [10]    |                        |
| H+-11        | <b>H</b> +11 ( $w = 2.5$ %), PVC ( $w = 30$ %),<br>KTmCIPB ( $x_1 = 65$ %),<br>oNPOE ( $w = 66.5$ %)                                                                                                            | Li <sup>+</sup> , <-12.4; Na <sup>+</sup> , -12.3;<br>K <sup>+</sup> , -10.8; Ca <sup>2+</sup> , <-11.7 | FIM    | I                           | 1.0                                                                                                                        | 57.4                     | 10-13.2_10-1.7                      | τ> 30 d                                                           | [17]    |                        |
| H+-12        | <b>H+12</b> $(w = 1.0 \%)$ ,<br>oNPOE $(w = 66.0 \%)$ ,<br>PVC $(w = 32.4 \%)$ ,<br>PVC $(w = 37.4 \%)$ ,                                                                                                       | Li <sup>+</sup> , <-10.8; Na <sup>+</sup> , <-11;<br>K <sup>+</sup> , <-11; Ca <sup>2+</sup> , <-11.2   | I      | I                           | 1                                                                                                                          | 57.7                     | 10-12-10-4                          |                                                                   | [10]    |                        |
|              | <b>KI</b> pcIPB ( $x_i = /0 \%$ )                                                                                                                                                                               |                                                                                                         |        |                             |                                                                                                                            |                          |                                     |                                                                   | continu | continues on next page |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| (Continued)                                   |  |
|-----------------------------------------------|--|
| Table 1: H <sup>+</sup> -Selective Electrodes |  |

|                                            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                         |                                                                |                                                            |                          |                                       |                                                             |      |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|--------------------------|---------------------------------------|-------------------------------------------------------------|------|
| ionophore                                  | membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lgK <sub>H</sub> +,Bn+                                                                                                                                                                                                                                                                                                                                                | method                                                                                                  | primary<br>ion conc.<br>(M)                                    | interfering<br>ion conc.<br>(M)                            | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                | remarks                                                     | ref. |
| H+-13                                      | <b>H+-13</b> (0.7M),<br>KTpCIPB (0.001 M),<br>PVC and DOP (1:3 by weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Li <sup>+</sup> , -5.3; Na <sup>+</sup> , -5.3;<br>K <sup>+</sup> , -6.2; Cu <sup>2+</sup> , -5.0;<br>NH <sub>4</sub> <sup>+</sup> , -4.7                                                                                                                                                                                                                             | SSM,<br>MSM                                                                                             | I                                                              | I                                                          | I                        | 10-e- 1                               |                                                             | [18] |
| H+-14                                      | <b>H</b> +-14 ( $w = 2.5 \%$ ),<br>PVC-COOH ( $w = 32.5 \%$ ),<br>oNPOE ( $w = 65.0 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Li <sup>+</sup> , -1.77; Na <sup>+</sup> , -1.38;<br>K <sup>+</sup> , -0.19; NH <sub>4</sub> <sup>+</sup> , -0.52;<br>Ca <sup>2+</sup> , -1.36                                                                                                                                                                                                                        | SSM                                                                                                     | 0.1                                                            | 0.1                                                        | 59.2                     | I                                     | 22.5<br>± 0.5 °C                                            | [19] |
| H+-15                                      | PVC-COOH $(w = 33.3 \%)$ ,<br>oNPOE $(w = 66.7 \%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Li <sup>+</sup> , -1.56; Na <sup>+</sup> , -1.32;<br>K <sup>+</sup> , -1.13; NH <sub>4</sub> <sup>+</sup> , -1.13;<br>Ca <sup>2+</sup> , -1.46                                                                                                                                                                                                                        | SSM                                                                                                     | 0.1                                                            | 0.1                                                        | 63.6                     | 10 <sup>-5</sup> -10 <sup>-2</sup>    | 22.5<br>± 0.5 °C                                            | [19] |
|                                            | PVC-COOH ( $w = 33.3 \%$ ),<br>BEHS ( $w = 66.7 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Li <sup>+</sup> , -1.08; Na <sup>+</sup> , -0.79;<br>K <sup>+</sup> , -0.33; NH <sub>4</sub> <sup>+</sup> , -0.46;<br>Ca <sup>2+</sup> , -2.13                                                                                                                                                                                                                        | SSM                                                                                                     | 0.1                                                            | 0.1                                                        | 54.3                     | 10-5-10-2                             | 22.5<br>± 0.5 °C                                            | [19] |
|                                            | TDABr ( $w = 0.3 \%$ ),<br>PVC-COOH ( $w = 33.2 \%$ ),<br>oNPOE ( $w = 66.5 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Na+, -1.81; K+, -1.62;<br>NH4 <sup>+</sup> , -1.58                                                                                                                                                                                                                                                                                                                    | SSM                                                                                                     | 0.1                                                            | 0.1                                                        | I                        | I                                     | 22.5<br>± 0.5 °C                                            | [19] |
| H+-16                                      | <b>H+-16</b> ( $w = 8.7 \%$ ),<br><b>KTpcIPB</b> ( $x_i = 12.0 \%$ ),<br>oNPOE ( $w = 36.1 \%$ ), CP ( $w = 18.2 \%$ )<br>PVC ( $w = 36.2 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Na <sup>+</sup> , -8.0; K <sup>+</sup> , -7.4;<br>Ca <sup>2+</sup> , <-7.8                                                                                                                                                                                                                                                                                            | I                                                                                                       | 1                                                              | I                                                          | I                        | 10 <sup>-10</sup> -10 <sup>-1</sup>   | $t_{\text{resp}} < 10 \text{ s};$<br>$\tau > 135 \text{ d}$ | [20] |
| H+-17                                      | <b>H+-17</b> (9.6 mmol/kg),<br>TDDMACI (x <sub>i</sub> = 50 %),<br>PVC and oNPOE (1:2 by weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K <sup>+</sup> , -8.3                                                                                                                                                                                                                                                                                                                                                 | FIM                                                                                                     | 1                                                              | 0.77                                                       | 58.5                     | 10 <sup>-10</sup> -10 <sup>-3.5</sup> |                                                             | [21] |
|                                            | <b>H+-17</b> (9.6 mmol/kg),<br>KTpCIPB (xi = 50 %),<br>PVC and oNPOE (1:2 by weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K <sup>+</sup> , -1.5                                                                                                                                                                                                                                                                                                                                                 | FIM                                                                                                     | I                                                              | 0.77                                                       | I                        | >10-3                                 |                                                             | [21] |
| H+-18                                      | aliphatic polyurethane ( $w = 33.3 \%$ ),<br>oNPOE ( $w = 66.7 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Li <sup>+</sup> , -2.19; Na <sup>+</sup> , -2.08;<br>K <sup>+</sup> , -1.95; NH4 <sup>+</sup> , -2.04;<br>Ca <sup>2+</sup> , -2.47                                                                                                                                                                                                                                    | WSS                                                                                                     | 10-3                                                           | 10-3                                                       | 43.3                     | 10-5-10-3                             | 25.0<br>± 0.5 °C                                            | [16] |
| (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2 | <ul> <li>D. Eme, K. V. Schenker, D. Ammann, E. Pretsch, W. Simon, <i>Chimia</i>, <b>35</b>, 178–179 (1981).</li> <li>P. Schulthess, Y. Shijo, H.V. Pham, E. Pretsch, D. Ammann, W. Simon, <i>Anal. Chim. Acta</i>, <b>131</b>, 111–116 (1981).</li> <li>C. Hongbo, E.H. Hansen, J. Ruzicka, <i>Anal. Chim. Acta</i>, <b>169</b>, 209–220 (1985).</li> <li>I. A. Mostert, P. Anker, HB. Jenny, U. Osech, W.E. Morf, D. Ammann, W. Simon, <i>Mikrochim. Acta</i>, <b>1</b>, 33–38 (1985).</li> <li>N. Oyama, T. Hirokawa, S. Yamaguchi, N. Ushizawa, T. Shimomura, <i>Anal. Chem.</i>, <b>59</b>, 258–262 (1987).</li> <li>S.C. Ma, N.A. Chaniotakis, M.E. Meyerhoff, <i>Anal. Chem.</i>, <b>60</b>, 2293–2299 (1988).</li> <li>D. De Beer, J.C. Van Den Heuvel, <i>Anal. Chim. Acta</i>, <b>133</b>, 259–265 (1988).</li> <li>S.C. Ma, M.E. Meyerhoff, <i>Mikrochim. Acta</i>, <b>1</b>, 197–208 (1990).</li> </ul> | <ul> <li>kih, W. Simon, <i>Chimia</i>, <b>35</b>,</li> <li>J. D. Ammann, W. Simon, <i>J. M. Atta</i>, <b>169</b>, 209–220 (1971)</li> <li><i>im. Acta</i>, <b>169</b>, 209–220 (1981)</li> <li><i>im. W.E. Morf. D. Ammann, An Anal. Chem.</i>, <b>60</b>, 2293–229</li> <li><i>A. Acta</i>, <b>213</b>, 259–265 (1988)</li> <li><b>J.</b> 197–208 (1990).</li> </ul> | 178–179 (1<br>4 <i>nal. Chim.</i><br>885).<br>W. Simon,<br>W. Simon,<br><i>al. Chem.</i> ,<br>9 (1988). | 981).<br>Acta, <b>131</b> ,<br>Mikrochim<br><b>59</b> , 258–26 | 111–116 (19<br>. <i>Acta</i> , <b>I</b> , 33-<br>2 (1987). | 81).<br>-38 (1985).      |                                       |                                                             |      |



| odes |
|------|
| ÷.   |
| ĕ    |
| Ξ    |
| ve   |
| Ë    |
| ĕ    |
| Se   |
| Ť.   |
| Ë    |
|      |
| S.   |
| e le |
|      |

| ionophore | membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lgKLi+,Bn+                                                                                                                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks               | ref. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------|------|
| I'+-1     | <b>Li+-1</b> ( $w = 1$ %), oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} Na^{+}, -0.4;  K^{+}, -0.4;  Rb^{+}, -1.0; \\ Cs^{+}, -0.6;  NH4^{+}, -0.2; \\ Mg^{2+}, -0.8;  Ca^{2+}, -0.8; \\ Sr^{2+}, -0.7;  Ba^{2+}, -0.7 \end{array}$                                                                                          | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
| Li+-2     | <b>Li+2</b> ( $w = 1$ %), oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Na <sup>+</sup> , -2.1; K <sup>+</sup> , -2.2; Rb <sup>+</sup> , -2.3;<br>Cs <sup>+</sup> , -2.3; NH <sub>4</sub> <sup>+</sup> , -2.2; H <sup>+</sup> , +0.8;<br>Mg <sup>2+</sup> , -3.5; Ca <sup>2+</sup> , -2.8;<br>Sr <sup>2+</sup> , -3.1; Ba <sup>2+</sup> , -3.0 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|           | $ \begin{array}{l} \textbf{Li+2} \ (w=1-1,4\ \%), \ \textbf{PVC} \ (w=33\ \%), \ \textbf{Na}^+, -2.2; \ \textbf{K}^+, -2.2; \ \textbf{Rb}^+, -2.2; \\ \textbf{onPOE} \ (w=65.6\ \%), \\ \textbf{OPDE} \ (w=65.6\ \%), \\ \textbf{Mg}^{2+}, -2.1; \ \textbf{NH}_4^+, -2.2; \ \textbf{H}^+, +0.0; \\ \textbf{Mg}^{2+}, -3.0; \ \textbf{Ca}^{2+}, -1.8; \\ \textbf{KTpCIPB} \ (x_i=30\ \%) \\ \textbf{Sr}^{2+}, -1.9; \ \textbf{Ba}^{2+}, -1.8 \\ \textbf{Sr}^{2+}, -1.9; \ \textbf{Sr}^{2+}, -1.8 \\ \textbf{Sr}^{2+}, -1.9; \ \textbf{Sr}^{2+}, -1.9; \textbf{Sr}^{2+}, -1.9; \$ | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -2.2; R <sup>+</sup> , -2.2;<br>Cs <sup>+</sup> , -2.1; NH <sub>4</sub> <sup>+</sup> , -2.2; H <sup>+</sup> , +0.9;<br>Mg <sup>2+</sup> , -3.0; Ca <sup>2+</sup> , -1.8;<br>Sr <sup>2+</sup> , -1.9; Ba <sup>2+</sup> , -1.8  | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
|           | Li+-2 ( $w = 1.4 \%$ ), PVC ( $w = 33 \%$ ),<br>oNPOE ( $w = 65.6 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Na^+, -2.0; K^+, -2.2; Mg^{2+}, -3.8; Ca^{2+}, -2.6$                                                                                                                                                                                                                  | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
|           | Li+-2 ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_i = 20$ %), PVC ( $w \approx 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -2.2;<br>Mg <sup>2+</sup> , -3.4; Ca <sup>2+</sup> , -1.9                                                                                                                                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
|           | Li <sup>+</sup> -2 ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_i = 33$ %), PVC ( $w \approx 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Na+, -2.3; K+, -2.2;<br>Mg <sup>2+</sup> , -2.9; Ca <sup>2+</sup> , -1.7                                                                                                                                                                                               | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
|           | Li <sup>+</sup> -2 ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_i = 40$ %), PVC ( $w \approx 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -2.0;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -1.5                                                                                                                                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
|           | Li+-2 ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_1 = 45$ %), PVC ( $w \approx 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Na+, -2.0; K+, -1.8;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -1.3                                                                                                                                                                                               | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|           | Li+-2 ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_1 = 50$ %), PVC ( $w \approx 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Na <sup>+</sup> , +0.3; K <sup>+</sup> , +1.2;<br>Mg <sup>2+</sup> , -0.7; Ca <sup>2+</sup> , +0.5                                                                                                                                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|           | Li+2 ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_1 = 66$ %), PVC ( $w \approx 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Na <sup>+</sup> , +0.6; K <sup>+</sup> , +1.4;<br>Mg <sup>2+</sup> , -0.2; Ca <sup>2+</sup> , +0.8                                                                                                                                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|           | <b>Li+2</b> ( $w = 1$ %),<br>oNPOE ( $w \approx 65.6$ %),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Na^+, +0.6; K^+, +1.6; Mg^{2+}, +0.2; Ca^{2+}, +1.2$                                                                                                                                                                                                                  | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |

| nonquinu | membrane<br>composition                                                                                                | lgKLj+,Bn+                                                                                                                                                                       | method | primary<br>ion conc<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks               | ref. |
|----------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------|------|
|          | KTpCIPB ( $x_i = 85\%$ ), PVC ( $w \approx 33\%$ )                                                                     |                                                                                                                                                                                  |        |                            |                                                       |                          |                        |                       |      |
|          | Li <sup>+</sup> -2 ( $w = 1$ %), PVC ( $w \approx 33$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_1 = 100$ %)  | Na+, +0.6; K+, +1.8;<br>Mg <sup>2+</sup> , +0.6; Ca <sup>2+</sup> , +1.4                                                                                                         | SSM    | 0.1                        | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|          | Li <sup>+</sup> -2 ( $w = 1$ %), PVC ( $w \approx 33$ %),<br>oNPOE ( $w \approx 65.6$ %),<br>KTpCIPB ( $x_i = 120$ %)  | Na+, +0.6; K+, +1.7;<br>Mg <sup>2+</sup> , +0.3; Ca <sup>2+</sup> , +1.6                                                                                                         | SSM    | 0.1                        | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
|          | L <sub>1</sub> +.2 ( $w = 1-2$ %),<br>oNPOE ( $w = 64-66$ %),<br>KTpCIPB ( $\kappa_1 = 20$ %),<br>PVC ( $w = 31-33$ %) | Na+, -2.1; K+, -2.2;<br>Mg <sup>2+</sup> , -3.0; Ca <sup>2+</sup> , -1.8                                                                                                         | SSM    | 0.1                        | 0.1                                                   | I                        | I                      | 21 ± 1 °C             | [2]  |
| Li+-3    | <b>Li+.3</b> ( $w = 1$ %), oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %)                                                   | $\begin{array}{l} Na^+, -1.6;  K^+, -1.7;  Rb^+, -2.2;\\ Cs^+, -2.2;  NH4^+, -2.0;  H^+, +1.1;\\ Mg^{2+}, -3.2;  Ca^{2+}, -3.1;\\ Sr^{2+}, -3.2;  Ba^{2+}, -3.0 \end{array}$     | SSM    | 0.1                        | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|          | Li <sup>+</sup> -3 ( $w = 1$ %), PVC ( $w = 33$ %),<br>oNPOE ( $w = 65.6$ %),<br>KTpCIPB ( $x_i = 30$ %)               | $\begin{array}{l} Na^+, -1.3;  K^+, -1.4;  Rb^+, -1.7; \\ Cs^+, -1.6;  NH_4^+, -1.6;  H^+, +2.2; \\ Mg^{2+}, -3.3;  Ca^{2+}, -2.6; \\ Sr^{2+}, -2.8;  Ba^{2+}, -2.5 \end{array}$ | SSM    | 0.1                        | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
| Li+-4    | $Li^{+}4$ ( <i>w</i> = 1 %), oNPOE ( <i>w</i> = 66 %),<br>PVC ( <i>w</i> = 33 %)                                       | $\begin{array}{l} Na^+, -2.3;  K^+, -2.4;  Rb^+, -2.4; \\ Cs^+, -2.5;  NH4^+, -2.4;  H^+, +0.6; \\ Mg^{2+}, -3.8;  Ca^{2+}, -3.2; \\ Sr^{2+}, -3.6;  Ba^{2+}, -3.4 \end{array}$  | SSM    | 0.1                        | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|          | $L^{j+-4}$ ( $w = 1$ %),<br>oNPOE ( $w = 65.6$ %),<br>KTpCIPB ( $x_i = 30$ %),<br>PVC ( $w = 33$ %)                    | $\begin{array}{l} Na^+, -2.3;  K^+, -2.6;  Rb^+, -2.8; \\ Cs^+, -2.8;  NH_4^+, -2.5;  H^+, +1.1; \\ Mg^{2+}, -4.0;  Ca^{2+}, -2.8; \\ Sr^{2+}, -2.9;  Ba^{2+}, -2.8 \end{array}$ | SSM    | 0.1                        | 0.1                                                   | 57                       | $10^{-4}$ $-10^{-1}$   | 20–22 °C;<br>r.o.o.g. | [1]  |
|          |                                                                                                                        | Na+, -2.5                                                                                                                                                                        | FIM    | I                          | 0.14                                                  |                          |                        |                       |      |
|          | $L_{i}+4$ ( $w = 1-2$ %),<br>oNPOE ( $w = 64-66$ %),<br>KTpCIPB ( $x_{i} = 20$ %),<br>PVC ( $w = 31-33$ %)             | Na <sup>+</sup> , -2.3; K <sup>+</sup> , -2.6;<br>Mg <sup>2+</sup> , -4.0; Ca <sup>2+</sup> , -2.7                                                                               | SSM    | 0.1                        | 0.1                                                   | I                        | 1                      | 21 ± 1 °C             | [2]  |
|          | <b>Li+-4</b> ( $w = 1.2 \%$ ),<br>outpote ( $w = 45.8 \%$ )                                                            | $Na^+$ , -2.3; K <sup>+</sup> , -2.6; NH <sub>4</sub> <sup>+</sup> , -2.6;                                                                                                       | MPM    | I                          | $\Delta c_{\rm B}=0.1$                                | 57.7                     | I                      | artificial            | [3]  |

continues on next page

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 2: Li <sup>+</sup> -Selective Electrodes |  |

| ionophore               | membrane<br>composition                                                                                                                                                                               | $\lg K_{Li}$ +,Bn+                                                                                                                                                                                                                                                             | method      | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                          | ref.                       |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------------------|--------------------------|------------------------|------------------------------------------------------------------|----------------------------|
|                         | KTpCIPB ( $x_i = 26 %$ ),<br>PVC ( $w = 33 %$ )                                                                                                                                                       | 1                                                                                                                                                                                                                                                                              |             |                             |                                 |                          |                        | background <sup>†</sup> ;<br>$c_{\rm dl} = 10^{-5.23} \rm M$     |                            |
|                         | Li <sup>+</sup> -4 ( $w = 1.4 \%$ ),<br>oNPOE ( $w = 66 \%$ ),<br>KTpCIPB ( $x_1 = 50 \%$ ),                                                                                                          | Na <sup>+</sup> , -1.89; K <sup>+</sup> , -2.00; Rb <sup>+</sup> , -1.92; SSM<br>Cs <sup>+</sup> , -1.74; Mg <sup>2+</sup> , -2.59;<br>Ca <sup>2+</sup> , -2.07; Sr <sup>2+</sup> , -2.10                                                                                      | SSM         | 0.1                         | 0.1                             | I                        | I                      |                                                                  | [4]                        |
|                         | PVC ( $w = 33\%$ )                                                                                                                                                                                    | $ \begin{array}{lll} Na^+, -1.96; \ K^+, -2.37; \ Rb^+, -2.17; \ \ MPM \\ Cs^+, -2.24; \ Mg^{2+}, <-3.70; \\ Ca^{2+}, -2.05; \ Sr^{2+}, -2.08 \end{array} $                                                                                                                    | MPM         | I                           | $\Delta c_{\rm B} = 0.1$        |                          |                        | calculated from<br>the formula:<br>$K_{A,B} = c_A/c_B^{(1/z_B)}$ | om $f_{(1/z_B)}$           |
|                         | <b>Li<sup>+</sup>-4</b> ( $w = 1.4 \%$ ),<br>o-nitrophenyl pentyl ether ( $w = 66 \%$ ),<br>KTpCIPB ( $x_i = 50 \%$ ),                                                                                | Na+, -1.70; K+, -1.82; Rb+, -1.66;<br>Cs+, -1.43; Mg <sup>2+</sup> , -1.89;<br>Ca <sup>2+</sup> , -1.42; Sr <sup>2+</sup> , -1.14                                                                                                                                              | SSM         | 0.1                         | 0.1                             | I                        | I                      |                                                                  | [4]                        |
|                         | PVC ( $w = 33  \%$ )                                                                                                                                                                                  | $ \begin{array}{l} Na^+, -1.70; \ K^+, -1.89; \ Rb^+, -1.85; \ MPM\\ Cs^+, -1.80; \ Mg^{2+}, -2.85;\\ Ca^{2+}, -1.34; \ Sr^{2+}, -1.49 \end{array} $                                                                                                                           | MPM         | I                           | $\Delta c_{\rm B} = 0.1$        |                          |                        | calculated from<br>the formula:<br>$K_{A,B} = c_A/c_B^{(1/2_B)}$ | om<br>( <sup>(1/z_B)</sup> |
| Li+-5                   | Li+5 ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),<br>KTpCIPB ( $x_1 = 55.6 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                                                           | $\begin{array}{l} Na^+, -1.8;  K+, -1.7;  Rb^+, -1.9; \\ Cs^+, -1.9;  H^+, -3.2 \\ NH_4^+, -2.7;  Mg^{2+}, -4.9; \\ Ca^{2+}, -3.19;  Sr^{2+}, -3.1;  Ba^{2+}, -3.2 \end{array}$                                                                                                | FIM         | 1 1                         | 0.05<br>0.5                     | 59-60                    | I                      | 25 °C;<br>r.o.o.g.                                               | [5]                        |
| Li+-6                   | Li+6 ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),<br>KTpCIPB ( $x_1 = 57.7 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                                                           | $\begin{array}{l} \mathrm{Na^{+},-2.2;K+,-1.9;Rb^{+},-2.2;}\\ \mathrm{Cs^{+},-2.0;H^{+},-3.3}\\ \mathrm{NH4^{+},-2.9;Mg^{2+},-5.0;}\\ \mathrm{Ca^{2+},-4.3;Sr^{2+},-4.1;Ba^{2+},-4.1} \end{array}$                                                                             | FIM         | 1 1                         | 0.05<br>0.5                     | 59-60                    | I                      | 25 °C;<br>r.o.o.g.                                               | [5]                        |
| Li+-7                   | Li+7 ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),<br>KTpCIPB ( $x_1 = 64.0 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                                                           | $\begin{array}{l} \mathrm{Na^{+},-1.9;K^{+},-1.7;Rb^{+},-2.1;}\\ \mathrm{Cs^{+},-1.9;H^{+},-3.2}\\ \mathrm{NH4^{+},-3.0;Mg^{2+},-4.4;}\\ \mathrm{Ca^{2+},-4.4;Sr^{2+},-4.2;Ba^{2+},-4.3}\\ \end{array}$                                                                        | FIM         | 1 1                         | 0.05<br>0.5                     | 59-60                    | I                      | 25 °C;<br>1.0.0.g.                                               | [5]                        |
| Li+-8                   | LJ+-8 ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),<br>KTpCIPB ( $x_1 = 80.7 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                                                          | $\begin{array}{l} \mathrm{Na}^+, -2.0; \ \mathrm{K}^+, -1.9; \ \mathrm{Rb}^+, -1.6; \\ \mathrm{Cs}^+, -1.5; \ \mathrm{H}^+, -2.9 \\ \mathrm{NH4}^+, -2.4; \ \mathrm{Mg}^{2+}, -4.3; \\ \mathrm{Ca}^{2+}, -4.5; \ \mathrm{Sr}^{2+}, -4.2; \ \mathrm{Ba}^{2+}, -4.2 \end{array}$ | FIM         | 1 1                         | 0.05<br>0.5                     | 59-60                    | I                      | 25 °C;<br>r.o.o.g.                                               | [5]                        |
| Li+-9                   | Li+9 ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),<br>KTpCIPB ( $x_{\rm i} = 69.0 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                                                     | $\begin{array}{l} \mathrm{Na}^{+},-2.2;\mathrm{K}^{+},-1.9;\mathrm{Rb}^{+},-2.0;\\ \mathrm{Cs}^{+},-1.8;\mathrm{H}^{+},-3.4\\ \mathrm{NH}_{4}^{+},-2.9;\mathrm{Mg}^{2+},-4.5;\\ \mathrm{Ca}^{2+},-4.8;\mathrm{Sr}^{2+},-4.6;\mathrm{Ba}^{2+},-4.7\\ \end{array}$               | FIM         | 1 1                         | 0.05<br>0.5                     | 59-60                    | I                      | 25 °C;<br>1.0.0.g.                                               | [5]                        |
| † artificial seı<br>mM. | <sup>†</sup> artificial serum background: NaH2PO4, 8 mM; Na2HPO4, 1.5 mM; CaCl2, 2.0 mM; MgCl2, 0.8 mM; KCl, 4.5 mM; NH4Cl, 0.05 mM; glucose, 4.7 mM; urea, 2.5 mM; NaCl, 135 mM; 145 mM; and 155 mM. | l.5 mM; CaCl <sub>2</sub> , 2.0 mM; MgCl <sub>2</sub> , 0.8 mM; K                                                                                                                                                                                                              | CCI, 4.5 mM | ; NH4Cl, 0.0                | )5 mM; glucos                   | e, 4.7 mM; uı            | ca, 2.5 mM             | l; NaCl, 135 mM                                                  | I; 145 mM; and 155         |

|        | composition                                                                                                        | lgKLi+,Bn+                                                                                                                                                                                                                                                              | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | Inear<br>range<br>(M) | remarks                                                                                      | ret.                 |
|--------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|-----------------------|----------------------------------------------------------------------------------------------|----------------------|
| Li+-10 | Li+10 ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_1 = 57.4$ %),<br>PVC ( $w = 28.1$ %)               | Na <sup>+</sup> , -2.3; K <sup>+</sup> , -2.1; Rb <sup>+</sup> , -2.1;<br>Cs <sup>+</sup> , -1.7; H <sup>+</sup> , -3.0<br>NH <sub>4</sub> <sup>+</sup> , -2.95; Mg <sup>2+</sup> , -4.3;<br>Ca <sup>2+</sup> , -4.7; Sr <sup>2+</sup> , -4.4; Ba <sup>2+</sup> , -4.5  | FIM    | 1 1                         | 0.05<br>0.5                                           | 59-60                    | I                     | 25 °C;<br>r.o.o.g.                                                                           | [5]                  |
|        | Li <sup>+</sup> -10 (w = 1 %),<br>oNPOE (w = 70.8 %),<br>KTpCIPB (si = 54 %),<br>PVC (w = 28.2 %)                  | Na+, -2.3; K+, -2.3; NH <sub>4</sub> +, -2.9;<br>Mg <sup>2+</sup> , -3.8; Ca <sup>2+</sup> , -4.5                                                                                                                                                                       | MPM    | I                           | $\Delta c_{\rm B} = 0.1$                              | 59.7                     | I                     | artificial [3]<br>serum background <sup>†</sup> ;<br>c <sub>dl</sub> = 10 <sup>-5.61</sup> M | [3]<br>ground†;<br>M |
| Li+-11 | Li <sup>+</sup> -11 ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_1 = 64.3$ %),<br>PVC ( $w = 28.1$ %) | $\begin{array}{l} Na^+, -1.95; K^+, -1.7; \\ Rb^+, -2.4; Cs^+, -2.1; H^+, -3.7 \\ NH_4^+, -3.0; Mg^{2+}, -4.6; \\ Ca^{2+}, -4.65; Sr^{2+}, -4.2; Ba^{2+}, -4.4 \end{array}$                                                                                             | FIM    | I I                         | 0.05<br>0.5                                           | 59-60                    | I                     | 25 °C;<br>1.0.0.g.                                                                           | [5]                  |
| Li+-12 | Li <sup>+-</sup> 12 ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_i = 70.8$ %),<br>PVC ( $w = 28.1$ %) | $\begin{array}{l} Na^+, -1.9;  K^+, -2.15; \\ Rb^+, -2.2;  Cs^+, -2.0;  H^+, -3.3 \\ NH_4^+, -2.9;  Mg^{2+}, -4.9; \\ Ca^{2+}, -4.6;  Sr^{2+}, -4.4;  Ba^{2+}, -4.3 \end{array}$                                                                                        | FIM    | 1 1                         | 0.05<br>0.5                                           | 59-60                    | I                     | 25 °C;<br>r.o.o.g.                                                                           | [5]                  |
| Li+-13 | Li <sup>+-13</sup> ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_i = 75.5$ %),<br>PVC ( $w = 28.1$ %)  | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -2.25; Rb <sup>+</sup> , -2.2;<br>Cs <sup>+</sup> , -1.6; H <sup>+</sup> , -3.0<br>NH <sub>4</sub> <sup>+</sup> , -2.7; Mg <sup>2+</sup> , -4.6;<br>Ca <sup>2+</sup> , -3.9; Sr <sup>2+</sup> , -3.5; Ba <sup>2+</sup> , -3.55 | FIM    | 1 1                         | 0.05<br>0.5                                           | 59-60                    | I                     | 25 °C;<br>r.o.o.g.                                                                           | [5]                  |
| Li+-14 | Li <sup>+</sup> -14 ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_1 = 68.4$ %),<br>PVC ( $w = 28.1$ %) | $\begin{array}{l} Na^+, -1.9;  K^+, -1.6;  Rb^+, -1.9; \\ Cs^+, -1.45;  H^+, -2.3 \\ NH_4^+, -2.6;  Mg^{2+}, -4.7; \\ Ca^{2+}, -4.55;  Sr^{2+}, -4.5;  Ba^{2+}, -4.2 \end{array}$                                                                                       | FIM    | 1 1                         | 0.05<br>0.5                                           | 5960                     | I                     | 25 °C;<br>I.o.o.g.                                                                           | [5]                  |
| Li+-15 | Li <sup>+</sup> -15 ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_1 = 82.5$ %),<br>PVC ( $w = 28.1$ %) | $\begin{array}{l} Na^+, -2.3;  K^+, -2.5;  Rb^+, -2.55; \\ Cs^+, -2.45;  H^+, -3.2 \\ NH_4^+, -3.0;  Mg^{2+}, -4.5; \\ Ca^{2+}, -4.0;  Sr^{2+}, -4.0;  Ba^{2+}, -3.6 \end{array}$                                                                                       | FIM    | 1 1                         | 0.05<br>0.5                                           | 59-60                    | I                     | 25 °C;<br>r.o.o.g.                                                                           | [5]                  |
| Li+-16 | Li <sup>+</sup> -16 ( $w = 1.0$ %),<br>oNPOE ( $w = 70.2$ %),<br>KTpCIPB ( $x_i = 81.1$ %),<br>PVC ( $w = 28.1$ %) | Na <sup>+</sup> , -1.5; K <sup>+</sup> , -1.7; Rb <sup>+</sup> , -2.2;<br>Cs <sup>+</sup> , -1.1<br>NH <sub>4</sub> <sup>+</sup> , -1.8; Mg <sup>2+</sup> , -3.1;<br>Ca <sup>2+</sup> , -3.5; St <sup>2+</sup> , -2.9; Ba <sup>2+</sup> , -2.95                         | FIM    | 1 1                         | 0.05<br>0.5                                           | 5960                     | I                     | 25 °C;<br>r.o.o.g.                                                                           | [5]                  |
| Li+-17 | <b>Lit-17</b> ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),                                                        | Na <sup>+</sup> , -2.05; K <sup>+</sup> , -2.0; Rb <sup>+</sup> , -1.9;<br>Cs <sup>+</sup> , -1.4; H <sup>+</sup> , -2.5                                                                                                                                                | FIM    | I                           | 0.05                                                  | 59-60                    | I                     | 25 °C;<br>r.o.o.g.                                                                           | [5]                  |

continues on next page

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

| (Continued)                                           | ~ |
|-------------------------------------------------------|---|
| <b>Table 2:</b> Li <sup>+</sup> -Selective Electrodes |   |

| iononhore | iononhore membrane                                                                                              | la <i>K</i> t :+ nn+                                                                                                                                                                                     | method | nrimarv | interfering               | slone           | linear       | remarks                     | ref |
|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------------------------|-----------------|--------------|-----------------------------|-----|
|           | composition                                                                                                     |                                                                                                                                                                                                          |        |         | ion conc.<br>(M)          | (mV/<br>decade) | range<br>(M) |                             |     |
|           | KTpCIPB ( $x_i = 66.3 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                           | NH4 <sup>+</sup> , -3.0; Mg <sup>2+</sup> , -4.7;<br>Ca <sup>2+</sup> , -4.65; Sr <sup>2+</sup> , -4.4; Ba <sup>2+</sup> , -4.35                                                                         | 10     | I       | 0.5                       |                 |              |                             |     |
| Li+-18    | $Li^+-18 (w = 1.0 \%),$<br>oNPOE $(w = 70.2 \%),$                                                               | Na <sup>+</sup> , -2.35; K <sup>+</sup> , -2.5; Rb <sup>+</sup> , -2.8;<br>Cs <sup>+</sup> , -2.4; H <sup>+</sup> , -0.5                                                                                 | FIM    | 1       | 0.05                      | 59-60           | I            | 25 °C;<br>r.o.o.g.          | [5] |
|           | <b>KTpCIPB</b> $(x_i = 72.5\%)$ ,<br>PVC $(w = 28.1\%)$                                                         | NH4 <sup>+</sup> , -3.0; Mg <sup>2+</sup> , -4.6;<br>Ca <sup>2+</sup> , -3.55; Sr <sup>2+</sup> , -3.9; Ba <sup>2+</sup> , -3.2                                                                          |        | I       | 0.5                       |                 |              | 0                           |     |
| Li+-19    | <b>Li<sup>+</sup>-19</b> ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),                                          | Na+, -1.7; K+, -2.0; Rb+, -2.2;<br>Cs+, -1.5; H+, -3.4                                                                                                                                                   | FIM    | 1       | 0.05                      | 59-60           | I            | 25 °C;<br>r.o.o.g.          | [5] |
|           | KTpCIPB ( $x_i = 72.9 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                           | NH <sub>4</sub> +, -2.95; Mg <sup>2+</sup> , -4.65;<br>Ca <sup>2+</sup> , -4.4; Sr <sup>2+</sup> , -4.5; Ba <sup>2+</sup> , -4.55                                                                        |        | 1       | 0.5                       |                 |              |                             |     |
| Li+-20    | <b>Li+-20</b> $(w = 1.0 \%)$ ,<br>oNPOE $(w = 70.2 \%)$ .                                                       | Na <sup>+</sup> , -0.8; K <sup>+</sup> , -0.5; Rb <sup>+</sup> , -1.2;<br>Cs <sup>+</sup> , -0.9; H <sup>+</sup> , -2.8                                                                                  | FIM    | 1       | 0.05                      | 59-60           | I            | 25 °C;<br>r.o.o. <u>e</u> . | [5] |
|           | KTpCIPB ( $x_1 = 116 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                            | NH4 <sup>+</sup> , -2.4; Mg <sup>2+</sup> , -4.4;<br>Ca <sup>2+</sup> , -4.2; Sr <sup>2+</sup> , -4.3; Ba <sup>2+</sup> , -4.1                                                                           |        | I       | 0.5                       |                 |              | )                           |     |
| Li+-21    | Li+-21 (w = 3 %), DBE (w = 66 %),<br>KTpCIPB (xi = 46 %),<br>PVC (w = 30 %)                                     | Na <sup>+</sup> , -1.05; K <sup>+</sup> , -1.9; Rb <sup>+</sup> , -2.6;<br>Cs <sup>+</sup> , -2.2; Mg <sup>2+</sup> , -4.7;<br>Ca <sup>2+</sup> , -4.4; Sr <sup>2+</sup> , -4.4; Ba <sup>2+</sup> , -4.3 | FIM    | -       | 0.1                       | 60              | I            | 25 °C;<br>r.o.o.g.          | [9] |
|           | Li+-21 (w = 3 %), DBE (w = 70 %),<br>KTpCIPB (x <sub>i</sub> = 46 %),<br>PVC (w = 26 %)                         | Na <sup>+</sup> , -0.88; K <sup>+</sup> , -1.6; Cs <sup>+</sup> , -2.4;<br>Rb <sup>+</sup> , -2.4; Mg <sup>2+</sup> , -5.0;<br>Ca <sup>2+</sup> , -4.8; Sr <sup>2+</sup> , -4.8; Ba <sup>2+</sup> , -5.1 | SSM    | 0.1     | 0.1                       | 1               | I            |                             | [7] |
| Li+-22    | Li+-22 (w = 3 %), DBE (w = 66 %),<br>KTpCIPB (xi = 49 %),<br>PVC (w = 30 %)                                     | Na <sup>+</sup> , -1.5; K <sup>+</sup> , -2.5; Rb <sup>+</sup> , -2.7;<br>Cs <sup>+</sup> , -2.0; Mg <sup>2+</sup> , -4.7;<br>Ca <sup>2+</sup> , -4.7; Sr <sup>2+</sup> , -4.7; Ba <sup>2+</sup> , -4.6  | FIM    | -       | 0.1                       | 60              | I            | 25 °C;<br>r.o.o.g.          | [9] |
|           | Li <sup>+</sup> -22 ( $w = 3 %$ ), DBE ( $w = 70 %$ ),<br>KTpCIPB ( $x_i = 49 %$ ),<br>PVC ( $w = 26 \%$ )      | Na <sup>+</sup> , -1.6; K <sup>+</sup> , -2.6; Rb <sup>+</sup> , -2.7;<br>Cs <sup>+</sup> , -2.8; Mg <sup>2+</sup> , -5.0;<br>Ca <sup>2+</sup> , -4.9; Sr <sup>2+</sup> , -4.9; Ba <sup>2+</sup> , -4.9  | SSM    | 0.1     | 0.1                       | 1               | I            |                             | [7] |
| Li+-23    | Li <sup>+</sup> -23 ( $w = 3 \%$ ), DBE ( $w = 66 \%$ ),<br>KTpCIPB ( $x_i = 50.4 \%$ ),<br>PVC ( $w = 30 \%$ ) | $\begin{array}{l} Na^+, -1.2; \ K^+, -1.7; \ Rb^+, -1.7; \\ Cs^+, -1.6; \ Mg^{2+}, -1.5; \\ Ca^{2+}, +0.1; \ Sr^{2+}, -0.6; \ Ba^{2+}, -0.5 \end{array}$                                                 | FIM    | 1       | 0.1                       | 60              | I            | 25 °C;<br>r.o.o.g.          | [9] |
| Li+-24    | Li <sup>1</sup> -24 ( $w = 3$ %), DBE ( $w = 66$ %),<br>KTpCIPB ( $x_1 = 51$ %),<br>PVC ( $w = 30$ %)           | $\begin{array}{l} Na^+, -1.3;  K^+, -1.9;  Rb^+, -2.0; \\ Cs^+, -1.9;  Mg^{2+}, -2.9; \\ Ca^{2+}, -2.0;  Sr^{2+}, -2.7; \\ Ba^{2+}, -2.7 \end{array}$                                                    | FIM    | -       | 0.1                       | 60              | I            | 25 °C;<br>r.o.o.g.          | [9] |
| Li+-25    | $Li^+-25 (w = 1.5 \%),$<br>KTpCIPB $(x_i = 52.9 \%),$                                                           | Na <sup>+</sup> , -0.96; K <sup>+</sup> , -0.89                                                                                                                                                          | MPM    | I       | $\Delta c_{\rm Na} = 0.1$ | 59              | I            | 14 mM NaCl<br>background    | [8] |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

|                                                      | 15ALIT,But                                      | method primary<br>ion con<br>(M)  | primary interfering slope<br>ion conc. ion conc. (mV/<br>(M) (M) decade) | Inear<br>range<br>(M) | remarks ref.             |
|------------------------------------------------------|-------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------|-----------------------|--------------------------|
| $Li^{+}26 (w = 1.5 \%),$                             |                                                 | - HIM                             | 0.014 –                                                                  | I                     |                          |
| Li+26 (w = 1.5 %),                                   |                                                 | - SSM                             | I                                                                        | I                     | 14 mM NaCl<br>background |
| Li+26 (w = 1.5 %),                                   | Na <sup>+</sup> , -0.60; K <sup>+</sup> , -0.80 | – MPM                             | $\Delta c_{\rm Na} = 0.1  58$                                            | I                     | $2.4 \text{ mM MgCl}_2$  |
| Li+26 (w = 1.5 %),                                   | Na+, -0.60                                      |                                   | $\Delta c_{ m Na} = 0.05$                                                |                       | background               |
| Li+-26 ( <i>w</i> = 1.5 %),                          | Na <sup>+</sup> , -1.0; K <sup>+</sup> , -1.09  | – MPM                             | $\Delta c_{\rm Na} = 0.1  55$                                            | I                     | 5.5 mM KCl               |
| Li+-26 ( <i>w</i> = 1.5 %),                          | Na <sup>+</sup> , -1.0                          |                                   | $\Delta c_{ m Na} = 0.05$                                                |                       | background               |
| Li+-26 ( <i>w</i> = 1.5 %),                          | K <sup>+</sup> , -0.85                          | FIM –                             | 0.0055 -                                                                 | I                     |                          |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | K+, -0.82                                       | FIM –<br>(18 mV <sup>†</sup> )    | 0.0055 -                                                                 | I                     |                          |
| Li+-26 ( <i>w</i> = 1.5 %),                          | Na+1.0                                          | MPM –                             | $\Delta C_{\rm M2} = 0.13-58$                                            | I                     | 10 mM NaCl               |
| Li+-26 ( <i>w</i> = 1.5 %),                          | $Na^+, -1.03; K^+, -1.0$                        |                                   |                                                                          |                       | background               |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | Na+, -1.0                                       |                                   | $\Delta c_{\rm Na} = 0.01$                                               |                       | 2                        |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | $Na^{+}$ , -1.0                                 | FIM –                             | 0.01 -                                                                   | I                     |                          |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | $Na^{+}, -1.0$                                  | FIM –                             | 0.01 –                                                                   | I                     |                          |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   |                                                 | (18 mV <sup>†</sup> )             |                                                                          |                       |                          |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | $Na^+, -1.03; K^+, -1.10$                       | MPM –                             | $\Delta c_{\rm Na} = 0.12$ 54                                            | I                     | 20 mM NaCl               |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | $Na^{+}, -1.08$                                 |                                   | $\Delta c_{ m Na} = 0.05$                                                |                       | background               |
| Li+-26 ( <i>w</i> = 1.5 %),                          | Na <sup>+</sup> , -1.03                         | FIM –                             | 0.02 –                                                                   | I                     |                          |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   | Na <sup>+</sup> , -1.07                         | FIM<br>AB W*V                     | 0.02                                                                     |                       |                          |
| <b>Li+-26</b> ( <i>w</i> = 1.5 %),                   |                                                 | (18  mV)                          |                                                                          |                       |                          |
| Li+-26 ( <i>w</i> = 1.5 %),                          | Na <sup>+</sup> , -1.10; K <sup>+</sup> , -1.26 | MPM –                             | $\Delta c_{\rm Na} = 0.08$ 48                                            | I                     | 70 mM NaCl               |
| $Li^{+}.26 (w = 1.5 \%),$                            | Na <sup>+</sup> , –1.11                         |                                   | $\Delta c_{\rm Na} = 0.07$                                               |                       | background               |
| Li+-26 ( <i>w</i> = 1.5 %),                          | $Na^{+}, -1.10$                                 | FIM –                             | 0.07 –                                                                   | I                     |                          |
| $Li^{+}.26 (w = 1.5 \%),$                            | Na+, -1.19                                      | FIM –<br>(18 mV†)                 | 0.07 –                                                                   | T                     |                          |
| $Li^{+}.26 (w = 1.5 \%),$                            | Na <sup>+</sup> , -1.22; K <sup>+</sup> , -1.96 | MPM –                             | $\Delta c_{\rm Na} = 0.1  46$                                            | I                     | 140 mM NaCl              |
| <b>Li+-26</b> $(w = 1.5 \%)$ ,                       | $Na^{+}, -1.82$                                 |                                   | $\Delta c_{\rm Na} = 0.01$                                               |                       | background               |
| <b>Li+-26</b> $(w = 1.5 \%)$ ,                       | Na <sup>+</sup> , -1.48                         | FIM –                             | 0.14                                                                     | I                     |                          |
| $Li^{+-26} (w = 1.5 \%),$                            | Na <sup>+</sup> , -1.80                         | FIM – $(18 \text{ mV}^{\dagger})$ | 0.14                                                                     | I                     |                          |
|                                                      |                                                 | SSM 0.1                           | 0.1 –                                                                    | I                     | [8]                      |
| KTpCIPB ( $x_i = 70.3 \%$ ), Na <sup>+</sup> , -0.79 | o), Na <sup>+</sup> , -0.79                     |                                   | 0.05                                                                     |                       | 1                        |

continues on next page

 $^{\dagger}$  M. Yamauchi, A. Jyo, N. Ishibashi, Anal. Chim. Acta, 136 (1982) 399.

Table 2: Li+-Selective Electrodes (Continued)

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 2: Li <sup>+</sup> -Selective Electrodes |  |

| ionophore membrane<br>compositio | membrane<br>composition                        | lgKLi+,Bn+                                                                | method                      | primary<br>ion conc.<br>(M) | method primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                  | ref. |
|----------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------|--------------------------|------------------------|--------------------------|------|
| J                                | oNPOE ( $w = 64.7 \%$ ),                       | Na+, -0.72; K+, -0.74                                                     | MPM                         | I                           | $\Delta c_{\rm Na} = 0.1$                                    | 60                       | I                      | 14 mM NaCl               |      |
| -                                | PVC $(w = 32.8 \%)$                            | Na+, -0.72                                                                |                             |                             | $\Delta c_{\rm Na}=0.05$                                     |                          |                        | background               |      |
|                                  |                                                | Na+, -0.60                                                                | FIM                         | I                           | 0.014                                                        |                          | I                      |                          |      |
|                                  |                                                | $Na^{+}, -0.52; K^{+}, -0.72$                                             | MPM                         | I                           | $\Delta c_{\rm Na} = 0.1$                                    | 53                       | I                      | 2.4 mM MgCl <sub>2</sub> | 0    |
|                                  |                                                | $Na^{+}, -0.54$                                                           |                             |                             | $\Delta c_{\rm Na}=0.05$                                     |                          |                        | background               |      |
|                                  |                                                | $Na^{+}, -0.82; K^{+}, -0.70$                                             | MPM                         | I                           | $\Delta c_{\rm Na} = 0.1$                                    | 62                       | I                      | 5.5 mM KCl               |      |
|                                  |                                                | Na <sup>+</sup> , -0.82                                                   |                             |                             | $\Delta c_{\rm Na}=0.05$                                     |                          |                        | background               |      |
|                                  |                                                | K+, -0.39                                                                 | FIM                         | I                           | 0.0055                                                       | I                        | I                      |                          |      |
|                                  |                                                | K <sup>+</sup> , -0.35                                                    | FIM                         | I,                          | 0.0055                                                       | I                        | I                      |                          |      |
|                                  |                                                |                                                                           | (18 mV <sup>+</sup> )       | (                           |                                                              |                          |                        |                          |      |
|                                  |                                                | $Na^+, -0.82; K^+, -0.82$                                                 | MPM                         | Ι                           | $\Delta c_{\rm Na} = 0.13$                                   | 61                       | I                      | 10 mM NaCl               |      |
|                                  |                                                | Na+, -0.85                                                                |                             |                             | $\Delta c_{\rm Na}=0.06$                                     |                          |                        | background               |      |
|                                  |                                                | Na+, -0.92                                                                |                             |                             | $\Delta c_{\rm Na} = 0.01$                                   |                          |                        | 10 mM NaCl               |      |
|                                  |                                                | Na+, -0.80                                                                | FIM                         | I                           | 0.01                                                         |                          | I                      | background               |      |
|                                  |                                                | Na+, -0.80                                                                | FIM                         | I                           | 0.01                                                         |                          | I                      |                          |      |
|                                  |                                                |                                                                           | $(18 \text{ mV}^{\dagger})$ | <u> </u>                    |                                                              |                          |                        |                          |      |
|                                  |                                                | Na <sup>+</sup> , -0.85; K <sup>+</sup> , -0.52                           | MPM                         | I                           | $\Delta c_{\rm Na} = 0.12$                                   | 60                       | I                      | 20 mM NaCl               |      |
|                                  |                                                | Na+, -0.89                                                                |                             |                             | $\Delta c_{\rm Na} = 0.05$                                   |                          |                        | background               |      |
|                                  |                                                | Na+, -0.89                                                                | FIM                         | I                           | 0.02                                                         |                          | I                      |                          |      |
|                                  |                                                | $Na^{+}, -1.0$                                                            | FIM                         | I                           | 0.02                                                         |                          | I                      |                          |      |
|                                  |                                                |                                                                           | $(18 \text{ mV}^{\dagger})$ | <u> </u>                    |                                                              |                          |                        |                          |      |
|                                  |                                                | Na <sup>+</sup> , -0.62; K <sup>+</sup> , -0.60                           | MPM                         | I                           | $\Delta c_{\rm Na} = 0.07$                                   | 53                       | I                      | 70 mM NaCl               |      |
|                                  |                                                | Na+, -0.82                                                                |                             |                             | $\Delta c_{\rm Na}=0.03$                                     |                          |                        | background               |      |
|                                  |                                                | $Na^+, -1.01$                                                             | FIM                         | I                           | 0.07                                                         |                          | I                      |                          |      |
|                                  |                                                | Na+, -1.10                                                                | FIM – (18 mV <sup>†</sup> ) | - ~                         | 0.07                                                         |                          | I                      |                          |      |
|                                  |                                                | $Na^{+}, -1.03; K^{+}, -0.96$                                             | MPM                         | I                           | $\Delta c_{\rm Na} = 0.1$                                    | 53                       | I                      | 140 mM NaCl              |      |
|                                  |                                                | Na+ -1.3                                                                  |                             |                             | $\Delta G_{N_{c}} = 0.01$                                    |                          |                        | hackeround               |      |
|                                  |                                                | Na+ _1.12                                                                 | FIM                         | I                           | 0.14                                                         |                          | I                      | 0                        |      |
|                                  |                                                | Na <sup>+</sup> , -1.14                                                   | FIM                         | I                           | 0.14                                                         | I                        | I                      |                          |      |
|                                  |                                                | x                                                                         | $(18 \text{ mV}^{\dagger})$ | (                           |                                                              |                          |                        |                          |      |
| 1                                | $Li^{+}-26 (w = 1.4 \%),$                      | Na <sup>+</sup> , -1.64; K <sup>+</sup> , -1.85; Rb <sup>+</sup> , -1.89; | SSM                         | 0.1                         | 0.1                                                          | I                        | T                      |                          | [4]  |
| 5 -                              | oNPOE $(w = 66 \%)$ ,<br>wThough $(w = 50 \%)$ | $Cs^+, -1.79; Mg^{2+}, -3.34; C_2^2+ 2.30; S_{+2}^2+ 2.60$                |                             |                             |                                                              |                          |                        |                          |      |
| -                                | f(w) = v v (w)                                 | Car, -2:00, 31- ; -2:00                                                   |                             |                             |                                                              |                          |                        |                          |      |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

† M. Yamauchi, A. Jyo, N. Ishibashi, Anal. Chim. Acta, 136 (1982) 399.

| Table 2: L | I able 2: L1 <sup>+</sup> -Selective Electrodes (Continued)                                                                     |                                                                                                                                                                                           |        |                             |                                                                                                     |                          |                        |                                                                  |                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------------------------------------------------------------|------------------|
| ionophore  | membrane<br>composition                                                                                                         | lgKLi+,Bn+                                                                                                                                                                                | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M)                                               | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref                                                      | Ŀ.               |
|            | PVC(w = 33%)                                                                                                                    | Na <sup>+</sup> , -1.54; K <sup>+</sup> , -1.77; Rb <sup>+</sup> , -1.89; MPM<br>Cs <sup>+</sup> , -1.72; Mg <sup>2+</sup> , -3.49;<br>Ca <sup>2+</sup> , -2.21; Sr <sup>2+</sup> , -2.55 | ; MPM  | I                           | $\Delta c_{\rm B} = 0.1$                                                                            | I                        | I                      | calculated from<br>the formula:<br>$K_{A,B} = c_A/c_B(1/z_B)$    |                  |
|            | <b>Li<sup>+</sup>-26</b> ( $w = 1.4 \%$ ),<br><i>o</i> -nitrophenyl pentyl ether ( $w = 66 \%$ ),<br>KTpCIPB ( $x_1 = 50 \%$ ), | $ \begin{array}{l} Na^+, -1.70; \ K^+, -1.89; \ Rb^+, -1.70; \ \ SSM\\ Cs^+, -1.48; \ Mg^{2+}, -3.48; \\ Ca^{2+}, -2.00; \ Sr^{2+}, -2.52 \end{array} $                                   | ; SSM  | 0.1                         | 0.1                                                                                                 | I                        | I                      | [4]                                                              | Ē                |
|            | PVC ( $w = 33\%$ )                                                                                                              | $\begin{split} Na^+, -1.55;  K^+, -1.78;  Rb^+, -2.00; \\ Cs^+, -1.35;  Mg^{2+}, <-3.70 \\ Ca^{2+}, -1.85;  Sr^{2+}, -2.44 \end{split}$                                                   | 1      | I                           | $\Delta c_{\rm B} = 0.1$                                                                            | I                        | I                      | calculated from<br>the formula:<br>$K_{A,B} = c_A/c_B^{(1/z_B)}$ |                  |
| Li+-27     | Li+-27 ( $w = 1.5 \%$ ),<br>KTpCIPB ( $x_i = 35 \%$ ),                                                                          | Na+, -1.96                                                                                                                                                                                | MPM    | I                           | $\Delta c_{\rm Na} = 0.02$ or 0.11                                                                  | I                        | I                      | 140 mM NaCl [9]<br>background                                    | [                |
|            | oNPOE $(w = 65\%)$ ,<br>PVC $(w = 33\%)$                                                                                        | K+, -2.17; Mg <sup>2+</sup> , -2.85;<br>Ca <sup>2+</sup> , -2.28<br>H <sup>+</sup> , -3.40                                                                                                |        |                             | $\Delta c_{K, Mg} = 0.1$ $\Delta c_{Ca} =$ $0.0025$ $\Delta c_{H} = 0.1$                            | _                        |                        | 100 mM HCl<br>background                                         |                  |
|            |                                                                                                                                 | Na+, -2.00<br>H+, -3.40                                                                                                                                                                   | FIM    | I                           | $0.14 \\ 0.1$                                                                                       | I                        | I                      | )                                                                |                  |
|            | $Li^+-27 (w = 1.5 \%),$<br>KTpCIPB $(x_i = 35 \%),$                                                                             | Na <sup>+</sup> , -2.20                                                                                                                                                                   | MPM    | I                           | $\Delta c_{\rm Na} = 0.02$ or 0.11                                                                  | I                        | I                      | 140 mM NaCl [9]<br>background                                    | -                |
|            | oNPOE (w = 64 %),<br>TOPO (w = 1 %),<br>PVC (w = 33 %)                                                                          | K+, -2.85; Mg <sup>2+</sup> , -2.89<br>Ca <sup>2+</sup> , -2.57<br>H <sup>+</sup> , -3.40                                                                                                 |        |                             | $\begin{array}{l} \Delta c_{\mathrm{K,Mg}} = 0.1 \\ \Delta c_{\mathrm{Ca}} = \\ 0.0025 \end{array}$ | _                        |                        | 100 mM HCl                                                       |                  |
|            |                                                                                                                                 | Na+, -2.15<br>H+, -3.40                                                                                                                                                                   | FIM    | I                           | $\Delta c_{\rm H} = 0.1$<br>0.14<br>0.1                                                             | I                        | I                      | background                                                       |                  |
| Li+-28     | Li <sup>+</sup> -28 (w = 1.5%),<br>KTpCIPB (xi = 34%),<br>oNDOF (w = 65%) PVC (w = 33%).                                        | Na+, -0.92<br>K+ _1 60: Ma <sup>2+</sup> -0 80                                                                                                                                            | MPM    | I                           | $\Delta c_{\rm Na} = 0.02$<br>or 0.11<br>$\Delta c_{\rm Na} = 0.02$                                 | I                        | Ι                      | 140 mM NaCl [9]<br>background                                    |                  |
|            |                                                                                                                                 | Ca <sup>2+</sup> , -0.80<br>Na <sup>+</sup> , -0.74                                                                                                                                       | FIM    | I                           | $\Delta c_{Ca} = \Delta c_{Ca} = 0.0025$                                                            | . 1                      | I                      |                                                                  |                  |
|            | Li+-28 (w = 1.5 %), Na <sup>+</sup> , -1.08;<br>KTpCIPB (x <sub>i</sub> = 34 %), TOPO (w - 1 %), AMa <sup>2+</sup> -0.74        | Na+, -1.08;<br>Mr2+0.74                                                                                                                                                                   | MPM    | I                           | $\Delta c_{Na} = 0.02$<br>or 0.11                                                                   | I                        | I                      | 140 mM NaCl [9]<br>background                                    | -                |
|            | <b>IOFO</b> ( $W = 1.70$ ), 0101 OE ( $W = 0.7.70$ ),                                                                           | Mg*', -U./4                                                                                                                                                                               |        |                             | $\Delta c_{Mg} = 0.1$                                                                               |                          |                        | č                                                                | continues on nev |

continues on next page

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 2: Li <sup>+</sup> -Selective Electrodes |  |

| iononhore | membrane                                                                                                           | <i>aK</i> r :+ r.n+                                                                                | method | nrimarv          | nrimary interfering sl                                    | slone | linear       | remarks                       | ref |
|-----------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|------------------|-----------------------------------------------------------|-------|--------------|-------------------------------|-----|
|           |                                                                                                                    | and, ILlas,                                                                                        |        | ion conc.<br>(M) |                                                           | ()    | range<br>(M) |                               |     |
|           | PVC ( $w = 33\%$ )                                                                                                 | Ca <sup>2+</sup> , -0.24                                                                           |        |                  | $\Delta c_{\mathrm{Ca}} = 0.0025$                         |       |              |                               |     |
|           |                                                                                                                    | Na <sup>+</sup> , -0.85                                                                            | FIM    | I                | 0.14 –                                                    |       | I            |                               |     |
| Li+-29    | <b>Li<sup>+</sup>-29</b> ( $w = 1.5 \%$ ),<br>KTpCIPB ( $x_i = 23 \%$ ),                                           | Na+, -1.96                                                                                         | MPM    | I                | $\Delta c_{\rm Na} = 0.02 -$<br>or 0.11                   |       | I            | 140 mM NaCl [9]<br>background | [6] |
|           | oNPOE ( $w = 65\%$ ), PVC ( $w = 33\%$ )                                                                           | K+, -1.85; Mg <sup>2+</sup> , -0.42;<br>Ca <sup>2+</sup> , 0                                       |        |                  | $\Delta c_{\rm K, Mg} = 0.1$ $\Delta c_{\rm Ca} = 0.0025$ |       |              |                               |     |
|           |                                                                                                                    | Na <sup>+</sup> , -1.40                                                                            | FIM    | I                | 0.14 –                                                    |       | I            |                               |     |
|           | <b>Li<sup>+</sup>-29</b> ( $w = 1.5 \%$ ),<br>KTpCIPB ( $x_i = 23 \%$ ),                                           | Na <sup>+</sup> , -1.38                                                                            | MPM    | I                | $\Delta c_{\rm Na} = 0.02 -$<br>or 0.11                   |       | I            | 140 mM NaCl [9]<br>background | [6] |
|           | TOPO ( $w = 1$ %), oNPOE ( $w = 65$ %),                                                                            | ), oNPOE ( $w = 65 \%$ ), K <sup>+</sup> , +0.50; Mg <sup>2+</sup> , -1.96                         |        |                  | $\Delta c_{\rm K,Mg}=0.1$                                 |       |              |                               |     |
|           | PVC ( $w = 33\%$ )                                                                                                 | Ca <sup>2+</sup> , -2.19<br>H <sup>+</sup> , -3.40                                                 |        |                  | $\Delta c_{\mathrm{Ca}} = 0.0025$                         |       |              | 100 mM HCI                    |     |
|           |                                                                                                                    |                                                                                                    |        |                  | $\Delta c_{\rm H} = 0.1$                                  |       |              | background                    |     |
|           |                                                                                                                    | Na+, -1.15<br>H+, -3.40                                                                            | FIM    | I                | 0.14 – 0.11 – 0.1                                         |       | I            |                               |     |
| Li+-30    | <b>Li+.30</b> ( $w = 1.5 \%$ ),<br>KTpCIPB ( $x_i = 22 \%$ ),                                                      | Na <sup>+</sup> , -0.77                                                                            | MPM    | I                | $\Delta c_{\rm Na} = 0.02 - 0.01$ or 0.01                 |       | I            | 140 mM NaCl [9]<br>background | [6] |
|           | oNPOE $(w = 65 \%)$ ,                                                                                              | $K^+$ , -0.54; $Mg^{2+}$ , -1.28                                                                   |        |                  | $\Delta c_{\rm K, Mg} = 0.1$                              |       |              |                               |     |
|           | PVC ( $w = 33\%$ )                                                                                                 | Ca <sup>2+</sup> , -1.06                                                                           |        |                  | $\Delta c_{\rm Ca} = 0.0025$                              |       |              |                               |     |
|           |                                                                                                                    | Na <sup>+</sup> , -0.//                                                                            | FIM    | I                | 0.14 –                                                    |       | I            |                               |     |
|           | <b>Li<sup>+</sup>-30</b> ( $w = 1.5 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 22 \%$ ),                                    | Na+, -1.70                                                                                         | MPM    | I                | $\Delta c_{\rm Na} = 0.02 -$<br>or 0.01                   |       | I            | 140 mM NaCl [9]<br>background | [6] |
|           | oNPOE ( $w = 64$ %), PVC ( $w = 33$ %),                                                                            | $K^+$ , -2.28; $Mg^{2+}$ , -0.31                                                                   |        |                  | $\Delta c_{\rm K,Mg}=0.1$                                 |       |              |                               |     |
|           | TOPO ( $w = 1\%$ )                                                                                                 | Ca <sup>2+</sup> , +0.20<br>Na <sup>+</sup> , -1.92                                                | FIM    | I                | $\Delta c_{Ca} = 0.0025$<br>0.14 -                        |       | I            |                               |     |
| Li+-31    | L <sub>1</sub> +.31 ( $w = 1-2$ %),<br>oNPOE ( $w = 64-66$ %),<br>KTpCIPB ( $x_i = 20$ %),<br>PVC ( $w = 31-33$ %) | Na <sup>+</sup> , -2.0; K <sup>+</sup> , -2.3;<br>Mg <sup>2+</sup> , -2.7; Ca <sup>2+</sup> , -1.3 | SSM    | 0.1              | 0.1 –                                                     |       | I            | 21 ± 1 °C                     | [2] |
| Li+-32    | L <sub>1</sub> +.32 ( $w = 1-2$ %),<br>oNPOE ( $w = 64-66$ %),<br>KTpCIPB ( $x_i = 20$ %),<br>PVC ( $w = 31-33$ %) | Na <sup>+</sup> , -1.9; K <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -0.8 | SSM    | 0.1              | 0.1 –                                                     |       | I            | 21 ± 1 °C                     | [2] |
| Li+-33    | Li+.33 ( $w = 1-2$ %),<br>oNPOE ( $w = 64-66$ %),<br>KTpCIPB ( $x_i = 20$ %),                                      | Na+, -2.0; K+, -2.2;<br>Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -1.4                           | SSM    | 0.1              | 0.1 –                                                     |       | I            | 21 ± 1 °C                     | [2] |

| Table 2: l | Table 2: Li <sup>+</sup> -Selective Electrodes (Continued)                                                        |                                                                                                                                                                                                               |        |                             |                                                       |                          |                        |                    |      |
|------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------|------|
| ionophore  | ionophore membrane<br>composition                                                                                 | lgKLi+,Bn+                                                                                                                                                                                                    | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks            | ref. |
|            | PVC $(w = 31 - 33\%)$                                                                                             |                                                                                                                                                                                                               |        |                             |                                                       |                          |                        |                    |      |
| Li+-34     | Li <sup>+</sup> -34 ( $w = 3$ %). DBE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 26$ %)             | Na <sup>+</sup> , +0.24; K <sup>+</sup> , -0.32; Rb <sup>+</sup> , -1.3;<br>Cs <sup>+</sup> , -2.2; Mg <sup>2+</sup> , -2.7;<br>Ca <sup>2+</sup> , -1.4; Sr <sup>2+</sup> , -0.76;<br>Ba <sup>2+</sup> , +1.1 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | pH = 7.0;<br>25 °C | [2]  |
|            | Li <sup>+</sup> -34 ( $w = 3$ %). DBE ( $w = 66$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 30$ %)             | $\begin{array}{l} Na^+, +0.3;  K+, -0.06;  Rb^+, -0.6; \\ Cs^+, -1.2;  Mg^{2+}, -2.4; \\ Ca^{2+}, -1.4;  Sr^{2+}, -0.5;  Ba^{2+}, +1.2 \end{array}$                                                           | FIM    | I                           | 0.1                                                   | 60                       | I                      | 25 °C;<br>r.o.o.g. | [9]  |
| Li+-35     | Li <sup>+</sup> -35 ( $w = 3$ %), DBE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 51$ %),<br>PVC ( $w = 26$ %)             | $\begin{split} Na^+, +0.72; \ K^+, -0.16; \\ Rb^+, -0.68; \ Cs^+, -2.2; \\ Mg^{2+}, -3.4; \ Ca^{2+}, -3.1; \\ Sr^{2+}, -2.8; \ Ba^{2+}, -2.4 \end{split}$                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [2]  |
| Li+-36     | <b>Li<sup>+</sup>-36</b> ( $w = 3$ %). DBE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 62$ %),<br>PVC ( $w = 26$ %)        | Na <sup>+</sup> , +0.60; K <sup>+</sup> , -0.60; Rb <sup>+</sup> , -1.2;<br>Cs <sup>+</sup> , -1.9; Mg <sup>2+</sup> , -3.4;<br>Ca <sup>2+</sup> , -3.0; Sr <sup>2+</sup> , -2.8; Ba <sup>2+</sup> , -2.4     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [7]  |
| Li+-37     | Li <sup>+</sup> -37 ( $w = 3$ %). DBE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 54$ %),<br>PVC ( $w = 26$ %)             | $\begin{array}{l} Na^+, +0.10; \ K^+, -0.20; \\ Rb^+, -0.74; \ Cs^+, -2.1; \\ Mg^{2+}, -3.7; \ Ca^{2+}, -3.6; \\ Sr^{2+}, -3.5; \ Ba^{2+}, -3.2 \end{array}$                                                  | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [2]  |
| Li+-38     | <b>Lit38</b> ( $w = 3$ %), DBE ( $w = 70$ %),<br><b>KTpCIPB</b> ( $x_1 = 57$ %),<br>PVC ( $w = 26$ %)             | $\begin{array}{l} Na^+, +0.84;  K^+, +1.4;  Rb^+, +1.3; \\ Cs^+, -0.48;  Mg^{2+}, -1.6; \\ Ca^{2+}, -1.4;  Sr^{2+}, -1.5; \\ Ba^{2+}, -0.96 \end{array}$                                                      | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [7]  |
| Li+-39     | Li <sup>+</sup> -39 ( $w = 3$ %), DBE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 57$ %),<br>PVC ( $w = 26$ %)             | $\begin{array}{l} Na^+, -0.64;  K^+, -1.4;  Rb^+, -1.8; \\ Cs^+, -2.6;  Mg^{2+}, -4.9; \\ Ca^{2+}, -4.3;  Sr^{2+}, -4.2;  Ba^{2+}, -4.0 \end{array}$                                                          | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [7]  |
| Li+-40     | <b>Li<sup>+</sup>-40</b> ( $w = 3$ %). DBE ( $w = 70$ %),<br><b>KTpCIPB</b> ( $x_1 = 60$ %),<br>PVC ( $w = 26$ %) | $\begin{array}{l} Na^+, +0.56;  K^+, +0.32; \\ Rb^+, +0.36;  Cs^+, +0.38; \\ Mg^{2+}, -1.9;  Ca^{2+}, -1.8; \\ Sr^{2+}, -2.0;  Ba^{2+}, -2.0 \end{array}$                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [2]  |
| Li+-41     | Li <sup>+</sup> -41 (w = 3 %), DBE (w = 70 %),<br>KTpCIPB (v <sub>i</sub> = 55 %),<br>PVC (w = 26 %)              | $\begin{array}{l} Na^+, +0.12; \ K^+, +0.52; \\ Rb^+, +0.56; \ Cs^+, +0.64; \\ Mg^{2+}, -2.4; \ Ca^{2+}, -2.4; \\ Sr^{2+}, -2.4; \ Ba^{2+}, -1.9 \end{array}$                                                 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |                    | [7]  |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

continues on next page

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 2: Li <sup>+</sup> -Selective Electrodes |  |

| ,         |                                                                                                       |                                                                                                                                                                                                                                                                                          |        |                             |                                                       | ,                        | ;                      | ,       | 4    |
|-----------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|---------|------|
| ionophore | membrane<br>composition                                                                               | lgKLi+,Bn+                                                                                                                                                                                                                                                                               | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks | ret. |
| Li+-42    | Li+-42 ( $w = 3$ %), DBE ( $w = 70$ %),<br>KTpCIPB ( $x_i = 53$ %),<br>PVC ( $w = 26$ %)              | Na <sup>+</sup> , -1.6; K <sup>+</sup> , -2.6; Rb <sup>+</sup> , -2.6;<br>Cs <sup>+</sup> , -2.6; Mg <sup>2+</sup> , -4.6; Ca <sup>2+</sup> , -4.4;<br>Sr <sup>2+</sup> , -4.3; Ba <sup>2+</sup> , -4.2                                                                                  | MSS    | 0.1                         | 0.1                                                   | I                        | I                      |         | [7]  |
| Li+-43    | Li+-43 (w = 3 %), DBE (w = 70 %),<br>KTpCIPB (xi = 54 %),<br>PVC (w = 26 %)                           | $\begin{array}{l} Na^+,-1.6;K^+,-2.7;Rb^+,-2.7;\\ Cs^+,-2.7;Mg^{2+},-4.8;\\ Ca^{2+},-4.5;Sr^{2+},-4.4;Ba^{2+},-4.2 \end{array}$                                                                                                                                                          | SSM    | 0.1                         | 0.1                                                   | I                        | I                      |         | [7]  |
| Li+-44    | Li <sup>+</sup> -44 ( $w = 3$ %), DBE ( $w = 70$ %),<br>KTpCIPB ( $x_i = 54$ %),<br>PVC ( $w = 26$ %) | $\begin{array}{l} Na^{+},-1.8;K^{+},-2.6;Rb^{+},-3.1;\\ Cs^{+},-3.3;Mg^{2+},-4.9;Ca^{2+},-4.5;\\ Sr^{2+},-4.5;Ba^{2+},-4.5\end{array}$                                                                                                                                                   | SSM    | 0.1                         | 0.1                                                   | 59                       | $10^{-5}$ $-10^{-1}$   | 25 °C   | [7]  |
| Li+-45    | Lit-45 ( $w = 1$ %), oNPOE ( $w = 70$ %),<br>KTpCIPB ( $x_i = 50$ %),<br>PVC ( $w = 28$ %)            | Na <sup>+</sup> , -2.38; K+, -2.23; Rb <sup>+</sup> , -2.29; FIM<br>Cs <sup>+</sup> , -1.73; NH <sub>4</sub> <sup>+</sup> , -3.65;<br>H <sup>+</sup> , -2.98; Mg <sup>2+</sup> , -4.58                                                                                                   | FIM    | I                           | 0.5<br>H+, 0.05                                       | 59                       | I                      | 25 °C   | [10] |
| Li+-46    | Lit-46 ( $w = 1$ %), oNPOE ( $w = 70$ %),<br>KTpCIPB ( $x_i = 50$ %),<br>PVC ( $w = 28$ %)            | Na <sup>+</sup> , -2.38; K <sup>+</sup> , -1.40; Rb <sup>+</sup> , -1.94; FIM<br>Cs <sup>+</sup> , -1.59; NH <sub>4</sub> <sup>+</sup> , -3.42;<br>H <sup>+</sup> , -3.52; Mg <sup>2+</sup> , -4.53;<br>Ca <sup>2+</sup> , -4.21; Sr <sup>2+</sup> , -3.97;<br>Ba <sup>2+</sup> , -3.91  | FIM    | I                           | 0.5<br>H+, 0.05                                       | 59                       | I                      | 25 °C   | [10] |
| Li+-47    | Lit-47 ( $w = 1$ %), oNPOE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 28$ %)            | Na <sup>+</sup> , -2.35; K <sup>+</sup> , -1.37; Rb <sup>+</sup> , -1.52;<br>Cs <sup>+</sup> , -1.00; NH <sub>4</sub> <sup>+</sup> , -3.09;<br>H <sup>+</sup> , -2.86; Mg <sup>2+</sup> , -3.85;<br>Ca <sup>2+</sup> , -3.98; Sr <sup>2+</sup> , -4.05;<br>Ba <sup>2+</sup> , -3.93      | FIM    | I                           | 0.5<br>H <sup>+</sup> , 0.05                          | 59                       | I                      | 25 °C   | [10] |
| Li+-48    | Lit-48 ( $w = 1$ %), oNPOE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 28$ %)            | $\begin{split} Na^+, -2.28; \ K^+, -1.45; \ Rb^+, -2.15; \\ Cs^+, -1.90; \ NH_4^+, -3.45; \\ H^+, -3.09; \ Mg^{2+}, -4.52; \\ Ca^{2+}, -3.78; \ Sr^{2+}, -3.51; \\ Ba^{2+}, -3.66 \end{split}$                                                                                           | FIM    | I                           | 0.5<br>H <sup>+</sup> , 0.05                          | 59                       | I                      | 25 °C   | [10] |
| Li+-49    | Li+49 ( $w = 1$ %), oNPOE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 28$ %)             | Na <sup>+</sup> , -2.36; K <sup>+</sup> , -1.68; Rb <sup>+</sup> , -1.97; FIM<br>Cs <sup>+</sup> , -1.63; NH <sub>4</sub> <sup>+</sup> , -3.31;<br>H <sup>+</sup> , -2.89; Mg <sup>2+</sup> , -4.52;<br>Ca <sup>2+</sup> , -3.92; Sr <sup>2+</sup> , -3.95;<br>Ba <sup>2+</sup> , -4.00; | FIM    | I                           | 0.5<br>H <sup>+</sup> , 0.05                          | 59                       | I                      | 25 °C   | [10] |
| Li+-50    | Li+50 ( $w = 1$ %), oNPOE ( $w = 70$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 28$ %)             | Na <sup>+</sup> , -2.34; K <sup>+</sup> , -1.43; Rb <sup>+</sup> , -1.79; FIM<br>Cs <sup>+</sup> , -1.34; NH <sub>4</sub> <sup>+</sup> , -2.96;<br>H <sup>+</sup> , -2.01; Mg <sup>2+</sup> , -4.44;<br>Ca <sup>2+</sup> , -3.81; Sr <sup>2+</sup> , -3.65;<br>Ba <sup>2+</sup> , -3.54  | FIM    | I                           | 0.5<br>H <sup>+</sup> , 0.05                          | 59                       | I                      | 25 °C   | [01] |
|           |                                                                                                       |                                                                                                                                                                                                                                                                                          |        |                             |                                                       |                          |                        |         |      |

| ionophore | ionophore membrane                                                                                                                    | lgKLj+,Bn+                                                                                                                                                           | method | primary   | primary interfering            | slope            | linear | remarks                              | ref.                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|--------------------------------|------------------|--------|--------------------------------------|------------------------|
|           | composition                                                                                                                           |                                                                                                                                                                      |        | ION CORC. | ION CONC. ION CONC.<br>(M) (M) | (m v/<br>decade) | (M)    |                                      |                        |
| Lj+-51    | Li+51 ( $w = 4$ %), PVC ( $w = 32.2$ %),<br>KTpCIPB ( $x_i = 12$ %),<br>oNPOE ( $w = 63.4$ %)                                         | Na <sup>+</sup> , -0.60; K <sup>+</sup> , -0.40;<br>NH <sub>4</sub> <sup>+</sup> , -1.00; Ca <sup>2+</sup> , +0.60;<br>Ba <sup>2+</sup> , +0.30                      | MPM    | I         | I                              | 53.0             | I      | 140 mM Na+<br>background             | [11]                   |
|           | Li <sup>+</sup> -51 ( $w = 4$ %),<br>KTpCIPB ( $x_i = 12$ %),<br>ADDDE ( $w = 63.7$ %),                                               | Na <sup>+</sup> , $-0.60$ ; K <sup>+</sup> , $-0.56$ ;<br>NH <sub>4</sub> <sup>+</sup> , $-0.38$ ; Ca <sup>2+</sup> , $-0.17$ ;<br>B $_{0.2^{+}}^{-0.20}$ , $0.20$ ; | SSM    | I         | I                              | I                | I      |                                      | [11]                   |
|           | PVC ( $w = 0.2.7\%$ ),<br>PVC ( $w = 31.8\%$ ),<br>TOPO ( $w = 0.96\%$ )                                                              | ba <sup>2+</sup> ;, -0.20<br>Na+, -0.72; K+, -0.60;<br>NH4+, -0.08; Ca <sup>2+</sup> , +0.40;<br>Ba <sup>2+</sup> , +0.40                                            | MPM    | I         |                                | I                | I      | 140 mM Na+<br>background             |                        |
|           | Li <sup>+-51</sup> (w = 4 %), PVC (w = 32.2 %),<br>KTpCIPB (x <sub>i</sub> = 12 %),<br>oNPPE (w = 63.4 %)                             | Na <sup>+</sup> , -1.40; K <sup>+</sup> , -0.82;<br>NH4 <sup>+</sup> , -0.70; Ca <sup>2+</sup> , +1.00;<br>Ba <sup>2+</sup> , +0.70                                  | MPM    | I         | 1                              | 55.0             | I      | 140 mM Na+<br>background             | [11]                   |
|           | Li <sup>+</sup> -51 ( $w = 4$ %),<br>KTpCIPB ( $x_i = 12$ %),<br>PVC ( $w = 31.8$ %).                                                 | Na <sup>+</sup> , -0.32; K <sup>+</sup> , -0.20;<br>NH4 <sup>+</sup> , +0.15; Ca <sup>2+</sup> , +0.75;<br>Ba <sup>2+</sup> , +0.45                                  | SSM    | I         | I                              | I                | I      |                                      | [11]                   |
|           | TOPO ( $w = 0.96 \%$ ),<br>oNPPE ( $w = 62.7 \%$ )                                                                                    | Na <sup>+</sup> , -1.48; K <sup>+</sup> , -1.00;<br>NH <sub>4</sub> <sup>+</sup> , -1.00; Ca <sup>2+</sup> , +0.90;<br>Ba <sup>2+</sup> , +0.60                      | MPM    | I         | I                              | I                | I      | 140 mM Na <sup>+</sup><br>background |                        |
|           | <b>Li<sup>+</sup>-51</b> ( $w = 4$ %),<br>nitrophenyl butyl ether ( $w = 63.4$ %),<br>KTpCIPB ( $x_i = 12$ %),<br>PVC ( $w = 32.2$ %) | Na <sup>+</sup> , -0.70; K <sup>+</sup> , -0.04;<br>NH4 <sup>+</sup> , +0.60; Ca <sup>2+</sup> , +1.60;<br>Ba <sup>2+</sup> , -0.15                                  | MPM    | I         | I                              | 48.0             | 1      | 140 mM Na+<br>background             | [11]                   |
|           | <b>Li+-51</b> ( $w = 4 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 12 \%$ ),                                                                    | NH4 <sup>+</sup> , -0.58; Ca <sup>2+</sup> , +0.11;<br>Ba <sup>2+</sup> , -0.40                                                                                      |        |           |                                |                  |        |                                      |                        |
|           | PVC ( $w = 31.8 \%$ ),<br>TOPO ( $w = 0.96 \%$ ),<br>nitropheyl butyl ether ( $w = 62.7 \%$ )                                         | Na <sup>+</sup> , -0.77; K <sup>+</sup> , -0.22;<br>NH4 <sup>+</sup> , +0.52; Ca <sup>2+</sup> , +1.60;<br>Ba <sup>2+</sup> , -0.30                                  | MPM    | I         | I                              | I                | I      | 140 mM Na <sup>+</sup><br>background |                        |
|           | Li <sup>+</sup> -51 ( $w = 4$ %),<br>nitrophenyl benzyl ether ( $w = 63.4$ %),<br>KTpCIPB ( $x_i = 12$ %),<br>PVC ( $w = 32.2$ %)     | Na <sup>+</sup> , -1.00; K+, +0.30;<br>NH4 <sup>+</sup> , +1.00; Ca <sup>2+</sup> , +1.90;<br>Ba <sup>2+</sup> , +1.40                                               | MPM    | I         | I                              | 49.1             | 1      | 140 mM Na+<br>background             | [11]                   |
|           | <b>Lit-51</b> ( $w = 4$ %),<br>nitrophenyl benzyl ether ( $w = 62.7$ %),<br>KTDcIPB ( $xi = 12$ %).                                   | Na+, -0.80; K+, -0.60;<br>NH <sub>4</sub> +, -0.04; Ca <sup>2+</sup> , +0.56;<br>Ba <sup>2+</sup> , +0.15                                                            | SSM    | I         | I                              | I                | I      |                                      | [11]                   |
|           | PVC ( $w = 31.4 \%$ ),<br>TOPO ( $w = 0.96 \%$ )                                                                                      | Na <sup>+</sup> , -1.10; K <sup>+</sup> , +0.08;<br>NH <sub>4</sub> <sup>+</sup> , +0.70; Ca <sup>2+</sup> , +2.00;<br>Ba <sup>2+</sup> , +1.32                      | MMM    | I         | I                              | I                | I      | 140 mM Na+<br>background             | continues on next page |

1873

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

| T anno 7. T | Table 2. El -Delenary Electrones (Commen)                                                                                                                                             |                                                                                                                                                 |                |                             |                                                       |                          |                        |                                      |      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------------------------|------|
| ionophore   | membrane<br>composition                                                                                                                                                               | lgKLi+,Bn+                                                                                                                                      | method         | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                              | ref. |
| Li+-52      | Li+52 ( $w = 4 \%$ ),<br>KTpCIPB ( $x_1 = 13 \%$ ),<br>oNPOE ( $w = 63.4 \%$ ).                                                                                                       | Na <sup>+</sup> , -1.30; K <sup>+</sup> , -0.60;<br>NH <sub>4</sub> <sup>+</sup> , -0.52; Ca <sup>2+</sup> , -1.10;<br>Ba <sup>2+</sup> , -1.52 | MPM            | I                           | I                                                     | 51.3                     | Ĩ                      | 140 mM Na <sup>+</sup><br>background | [11] |
|             | PVC $(w = 32.2 \%)$                                                                                                                                                                   | Na <sup>+</sup> , -1.23                                                                                                                         | FIM            | 1                           | I                                                     | I                        | I                      |                                      |      |
|             |                                                                                                                                                                                       | Na+, -1.34                                                                                                                                      | FIM<br>(18 mV) | I                           | I                                                     | I                        | I                      |                                      |      |
|             | $Li^{+}-52 (w = 4 \%),$                                                                                                                                                               | Na+, -0.96; K+, -0.85;                                                                                                                          | SSM            | I                           | Ι                                                     | I                        | I                      |                                      | [11] |
|             | KTpCIPB ( $x_i = 13 \%$ ),<br>oNPOE ( $w = 62.7 \%$ ).                                                                                                                                | NH4 <sup>+</sup> , –0.80; Ca <sup>2+</sup> , –1.43;<br>Ba <sup>2+</sup> , –1.52                                                                 |                |                             |                                                       |                          |                        |                                      |      |
|             | PVC $(w = 31.8 \%)$ ,<br>TOPO $(w = 0.96 \%)$                                                                                                                                         | Na+, -1.35; K+, -0.77;<br>NH4+, -0.60; Ca <sup>2+</sup> , -1.22;<br>Ba <sup>2+</sup> , -1.70                                                    | MPM            | 1                           | 1                                                     | I                        | I                      | 140 mM Na+<br>background             |      |
|             | Lit-52 ( $w = 4$ %), PVC ( $w = 32.2$ %),<br>KTpCIPB ( $x_1 = 13$ %),<br>oNPPE ( $w = 63.4$ %)                                                                                        | Na+, -1.74; K+, -0.92;<br>NH4+, -0.60; Ca <sup>2+</sup> , -1.08;<br>Ba <sup>2+</sup> , -1.60                                                    | MPM            | I                           | I                                                     | 51.0                     | I                      | 140 mM Na+<br>background             | [11] |
|             | <b>Lj+52</b> ( $w = 4$ %),<br><b>KTpCIPB</b> ( $x_i = 13$ %),<br><b>PVC</b> ( $w = 31.8$ %).                                                                                          | Na+, -1.00; K+, -0.80;<br>NH4 <sup>+</sup> , -0.70; Ca <sup>2+</sup> , -1.36;<br>Ba <sup>2+</sup> , -1.41                                       | SSM            | I                           | I                                                     | 30.0                     | I                      |                                      | [11] |
|             | TOPO ( $w = 0.96 \%$ ),<br>ONPPE ( $w = 62.7 \%$ )                                                                                                                                    | Na+, -1.92; K+, -0.77;<br>NH4+, -0.30; Ca <sup>2+</sup> , -1.60;<br>Ba <sup>2+</sup> , -2.00                                                    | MPM            | I                           | I                                                     | 26.0                     | I                      | 140 mM Na <sup>+</sup><br>background |      |
|             | Lit-52 ( $w = 4$ %),<br>nitrophenyl butyl ether ( $w = 63.4$ %),<br>KTpCIPB ( $x_i = 13$ %),<br>PVC ( $w = 32.2$ %)                                                                   | Na <sup>+</sup> , -1.52; K+, -0.70;<br>NH4 <sup>+</sup> , -0.40; Ca <sup>2+</sup> , -1.40;<br>Ba <sup>2+</sup> , -1.52                          | MPM            | I                           | 1                                                     | 50.6                     | I                      | 140 mM Na <sup>+</sup><br>background | [11] |
|             | <b>Lit-52</b> ( $w = 4$ %),<br>nitrophenyl butyl ether ( $w = 62.7$ %),<br>KTpCIPB ( $x_i = 13$ %),                                                                                   | Na+, -0.85; K+, -0.70;<br>NH4+, -0.62; Ca <sup>2+</sup> , -1.30;<br>Ba <sup>2+</sup> , -1.38                                                    | SSM            | I                           | I                                                     | I                        | ļ                      |                                      | [11] |
|             | PVC ( <i>w</i> = 31.8 %),<br>TOPO ( <i>w</i> = 0.96 %)                                                                                                                                | Na+, -1.48; K+, -0.60;<br>NH4+, -0.30; Ca <sup>2+</sup> , -1.30;<br>Ba <sup>2+</sup> , -1.40                                                    | MPM            | 1                           | 1                                                     | I                        | I                      | 140 mM Na+<br>background             |      |
|             | Lj+52 ( $w = 4$ %),<br>nitrophenyl benzyl ether ( $w = 63.4$ %),<br>KTpCIPB ( $x_1 = 13$ %),<br>PVC ( $w = 32.2$ %)                                                                   | Na <sup>+</sup> , -1.00; K+, -0.70;<br>NH4 <sup>+</sup> , -0.22; Ca <sup>2+</sup> , -0.70;<br>Ba <sup>2+</sup> , -1.04                          | MPM            | I                           | I                                                     | 53.3                     | I                      | 140 mM Na <sup>+</sup><br>background | [11] |
|             | Li+52 ( $w = 4$ %),       Na+, -0.77; K+, -0.47;         nitrophenyl benzyl ether ( $w = 62.7$ %), NH <sub>4</sub> +, -0.11; Ca <sup>2+</sup> , -1.22;       KTpCIPB ( $x_i = 13$ %), | Na <sup>+</sup> , -0.77; K <sup>+</sup> , -0.47;<br>NH <sub>4</sub> <sup>+</sup> , -0.11; Ca <sup>2+</sup> , -1.22;<br>Ba <sup>2+</sup> , -1.30 | SSM            | I                           | 1                                                     | I                        | I                      |                                      | [11] |

| ionophore | membrane<br>composition                                                                                             | lgKLi+,Bn+                                                                                                                                                                               | method                       | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                              | ref.                     |
|-----------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------------------------|--------------------------|
|           | PVC ( $w = 31.8 \ \%$ ),<br>TOPO ( $w = 0.96 \ \%$ )                                                                | Na <sup>+</sup> , -1.04; K <sup>+</sup> , -0.77;<br>NH4 <sup>+</sup> , -0.30; Ca <sup>2+</sup> , -0.77;<br>Ba <sup>2+</sup> , -1.08                                                      | MPM                          | I                           | I                                                     | I                        | I                      | 140 mM Na <sup>+</sup><br>background |                          |
| Li+-53    | L1+53 ( $w = 4 \%$ ),<br>KTpCIPB ( $w = 17 \%$ ),<br>oNPOE ( $w = 63.4 \%$ ),                                       | Na+, -1.60; K+, -1.08;<br>NH4+, -0.35; Ca <sup>2+</sup> , -0.30;<br>Ba <sup>2+</sup> , -1.30                                                                                             | MPM                          | I                           | I                                                     | 54.0                     | I                      | 140 mM Na <sup>+</sup><br>background | [11]                     |
|           | PVC(w = 32.2%)                                                                                                      | Na+, -1.04<br>Na+, -1.23<br>Na+, -1.34                                                                                                                                                   | SSM<br>FIM<br>FIM<br>(18 mV) | 1 1 1                       | 1 1 1                                                 | 1 1 1                    | 1 1 1                  |                                      |                          |
|           | L1+53 ( $w = 4 %$ ),<br>KTpCIPB ( $x_1 = 17 %$ ),<br>DVC ( $w = 31 8 \%$ )                                          | Na <sup>+</sup> , -1.37; K <sup>+</sup> , -1.22;<br>NH4 <sup>+</sup> , -0.62; Ca <sup>2+</sup> , +0.62;<br>Ba2 <sup>+</sup> -1 52                                                        | SSM                          | I                           | I                                                     | 31.0                     | I                      |                                      | [11]                     |
|           | T OC (W = 21.0 %),<br>oNPOE (W = 62.7 %),<br>TOPO (W = 0.96 %)                                                      | Da <sup></sup> , -172<br>Na+, -1.70; K+, -1.35;<br>NH4+, -0.15; Ca <sup>2+</sup> , +0.90;<br>Ba <sup>2+</sup> , -0.49                                                                    | MPM                          | I                           | I                                                     | 33.3                     | I                      | 140 mM Na+<br>background             |                          |
|           |                                                                                                                     | Na <sup>+</sup> , -1.23<br>Na <sup>+</sup> , -1.34                                                                                                                                       | FIM<br>FIM<br>(18 mV)        |                             | 1 1                                                   |                          | 1 1                    |                                      |                          |
|           | L1+53 ( $w = 4 \%$ ),<br>KTpCIPB ( $x_i = 17 \%$ ),<br>PVC ( $w = 32.2 \%$ ).                                       | Na+, -1.04; K+, -0.70;<br>NH4 <sup>+</sup> , +0.30; Ca <sup>2+</sup> , +1.78;<br>Ba <sup>2+</sup> , -0.40                                                                                | MPM                          | I                           | I                                                     | 49.5                     | I                      | 140 mM Na <sup>+</sup><br>background | [11]                     |
|           | oNPPE $(w = 63.4\%)$                                                                                                | Na+, -0.92<br>Na+, -1.08<br>Na+, -1.26                                                                                                                                                   | SSM<br>FIM<br>FIM<br>(18 mV) | 1 1 1                       |                                                       | 1 1 1                    | 1 1 1                  |                                      |                          |
|           | Lit-53 ( $w = 4 \%$ ),<br>KTpCIPB ( $x_i = 17 \%$ ),<br>PVC ( $w = 31 8 \%$ )                                       | Na <sup>+</sup> , $-0.82$ ; K <sup>+</sup> , $-0.51$ ;<br>NH <sub>4</sub> <sup>+</sup> , $-0.25$ ; Ca <sup>2+</sup> , $+1.20$ ;<br>Ra <sup>2+</sup> $-1.09$                              | SSM                          | I                           | I                                                     | I                        | I                      |                                      | [11]                     |
|           | TOPO (w = 0.96 %),<br>oNPPE (w = 62.7 %)                                                                            | Na <sup>+</sup> , -1.42; K <sup>+</sup> , -0.74;<br>NH4 <sup>+</sup> , -1.42; Ka <sup>+</sup> , -0.74;<br>Ba <sup>2+</sup> , -0.54<br>Na <sup>+</sup> , -1.23<br>Na <sup>+</sup> , -1.52 | MPM<br>FIM<br>FIM<br>(18 mV) | 1 1 1                       | 1 1 1                                                 | 1 1 1                    |                        | 140 mM Na <sup>+</sup><br>background |                          |
|           | Lit-53 ( $w = 4$ %),<br>nitrophenyl butyl ether ( $w = 63.4$ %),<br>KTpcIPB ( $x_i = 17$ %),<br>PVC ( $w = 32.2$ %) | Na+, -1.15; K+, -1.00;<br>NH4+, +0.04; Ca <sup>2+</sup> , +1.30;<br>Ba <sup>2+</sup> , -0.30                                                                                             | MPM                          | I                           | 1                                                     | 49.8                     | I                      | 140 mM Na <sup>+</sup><br>background | [11]<br>continues on ne. |

ən next page

1875

| (Continued)   |
|---------------|
| Electrodes    |
| Li+-Selective |
| ble 2: I      |

| Table 2: L | Table 2: Li <sup>+</sup> -Selective Electrodes (Continued)                                                                       |                                                                                                                                                                                                                                                                                     |        |                             |                                                       |                          |                           |                                             |      |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|---------------------------|---------------------------------------------|------|
| ionophore  | membrane<br>composition                                                                                                          | lgKLi+,Bn+                                                                                                                                                                                                                                                                          | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)    | remarks                                     | ref. |
|            | Li+53 ( $w = 4 \%$ ),<br>nitrophenyl butyl ether ( $w = 62.7 \%$ ),<br>KTDCIPB ( $x = 17 \%$ ),                                  | Na <sup>+</sup> , –0.80; K <sup>+</sup> , –0.74;<br>NH4 <sup>+</sup> , –0.66; Ca <sup>2+</sup> , +0.81;<br>Ba <sup>2+</sup> , –1.15                                                                                                                                                 | SSM    | I                           | I                                                     | I                        | I                         |                                             | [11] |
|            | PVC $(w = 31.8 \%)$ ,<br>TOPO $(w = 0.96 \%)$                                                                                    | Na+, -1.22; K+, -1.10;<br>NH4+, +0.08; Ca <sup>2+</sup> , +1.26;<br>Ba <sup>2+</sup> , -0.40                                                                                                                                                                                        | MPM    | I                           | I                                                     | I                        | I                         | 140 mM Na <sup>+</sup><br>background        |      |
|            | Li <sup>+</sup> 53 ( $w = 4$ %),<br>nitrophenyl benzyl ether ( $w = 63.4$ %),<br>KTpCIPB ( $x_i = 17$ %),<br>PVC ( $w = 32.2$ %) | Na <sup>+</sup> , -1.15; K+, -0.52;<br>NH <sub>4</sub> <sup>+</sup> , +0.30; Ca <sup>2+</sup> , +1.00;<br>Ba <sup>2+</sup> , -0.96                                                                                                                                                  | MPM    | I                           | I                                                     | 51.2                     | I                         | 140 mM Na <sup>+</sup><br>background        | [11] |
|            | Li+53 ( $w = 4$ %),<br>nitrophenyl benzyl ether ( $w = 62.7$ %),<br>KTpCIPB ( $x_i = 17$ %),                                     | Na+, -0.72; K+, -0.64;<br>NH4+, -0.54; Ca <sup>2+</sup> , +0.62;<br>Ba <sup>2+</sup> , -1.26                                                                                                                                                                                        | SSM    | I                           | I                                                     | I                        | I                         |                                             | [11] |
|            | PVC $(w = 31.8 \%)$ ,<br>TOPO $(w = 0.96 \%)$                                                                                    | Na <sup>+</sup> , -1.30; K <sup>+</sup> , -0.60;<br>NH <sub>4</sub> <sup>+</sup> , +0.23; Ca <sup>2+</sup> , +1.04;<br>Ba <sup>2+</sup> , -1.00                                                                                                                                     | MPM    | I                           | 1                                                     | I                        | I                         | 140 mM Na+<br>background                    |      |
| Li+-54     | <b>Lit-54</b> $(w = 2.5 \%)$ ,<br>oNPOE $(w = 65 \%)$ , PVC $(w = 33 \%)$                                                        | Na <sup>+</sup> , -1.74; K <sup>+</sup> , -3.27;<br>Rb <sup>+</sup> , -3.35; Cs <sup>+</sup> , -3.20;<br>NH <sub>4</sub> <sup>+</sup> , -2.50; H <sup>+</sup> , -1.66;<br>Mg <sup>2+</sup> , -3.08; Ca <sup>2+</sup> , -1.53;<br>Sr <sup>2+</sup> , -1.80; Ba <sup>2+</sup> , -2.03 | SSM    | 0.1                         | 0.1                                                   | 56.2                     | $10^{-4.5}$<br>$-10^{-1}$ | 20 °C;<br>r.o.o.g.                          | [12] |
|            | Lit-54 ( $w = 2.5 \%$ ),<br>KTpCIPB ( $x_1 = 15 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                             | Na <sup>+</sup> , -1.85; K <sup>+</sup> , -3.21;<br>Rb <sup>+</sup> , -3.06; Cs <sup>+</sup> , -3.79;<br>NH <sub>4</sub> <sup>+</sup> , -3.83; H <sup>+</sup> , -2.61;<br>Mg <sup>2+</sup> , -2.40; Ca <sup>2+</sup> , -1.03;<br>Sr <sup>2+</sup> , -0.89; Ba <sup>2+</sup> , -1.13 | SSM    | 0.1                         | 0.1                                                   | 90                       | $10^{-5}$<br>-10^{-1}     | 20 °C;<br>lg <i>P</i> TLC = 13;<br>r.o.o.g. | [12] |
|            | Li+-54 ( <i>w</i> = 2.5 %),<br>BBPA ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %)                                                   | Na <sup>+</sup> , -2.04; K <sup>+</sup> , -2.87;<br>Rb <sup>+</sup> , -3.54; Cs <sup>+</sup> , -3.60;<br>NH <sub>4</sub> <sup>+</sup> , -2.60; H <sup>+</sup> , -1.93;<br>Mg <sup>2+</sup> , -4.37; Ca <sup>2+</sup> , -2.21;<br>Sr <sup>2+</sup> , -3.67; Ba <sup>2+</sup> , -3.87 | SSM    | 0.1                         | 0.1                                                   | 57.1                     | $10^{-5}$<br>$-10^{-1}$   | 20 °C;<br>1.0.0.g.                          | [12] |
|            | Li+54 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> i = 15 %),<br>BBPA ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %)                   | Na <sup>+</sup> , -2.05; K+, -2.93;<br>Rb <sup>+</sup> , -3.33; Cs <sup>+</sup> , -3.33;<br>NH <sub>4</sub> <sup>+</sup> , -2.54; H <sup>+</sup> , -2.13;<br>Mg <sup>2+</sup> , -3.33; Ca <sup>2+</sup> , -1.90;<br>Sr <sup>2+</sup> , -1.99; Ba <sup>2+</sup> , -2.20              | SSM    | 0.1                         | 0.1                                                   | 58.8                     | $10^{-5}$<br>-10^{-1}     | 20 °C;<br>r.o.o.g.                          | [12] |
|            | $Li^{+}-54 (w = 2.5 \%),$                                                                                                        | Na <sup>+</sup> , -2.11; K <sup>+</sup> , -3.38;                                                                                                                                                                                                                                    | SSM    | 0.1                         | 0.1                                                   | 58.8                     | $10^{-5}$                 | 20 °C;                                      | [12] |

| ionophore                   | e membrane                                                                                                                | lgKLi+,Bn+                                                                                                                                                                                        | method | primary<br>ion conc | primary interfering            | slope<br>(mV/   | linear                | remarks                                                                                                   | ref.                          |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--------------------------------|-----------------|-----------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|
|                             | composition                                                                                                               |                                                                                                                                                                                                   |        |                     | . IOI COILC.<br>(M)            | decade)         | (M)                   |                                                                                                           |                               |
|                             | KTpCIPB (xj = 15 %),<br>BBPA (w = 65 %),<br>OH–PVC (w = 33 %)                                                             | $\begin{array}{l} Rb^+, -3.53; \ Cs^+, -3.53; \\ NH4^+, -2.61; \ H^+, -2.15; \\ Mg^{2+}, -3.41; \ Ca^{2+}, -1.83; \\ Sr^{2+}, -1.87; \ Ba^{2+}, -2.33 \end{array}$                                |        |                     |                                |                 | $-10^{-1}$            | I.0.0.g.                                                                                                  |                               |
|                             | <b>Li<sup>+</sup>-54</b> ( $w = 2.5 \%$ ),<br>CP ( $w = 65 \%$ ),<br>KTpCIPB ( $x_1 = 15 \%$ ),<br>PVC ( $w = 33 \%$ )    | $\begin{array}{l} Na^+, -2.16; \ K^+, -3.20; \\ Rb^+, -3.00; \ Cs^+, -3.60; \\ NH_4^+, -3.38; \ H^+, -2.40; \\ Mg^{2+}, -3.33; \ Ca^{2+}, -1.29; \\ Sr^{2+}, -1.20; \ Ba^{2+}, -1.77 \end{array}$ | SSM    | 0.1                 | 0.1                            | 58.5            | $10^{-5}$ $-10^{-1}$  | 20 °C;<br>r.o.o.g.                                                                                        | [12]                          |
| Li+-55                      | Li <sup>+-55</sup> ( $w = 2.5\%$ ),<br>KTpCIPB ( $x_i = 15\%$ ),<br>oNPOE ( $w = 65\%$ ), PVC ( $w = 33\%$ )              | $\begin{array}{l} Na^+, -1.32; K+, -2.07; \\ Rb^+, -2.20; Cs^+, -2.25; \\ NH_4, -0.67; H^+, -0.87; \\ Mg^{2+}, -3.13; Ca^{2+}, +0.37; \\ Sr^{2+}, -0.50; Ba^{2+}, -0.87 \end{array}$              | SSM    | 0.1                 | 0.1                            | 57.3            | $10^{-5}$ $-10^{-1}$  | 20 °C;<br>r.o.o.g.                                                                                        | [12]                          |
|                             | Li <sup>+-55</sup> ( $w = 2.5$ %),<br>KTpCIPB ( $x_i = 15$ %),<br>BBPA ( $w = 65$ %), PVC ( $w = 33$ %)                   | $\begin{array}{l} Na^+, -1.61;  K^+, -2.53; \\ Rb^+, -2.87;  Cs^+, -3.06; \\ NH_4, -1.96;  H^+, -1.25; \\ Mg^{2+}, -3.97;  Ca^{2+}, -1.33; \\ Sr^{2+}, -2.06;  Ba^{2+}, -2.39 \end{array}$        | SSM    | 0.1                 | 0.1                            | 58.6            | $10^{-5}$<br>-10^{-1} | 20 °C;<br>r.o.o.g.                                                                                        | [12]                          |
|                             | Li <sup>+</sup> -55 ( $w = 2.5$ %),<br>CP ( $w = 65$ %),<br>KTpCIPB ( $x_1 = 15$ %),<br>PVC ( $w = 33$ %)                 | $\begin{array}{l} Na^+, -1.33; K^+, -2.13;\\ Rb^+, -1.87; Cs^+, -2.0;\\ NH_4, -2.07; H^+, -0.93;\\ Mg^{24}, -2.74; Ca^{2+}, -0.07;\\ Sr^{2+}, -0.70; Ba^{2+}, -1.03 \end{array}$                  | SSM    | 0.1                 | 0.1                            | 52.8            | $10^{-4}$ $-10^{-1}$  | 20 °C;<br>r.o.o.g.                                                                                        | [12]                          |
| Li+-56                      | Li <sup>+.56</sup> ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_1 = 31.6 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ ) | Na+,-1.4; K+, -2.3;<br>H+, -3.5; Mg <sup>2+</sup> , -5.8;<br>Ca <sup>2+</sup> , -4.5<br>Na <sup>+</sup> , -1.77††                                                                                 | FIM    | I                   | 0.1;<br>H+, 0.001              | 60.0†<br>62.0†† | I                     | 37 °C; [<br>$\dagger c_{\rm clil} = 10^{-4.6}$ M;<br>$\dagger \dagger c_{\rm clil} = 10^{-2.6}$ M         | [13]<br>M;<br>5M              |
|                             | Li+-56 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_i = 23.6 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )             | Na <sup>+</sup> , -2.08                                                                                                                                                                           | FIM    | I                   | 1                              | 59†<br>60††     |                       | 37 °C; [1<br>$^{\dagger}c_{\rm dl} = 10^{-5.1}$ M;<br>$^{\dagger\dagger}c_{\rm dl} = 10^{-2.90}$ M        | [14]<br>M;<br><sup>90</sup> M |
| Li+-57                      | Li+57 (w = 1.2 %),<br>KTpCIPB (xi = 38.6 %),<br>PVC (w = 32.8 %),                                                         | Na <sup>+</sup> , -3.0; K <sup>+</sup> , -3.5;<br>H <sup>+</sup> , -0.9; Mg <sup>2+</sup> , -5.7;<br>Ca <sup>2+</sup> , -4.2                                                                      | FIM    | I                   | 0.1;<br>H <sup>+</sup> , 0.001 | 60.0†<br>61.0†† | I                     | 37 °C; []<br>$\uparrow c_{dl} = 10^{-5.0} \text{ M};$<br>$\uparrow \uparrow c_{dl} = 10^{-4.1} \text{ M}$ | [13]<br>1M;<br>1M             |
| † in water.<br>†† in 150 mN | $^\dagger$ in water. $^{\dagger\dagger}$ in 150 mM NaCl, 1.26 mM CaCl <sub>2</sub> , and 4.3 mM KCl.                      |                                                                                                                                                                                                   |        |                     |                                |                 |                       |                                                                                                           | continues on n                |

1877

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 2: Li <sup>+</sup> -Selective Electrodes |  |

| ionophore                   | ionophore membrane<br>composition                                                                                                                              | lgKLi+,Bn+                                                                                                                                                                                                                                                | method                                                 |                 | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                                       | ref.                         |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------------------------------------------------------------|------------------------------|
|                             | oNPOE $(w = 65.6 \%)$                                                                                                                                          | Na+, -2.92††                                                                                                                                                                                                                                              |                                                        |                 |                                                       |                          |                        |                                                                                               |                              |
|                             | Li <sup>+</sup> -57 ( <i>w</i> = 1.2 %),<br>KTpCIPB ( <i>x</i> ] = 14.8 %),<br>oNPOE ( <i>w</i> = 65.6 %),<br>PVC ( <i>w</i> = 32.8 %).                        | Na+, -2.80                                                                                                                                                                                                                                                | FIM                                                    | I               | 1                                                     | 60†<br>61††              |                        | $37 \circ C;$ []<br>$\ddagger c_{dl} = 10^{-5.2} M;$<br>$\ddagger c_{dl} = 10^{-3.6} M$       | [14]<br>M;<br>6 M            |
| Li+-58                      | Li <sup>+</sup> -58 ( $w = 1.2  \%$ ),<br>KTpCIPB ( $\kappa = 33.6  \%$ ),<br>PVC ( $w = 32.8  \%$ ),<br>oNPOE ( $w = 65.6  \%$ )                              | $\begin{array}{l} Na^+, -2.9; K^+, -4.3; \\ H^+, +1.1; Mg^{2+}, -5.3; \\ Ca^{2+}, -4.3 \\ Na^+, -3.25^{\dagger\dagger} \end{array}$                                                                                                                       | FIM                                                    | I               | 0.1;<br>H+, 0.001                                     | 50.0†<br>61.0††          | I                      | 37 °C; [13]<br>$^{\dagger} c_{dl} = 10^{-5.0} M;$<br>$^{\dagger\dagger} c_{dl} = 10^{-3.8} M$ | [13]<br>M;<br><sup>8</sup> M |
| Li+-59                      | Li <sup>+</sup> -59 ( $w = 1.4 \%$ ),<br>KTpCIPB ( $x_1 = 22 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )                                       | Na <sup>+</sup> , -0.72; K <sup>+</sup> , -0.76<br>H <sup>+</sup> , +2.1; Mg <sup>2+</sup> , +0.11;<br>Ca <sup>2+</sup> , -0.44                                                                                                                           | SSM                                                    | 1.0<br>0.1      | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30 \text{ s};$<br>25 °C                                                       | [15]                         |
| Li+-60                      | <b>Li<sup>+-60</sup></b> ( $w = 1.4 \%$ ),<br>KTpCIPB ( $x_i = 40 \%$ ),<br>PVC ( $w = 27.9 \%$ ),<br>oNPOE ( $w = 69.8 \%$ )                                  | Na <sup>+</sup> , -1.2; K <sup>+</sup> , -1.9<br>H <sup>+</sup> , +2.9; Mg <sup>2+</sup> , -0.35; Ca <sup>2+</sup> , -0.78                                                                                                                                | SSM                                                    | 1.0<br>0.1      | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30 \text{ s};$<br>25 °C                                                       | [15]                         |
| Li+-61                      | Li <sup>+</sup> -61 ( <i>w</i> = 1.4 %),<br>KTpCIPB ( <i>x</i> j = 25 %),<br>PVC ( <i>w</i> = 27.9 %),<br>oNPOE ( <i>w</i> = 69.8 %)                           | Na <sup>+</sup> , -2.4; K <sup>+</sup> , -2.8<br>H <sup>+</sup> , +1.8; Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -2.8                                                                                                                                  | SSM                                                    | 1.0<br>0.1      | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30 \text{ s};$<br>25 °C                                                       | [15]                         |
| Li+-62                      | <b>Li<sup>+</sup>-62</b> ( <i>w</i> = 1.4 %),<br>KTpCIPB ( <i>x</i> j = 44 %),<br>PVC ( <i>w</i> = 27.9 %),<br>oNPOE ( <i>w</i> = 69.8 %)                      | Na <sup>+</sup> , -2.7; K <sup>+</sup> , -2.9<br>H <sup>+</sup> , +3.1; Mg <sup>2+</sup> , -2.6; Ca <sup>2+</sup> , -2.7                                                                                                                                  | SSM                                                    | 1.0<br>0.1      | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30 \text{ s};$<br>25 °C                                                       | [15]                         |
| Li+-63                      | Li <sup>+-63</sup> (w = 1.4 %),<br>KTpCIPB (xi = 36 %),<br>PVC (w = 27.9 %),<br>oNPOE (w = 69.8 %)                                                             | $\begin{array}{l} Na^+, -3.1;  K^+, -3.3 \\ H^+, +2.4;  Mg^{2+}, -3.0;  Ca^{2+}, -3.2 \\ Na^+, -3.0;  K^+, -3.5; \\ Ca^{2+}, -3.3 \\ Ca^{2+}, -3.3 \end{array}$                                                                                           | MSM                                                    | 1.0<br>0.1<br>- | 1.0<br>0.1<br>-                                       | 57 ± 1<br>−              | I I                    | $t_{\rm resp} = 30 \text{ s};$<br>25 °C                                                       | [15]                         |
|                             | <b>Li<sup>+</sup>-63</b> ( $w = 1.4$ % or 2.8 %),<br>oNPOE ( $w = 69.9$ % or 68.9 %),<br>KTPCIPB ( $x_i = 28.6$ % or 14.3 %),<br>PVC ( $w = 27.9$ % or 27.5 %) | $\begin{array}{l} Na^+, -3.1;  K^+, -3.3;  H^+, +2.6; \\ Mg^{2+}, -3.0;  Ca^{2+}, -3.3 \\ Na^+, -2.6;  K^+, -2.9;  H^+, +2.4; \\ Mg^{2+}, -3.0;  Ca^{2+}, -3.2 \\ Na^+, -3.1;  K^+, -3.3 \\ Na^+, -3.0;  K^+, -3.5 \\ Na^+, -3.0;  K^+, -3.5 \end{array}$ | $SSM = EB - (E_A = E_B) = 0$ $SSM = 0$ $I = 1$ FIM = - |                 | -<br>0.1<br>1                                         | - 57                     | 1 1                    | 25 °C                                                                                         | [16]                         |
| † in water.<br>†† in 150 mN | $^{\dagger}$ in water. $^{\dagger}$ in 150 mM NaCl, 1.26 mM CaCl $_{2},$ and 4.3 mM KCl.                                                                       |                                                                                                                                                                                                                                                           |                                                        |                 |                                                       |                          |                        |                                                                                               |                              |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

## Y. UMEZAWA et al.

| ionophore | membrane<br>composition                                                                                                                             | lgKLi+,Bn+                                                                                                                                                                                                                                                 | method                          |              | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                 | ref. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------|------|
|           | Lit-63 ( $w = 1.4 \%$ or 2.8 %),<br>oNPPE ( $w = 69.9 \%$ or 68.9 %),<br>KTpCIPB ( $x_1 = 28.6 \%$ or 14.3 %),                                      | $\begin{array}{l} Na^+, -3.3;  K+, -3.6;  H^+,  +2.7; \\ Mg^{2+}, -3.4;  Ca^{2+}, -3.2 \\ Na^+, -2.8;  K+, -3.0;  H^+, +2.6; \end{array}$                                                                                                                  | $SSM (E_{A} = E_{B})$ $SSM (0)$ | B) - 0.1     | - 0.1                                                 | 59                       | I                      | 25 °C                                   | [16] |
|           | PVC ( <i>w</i> = 27.9 % or 27.5 %)                                                                                                                  | Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -3.1<br>Na <sup>+</sup> , -3.3; K <sup>+</sup> , -3.6<br>Na <sup>+</sup> , -3.2; K <sup>+</sup> , -3.6                                                                                                         | FIM                             | I            | 1 1                                                   | I                        | I                      |                                         |      |
|           | <b>Li<sup>+</sup>-63</b> ( $w = 1.4$ % or 2.8 %),<br>FNDPE ( $w = 69.9$ % or 68.9 %),                                                               | Na <sup>+</sup> , -3.1; K <sup>+</sup> , -3.4; H <sup>+</sup> , +2.8;<br>Mg <sup>2+</sup> , -3.1; Ca <sup>2+</sup> , -3.1                                                                                                                                  | $SSM = E_{B}$                   | B) -         | ,<br>  (                                              | 59                       | I                      | 25 °C                                   | [16] |
|           | K1pCIPB ( $x_1 = 28.6 \%$ or 14.3 %),<br>PVC ( $w = 27.9 \%$ or 27.5 %)                                                                             | Na <sup>+</sup> , -2.7; K <sup>+</sup> , -2.8; H <sup>+</sup> , +2.7;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -3.1<br>Na <sup>+</sup> , -3.2; K <sup>+</sup> , -3.3                                                                                 | SSM                             | 0.1          | 0.1                                                   |                          |                        |                                         |      |
|           | <b>Lit-63</b> ( $w = 1.4$ % or 2.8 %),<br>BEHS ( $w = 69.9$ % or 68.9 %),<br>KThCIDR ( $v = -38.6$ % or 14.3 %)                                     | Na <sup>+</sup> , $-2.8$ ; K <sup>+</sup> , $-3.1$ ; H <sup>+</sup> , $+3.0$ ;<br>Mg <sup>2+</sup> , $-3.1$ ; Ca <sup>2+</sup> , $-3.0$<br>Na <sup>+</sup> $-2.7$ ; K <sup>+</sup> $-2.0$ ; H <sup>+</sup> $-2.8$ :                                        | $SSM (E_{A} = E_{B})$           | B) -<br>01   |                                                       | 58                       | I                      | 25 °C                                   | [16] |
|           | PVC $(w = 27.9\% \text{ or } 27.5\%)$                                                                                                               | Mg <sup>2+</sup> , -3.2;Ca <sup>2+</sup> , -3.1<br>Na <sup>+</sup> , -2.9; K <sup>+</sup> , -3.2                                                                                                                                                           |                                 |              | 1                                                     |                          |                        |                                         |      |
|           | <b>Lit-63</b> ( $w = 1.4$ % or 2.8 %),<br>TOPO ( $w = 69.9$ % or 68.9 %),<br>KTpCIPB ( $x_1 = 28.6$ % or 14.3 %),<br>DVC ( $w = 27.0$ % or 27.5 %). | Na <sup>+</sup> , -1.4; K <sup>+</sup> , -1.8; H <sup>+</sup> , +2.3;<br>Mg <sup>2+</sup> , -0.63; Ca <sup>2+</sup> , +0.19<br>Na <sup>+</sup> , -1.4; K <sup>+</sup> , -1.6; H <sup>+</sup> , +2.0;<br>Ma <sup>2+</sup> , -0.65, Ca <sup>2+</sup> , +0.21 | $SSM (E_{A} = E_{B})$ $SSM = 0$ | в)<br>0.1    | 0.1                                                   | 51                       | I                      | 25 °C                                   | [16] |
|           |                                                                                                                                                     | Na <sup>+</sup> , -1.4; K <sup>+</sup> , -1.9                                                                                                                                                                                                              | SSM                             | 1            | 1                                                     |                          |                        |                                         |      |
| Li+-64    | <b>Li<sup>+</sup>-64</b> ( $w = 1.4 %$ ),<br>KTpCIPB ( $x_i = 54 %$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )                         | Na <sup>+</sup> , -2.7; K <sup>+</sup> , -2.8<br>H <sup>+</sup> , +3.2; Mg <sup>2+</sup> , -2.3; Ca <sup>2+</sup> , -2.5                                                                                                                                   | SSM                             | 1.0<br>0.1   | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30  \rm s;$<br>25 °C    | [15] |
| Li+-65    | <b>Li<sup>+-65</sup></b> ( $w = 1.4 \%$ ),<br>KTpCIPB ( $x_i = 36 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )                       | $Na^+$ , -2.1; $K^+$ , -2.3<br>H <sup>+</sup> , +2.5; $Mg^{2+}$ , -1.8; $Ca^{2+}$ , -2.0                                                                                                                                                                   | SSM                             | 1.0<br>0.1   | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30 \text{ s};$<br>25 °C | [15] |
| Li+-66    | <b>Li<sup>+-66</sup></b> ( $w = 1.4 \%$ ),<br>KTpCIPB ( $x_1 = 54 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )                       | $Na^+$ , -1.8; $K^+$ , -1.8<br>H <sup>+</sup> , +3.5; $Mg^{2+}$ , -1.3; $Ca^{2+}$ , -1.7                                                                                                                                                                   | SSM                             | $1.0 \\ 0.1$ | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30 \text{ s};$<br>25 °C | [15] |
| Li+-67    | <b>Li<sup>+-67</sup></b> ( $w = 1.4 %$ ),<br>KTpcIPB ( $x_1 = 36 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )                        | Na <sup>+</sup> , -0.85; K <sup>+</sup> , -0.98<br>H <sup>+</sup> , +3.7; Mg <sup>2+</sup> , +0.46;<br>Ca <sup>2+</sup> , -0.81                                                                                                                            | SSM                             | $1.0 \\ 0.1$ | 1.0<br>0.1                                            | I                        | 1                      | $t_{\rm resp} = 30  \rm s;$<br>25 °C    | [15] |
|           |                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                 |              |                                                       |                          |                        |                                         | •    |

continues on next page

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| ionophore | ionophore membrane<br>composition                                                                                              | lgKLi+,Bn+                                                                                                                                                            | method     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                | ref. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|----------------------------------------|------|
| Li+-68    | Li <sup>+-68</sup> ( $w = 1.4 \%$ ),<br>KTpCIPB ( $v_1 = 54 \%$ ),<br>PVC ( $w = 27.9 \%$ ),<br>oNPOE ( $w = 69.8 \%$ )        | Na <sup>+</sup> , -0.72; K <sup>+</sup> , -0.82<br>H <sup>+</sup> , +4.6; Mg <sup>2+</sup> , +0.39;<br>Ca <sup>2+</sup> , -0.71                                       | SSM        | 1.0<br>0.1                  | 1.0<br>0.1                                            | I                        | I                      | $t_{\rm resp} = 30  \rm s;$<br>25 °C   | [15] |
| Li+-69    | Li <sup>+</sup> -69 ( $w = 1.4 \%$ ),<br>KTpCIPB ( $i_1 = 49 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )       | Na <sup>+</sup> , -2.3; K <sup>+</sup> , -2.3<br>H <sup>+</sup> , +3.4; Mg <sup>2+</sup> , -2.0; Ca <sup>2+</sup> , -2.2                                              | SSM        | 1.0<br>0.1                  | 1.0<br>0.1                                            | I                        | 1                      | $t_{\rm resp} = 30  \rm s;$<br>25 °C   | [15] |
| Li+-70    | Li <sup>+-70</sup> ( $w = 1.4 \%$ ),<br>KTpCIPB ( $i_1 = 68 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )        | Na <sup>+</sup> , -1.7; K <sup>+</sup> , -1.4<br>H <sup>+</sup> , +3.5; Mg <sup>2+</sup> , -1.2; Ca <sup>2+</sup> , -1.3                                              | SSM        | 1.0<br>0.1                  | 1.0<br>0.1                                            | I                        | I                      | t <sub>resp</sub> = 30 s;<br>25 °C     | [15] |
| Li+-71    | Li <sup>+</sup> -71 ( $w = 1.4 \%$ ),<br>KTpCIPB ( $i_1 = 40 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )       | Na+, -2.1; K+, -1.4<br>H+, +4.0; Mg <sup>2+</sup> , -2.1; Ca <sup>2+</sup> , -2.1                                                                                     | SSM        | 1.0<br>0.1                  | 1.0<br>0.1                                            | I                        | 1                      | $t_{\rm resp} = 30  \rm s;$<br>25 °C   | [15] |
| Li+-72    | Li <sup>+-72</sup> ( $w = 1.4 \%$ ),<br>KTpCIPB ( $i_1 = 59 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )        | Na <sup>+</sup> , -2.0; K <sup>+</sup> , -1.3<br>H <sup>+</sup> , +4.0; Mg <sup>2+</sup> , -2.1; Ca <sup>2+</sup> , -2.1                                              | SSM        | 1.0<br>0.1                  | 1.0<br>0.1                                            | I                        | I                      | t <sub>resp</sub> = 30 s;<br>25 °C     | [15] |
| Li+-73    | Li <sup>+-73</sup> ( $w = 3^{-7}$ %),<br>TEHP ( $w \approx 70$ %), PVC ( $w \approx 28$ %)                                     | $\begin{split} Na^+, -1.00; \ K^+, -1.77; \ Cs^+, -2.07; \\ Rb^+, -2.14; \ NH4^+, -0.60; \\ Mg^{2+}, -3.32; \ Ca^{2+}, -2.92; \\ Ba^{2+}, -3.28 \end{split}$          | ; SSM      | 0.1                         | 0.1                                                   | 60                       | $10^{-4}$ $-10^{-1}$   | $t_{\rm resp} = 60  \rm s;$<br>25 °C   | [17] |
|           | <b>Li+.73</b> ( $w = 3-7$ %),<br>DOPP ( $w \approx 70$ %), PVC ( $w \approx 28$ %)                                             | $\begin{split} Na^+, -0.26; \ K^+, -1.96; \ Rb^+, -2.89; \ \ SSM \\ Cs^+, -1.89; \ NH_4^+, -0.92; \\ Mg^{2+}, -2.03; \ Ca^{2+}, -2.01; \\ Ba^{2+}, -2.08 \end{split}$ | ; SSM      | 0.1                         | 0.1                                                   | 61                       | $10^{-4}$ $-10^{-1}$   | $t_{\rm resp} = 60  {\rm s};$<br>25 °C | [17] |
| Li+-74    | Li+-74 ( $w = 3-7\%$ ),<br>TEHP ( $w \approx 70\%$ ), PVC ( $w \approx 28\%$ )                                                 | $\begin{array}{l} Na^+,-1.51;K^+,-2.01;Rb^+,-1.85;\\ Cs^+,-1.96;NH4^+,-0.54;\\ Mg^{2+},-3.27;Ca^{2+},-2.85;\\ Ba^{2+},-3.28\end{array}$                               | -1.85; SSM | 0.1                         | 0.1                                                   | 61                       | $10^{-4}$ $-10^{-1}$   | $t_{\rm resp} = 60  \rm s;$<br>25 °C   | [17] |
|           | Li <sup>+</sup> -74 ( $w = 1.5 \%$ ),<br>TEHP ( $w \approx 70 \%$ ), PVC ( $w \approx 28 \%$ )                                 | $\begin{array}{l} Na^+, -1.0; \ K^+, -1.7; \ Rb^+, -1.4; \\ Cs^+, -1.7; \ NH_4^+, -0.6; \\ Mg^{2+}, -2.8; \ Ca^{2+}, -2.3; \\ Ba^{2+}, -3.3 \end{array}$              | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.                               | [17] |
|           | <b>Li+-74</b> ( $w = 3.0$ %), TEHP ( $w \approx 70$ %), Na <sup>+</sup> , -1.2; K <sup>+</sup> , -2.2; Rb <sup>+</sup> , -2.3; | , Na <sup>+</sup> , −1.2; K <sup>+</sup> , −2.2; Rb <sup>+</sup> , −2.3;                                                                                              | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.                               | [17] |

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

## Y. UMEZAWA et al.

| ionophore | membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lgKLi+,Bn+                                                                                                                                                                                                                                              | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                  | ref.                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|----------------------------------------------------------|-------------------------|
|           | PVC ( $w \approx 28 \ \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} Cs^+,-2.2;NH_4^+,-0.8;\\ Mg^{2+},-3.0;Ca^{2+},-2.9;\\ Ba^{2+},-3.2\end{array}$                                                                                                                                                        |        |                             |                                                       |                          |                        |                                                          |                         |
|           | <b>Lit-74</b> ( $w = 5.0 \%$ ), TEHP ( $w \approx 70 \%$ )<br>PVC ( $w \approx 28 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ), TEHP ( $w \approx 70$ %), Na <sup>+</sup> , -1.3; K <sup>+</sup> , -2.3; Rb <sup>+</sup> , -2.1;<br>Cs <sup>+</sup> , -2.3; NH <sub>4</sub> <sup>+</sup> , -0.7;<br>Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -2.8;<br>Ba <sup>2+</sup> , -3.4     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.                                                 | [17]                    |
|           | <b>Lit-74</b> ( $w = 7.0$ %), TEHP ( $w \approx 70$ %)<br>PVC ( $w \approx 28$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ), TEHP ( $w \approx 70 \ \%$ ), Na <sup>+</sup> , -1.4; K <sup>+</sup> , -2.4; Rb <sup>+</sup> , -2.6;<br>Cs <sup>+</sup> , -2.4; NH <sub>4</sub> <sup>+</sup> , -1.0;<br>Mg <sup>2+</sup> , -3.4; Ca <sup>2+</sup> , -3.2;<br>Ba <sup>2+</sup> , -4.2 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 1.0.0.g.                                                 | [17]                    |
|           | L <sub>1</sub> +-74 ( $w = 3-7\%$ ),<br>KTpCIPB ( $x_i = 30\%$ ),<br>TEHP ( $w \approx 70\%$ ),<br>PVC ( $w \approx 28\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Na <sup>+</sup> , -1.5; K <sup>+</sup> , -2.5; Rb <sup>+</sup> , -2.8;<br>Cs <sup>+</sup> , -2.6; NH <sub>4</sub> <sup>+</sup> , -1.2;<br>Mg <sup>2+</sup> , -3.5; Ca <sup>2+</sup> , -3.7;<br>Ba <sup>2+</sup> , -4.2                                  | SSM    | 0.1                         | 0.1                                                   | 60                       | $10^{-5}$<br>-10^{-1}  | <i>t</i> <sub>resp</sub> < 2 min;<br>pH > 2;<br>r.o.o.g. | [17]                    |
|           | <b>Lit-74</b> ( $w = 3-7\%$ ),<br>PVC ( $w \approx 28\%$ ),<br>DOPP ( $w \approx 70\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{split} Na^+, -0.99; \ K^+, -0.82; \ Rb^+, -1.85; \ SSM \\ Cs^+, -1.92; \ NH_{4^+}, -0.68; \\ Mg^{2^+}, -1.82; \ Ca^{2^+}, -1.11; \\ Ba^{2^+}, -1.68 \end{split}$                                                                                | SSM    | 0.1                         | 0.1                                                   | 58                       | $10^{-4}$ $-10^{-1}$   | 25 °C                                                    | [17]                    |
|           | L <sub>1</sub> +-74 ( $w = 3-7\%$ ),<br>KTpCIPB ( $x_i = 30\%$ ),<br>DOPP ( $w \approx 70\%$ ),<br>PVC ( $w \approx 28\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} Na^+, -1.1;  K+, -0.8;  Rb^+, -1.85; \\ Cs^+, -1.9;  NH_4^+, -0.6; \\ Mg^{2+}, -1.8;  Ca^{2+}, -1.2; \\ Ba^{2+}, -1.7 \end{array}$                                                                                                    | SSM    | 0.1                         | 0.1                                                   | 58                       | $10^{-4}$ $-10^{-1}$   | r.o.o.g.                                                 | [17]                    |
|           | $ \begin{array}{l} \label{eq:Lit-74} \textbf{(}w=3-7\%\textbf{)}, \mbox{ DOA }(w\approx70\%\textbf{)}, \mbox{ Nat}, -0.9; \mbox{ K}^+, -1.6; \mbox{ Rb}^+, -1.3; \\ \mbox{ KTpCIPB }(x_i=30\%\textbf{)}, \mbox{ Cs}^+, -1.4; \mbox{ NH}_{4^+}, -0.6; \\ \mbox{ PVC }(w\approx28\%\textbf{)}, \mbox{ Mg}^{2+}, -3.1; \mbox{ Ca}^{2+}, -2.8; \\ \mbox{ Ba}^{2+}, -3.0; \mbox{ Ca}^{2+}, -3.0; \mbox{ Ca}^{2+}, -3.0; \mbox{ Ca}^{2+}, -3.0; \\ \mbox{ Ca}^{2+}, -3.0; \mbox{ Ca}^{2$ | , Na <sup>+</sup> , -0.9; K <sup>+</sup> , -1.6; Rb <sup>+</sup> , -1.3;<br>Cs <sup>+</sup> , -1.4; NH <sub>4</sub> <sup>+</sup> , -0.6;<br>Mg <sup>2+</sup> , -3.1; Ca <sup>2+</sup> , -2.8;<br>Ba <sup>2+</sup> , -3.0                                | SSM    | 0.1                         | 0.1                                                   | 1                        | I                      |                                                          | [17]                    |
|           | Li <sup>+-74</sup> ( $w = 3-7\%$ ),<br>KTpCIPB ( $x_i = 30\%$ ),<br>BEHA ( $w \approx 70\%$ ),<br>PVC ( $w \approx 28\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} Na^+, -1.2; \ K^+, -1.7; \ Rb^+, -1.9; \\ Cs^+, -1.7; \ NH_4^+, -1.0; \\ Mg^{2+}, -2.7; \ Ca^{2+}, -2.5; \\ Ba^{2+}, -2.3 \end{array}$                                                                                                | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.                                                 | [71]                    |
|           | Li <sup>+-74</sup> ( $w = 3-7\%$ ),<br>KTpCIPB ( $x_i = 30\%$ ),<br>oNPOE ( $w \approx 70\%$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Na <sup>+</sup> , -0.2; K <sup>+</sup> , -0.8; Rb <sup>+</sup> , -1.4;<br>Cs <sup>+</sup> , -1.5; NH <sub>4</sub> <sup>+</sup> , -0.3;<br>Mg <sup>2+</sup> , -2.2; Ca <sup>2+</sup> , -2.4;                                                             | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.                                                 | [17]<br>continues on ne |

next page

1881

| (Continued)  |  |
|--------------|--|
| : Electrodes |  |
| +-Selective  |  |
| • 2: Li      |  |
| ۳,           |  |

| ionophore | e membrane<br>composition                                                                                                               | lgKLi+,Bn+                                                                                                                 | method     | primary i<br>ion conc. i<br>(M) (( | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)    | remarks                       | ref. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|-------------------------------------------------------|--------------------------|---------------------------|-------------------------------|------|
|           | PVC ( $w \approx 28 \ \%$ )                                                                                                             | $Ba^{2+}, -2.5$                                                                                                            |            |                                    |                                                       |                          |                           |                               |      |
| Li+-75    | $Li^{+}-75 (w = 3^{-7} \%),$                                                                                                            | Na <sup>+</sup> , -1.17; K <sup>+</sup> , -1.89; Rb <sup>+</sup> , -2.04; SSM                                              | SSM        | 0.1                                | 0.1                                                   | 61                       | $10^{-4}$                 | $t_{\rm resp} = 60  {\rm s};$ | [17] |
|           | TEHP $(w \approx 70 \%)$ ,                                                                                                              | Cs <sup>+</sup> , -2.09; NH <sub>4</sub> <sup>+</sup> , -1.28;                                                             |            |                                    |                                                       |                          | $-10^{-1}$                | 25 °C                         |      |
|           | PVC ( $w \approx 28 \%$ )                                                                                                               | Mg <sup>2+</sup> , -3.07; Ca <sup>2+</sup> , -2.89;<br>Ba <sup>2+</sup> , -3.12                                            |            |                                    |                                                       |                          |                           |                               |      |
|           | $Li^{+}-75 (w = 3-7 \%),$                                                                                                               | Na <sup>+</sup> , -1.27; K <sup>+</sup> , -2.22; Rb <sup>+</sup> , -2.35; SSM                                              | SSM        | 0.1                                | 0.1                                                   | 55                       | $10^{-4}$                 | $t_{\rm resp} = 60  {\rm s};$ | [17] |
|           | <b>DOPP</b> $(w \approx 70 \%)$ ,                                                                                                       | Cs <sup>+</sup> , -2.31; NH <sub>4</sub> <sup>+</sup> , -1.06;                                                             |            |                                    |                                                       |                          | $-10^{-1}$                | 25 °C                         |      |
|           | PVC ( $w \approx 28 \%$ )                                                                                                               | Mg <sup>2+</sup> , -2.00; Ca <sup>2+</sup> , -2.64;<br>Ba <sup>2+</sup> , -3.06                                            |            |                                    |                                                       |                          |                           |                               |      |
| Li+-76    | <b>Li<sup>+</sup>-76</b> ( $w = 2.5 \%$ ),<br>BBPA ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                 | Na <sup>+</sup> , -1.75; K <sup>+</sup> , -2.4; Mg <sup>2+</sup> , -3.6;<br>Ca <sup>2+</sup> , -0.9; H <sup>+</sup> , -1.5 | SSM        | 0.1                                | 0.1                                                   | 59                       | $10^{-4.8}$<br>$-10^{-1}$ | 20 °C; r.o.o.g.               | [18] |
|           | Li <sup>+-76</sup> (w = 2.5 %),<br>KTpCIPB (x <sub>1</sub> = 15 %),<br>oNPOE (w = 65 %), PVC (w = 33 %)                                 | Na <sup>+</sup> , -1.47                                                                                                    | SSM        | 0.1                                | 0.1                                                   | 60                       | $10^{-5.1}$<br>$-10^{-1}$ | 20 °C                         | [18] |
|           | <b>Li<sup>+</sup>-76</b> ( $w = 2.5$ %),<br>TEHP ( $w = 65$ %), PVC ( $w = 33$ %)                                                       | Na+, -1.76                                                                                                                 | SSM        | 0.1                                | 0.1                                                   | 58                       | $10^{-4.5}$<br>$-10^{-1}$ | 20 °C                         | [18] |
|           | Li+-76 (w = 2.5 %), PVC (w = 33 %),<br>TEHP (w = 65 %),<br>KTpCIPB (x <sub>i</sub> = 15 %)                                              | Na <sup>+</sup> ,-1.4                                                                                                      | SSM        | 0.1                                | 0.1                                                   | 60                       | $10^{-4.9}$<br>$-10^{-1}$ | 20 °C                         | [18] |
|           | Li <sup>+</sup> -76 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 15 %),<br>BEHS ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %) | Na+, -1.75                                                                                                                 | SSM        | 0.1                                | 0.1                                                   | 59                       | $10^{-4.5}$<br>$-10^{-1}$ | 20 °C                         | [18] |
| Li+-77    | $Li^{+}-77 (w = 2.5 \%)$ ,<br>PVC $(w = 33 \%)$ , BBPA $(w = 65 \%)$                                                                    | $Na^+$ , -1.6; $K^+$ , -2.6; $H^+$ , -1.8; $Mg^{2+}$ , -3.5; $Ca^{2+}$ , -0.6                                              | SSM        | 0.1                                | 0.1                                                   | 56                       | $10^{-4.8}$<br>$-10^{-1}$ | 20 °C; r.o.o.g.               | [18] |
|           | Li <sup>+</sup> -77 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 15 %),<br>BBPA ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %) | Na+, -1.6<br>Na+, -1.8                                                                                                     | SSM<br>FIM | 0.1                                | 0.1<br>0.1                                            | 55                       | $10^{-5.0}$<br>$-10^{-1}$ | 20 °C                         | [18] |
|           | Li <sup>+</sup> -77 (w = 2.5 %).<br>KTpCIPB (x <sub>i</sub> = 15 %),<br>oNPOE (w = 65 %), PVC (w = 33 %)                                | Na <sup>+</sup> , -1.4                                                                                                     | SSM        | 0.1                                | 0.1                                                   | 55                       | $10^{-4.8}$<br>$-10^{-1}$ | 20 °C                         | [18] |
|           | Li <sup>+</sup> -77 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 15 %),<br>BEHS ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %) | Na <sup>+</sup> , -1.65                                                                                                    | SSM        | 0.1                                | 0.1                                                   | 59                       | $10^{-5.0}$<br>$-10^{-1}$ | 20 °C                         | [18] |
| Li+-78    | <b>Li<sup>+</sup>-78</b> ( $w = 2.5 \%$ ),<br>BBPA ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                 | $\begin{array}{l} Na^+,-1.80;K^+,-3.6;H^+,-3.1;\\ Mg^{2+},-4.1;Ca^{2+},-0.7; \end{array}$                                  | SSM        | 0.1                                | 0.1                                                   | 55                       | $10^{-5.2}$<br>$-10^{-1}$ | r.o.o.g.                      | [18] |
|           |                                                                                                                                         |                                                                                                                            |            |                                    |                                                       |                          |                           |                               |      |

| ionophore | membrane<br>composition                                                                                                                 | lgKLi+,Bn+                                                                                                                               | method     | primary<br>ion conc<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)      | remarks                     | ref.                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-------------------------------------------------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|
|           |                                                                                                                                         | Na <sup>+</sup> , -2.0                                                                                                                   | FIM        | I                          | 0.1                                                   |                          |                             |                             |                                |
|           | $Li^+-78 \ (w = 2.5 \ \%),$                                                                                                             | $Na^{+}, -1.75$                                                                                                                          | SSM        | 0.1                        | 0.1                                                   | 58                       | $10^{-5.1}$                 | 20 °C                       | [18]                           |
|           | KTpCIPB ( $x_i = 15\%$ ),<br>BBPA ( $w = 65\%$ ), PVC ( $w = 33\%$ )                                                                    | $Na^{+}, -1.9$                                                                                                                           | FIM        | I                          | 0.1                                                   |                          | $-10^{-1}$                  |                             | 5<br>4                         |
|           | $Li^{+}-78 (w = 2.5 \%),$                                                                                                               | Na <sup>+</sup> , –1.2                                                                                                                   | SSM        | 0.1                        | 0.1                                                   | 60                       | 10-5.5                      | 20 °C                       | [18]                           |
|           | KTpCIPB ( $x_i = 15\%$ ),<br>oNPOE ( $w = 65\%$ ), PVC ( $w = 33\%$ )                                                                   | Na <sup>+</sup> , -1.6                                                                                                                   | FIM        | I                          | 0.1                                                   |                          | -10-1                       |                             |                                |
|           | $Li^{+}-78 (w = 2.5 \%),$                                                                                                               | $Na^{+}, -1.45$                                                                                                                          | SSM        | 0.1                        | 0.1                                                   | 58                       | $10^{-5.0}$                 | 20 °C                       | [18]                           |
|           | KTpCIPB $(x_1 = 15\%)$ ,<br>BEHS $(w = 65\%)$ , PVC $(w = 33\%)$                                                                        | Na+, -1.6                                                                                                                                | FIM        | I                          | 0.1                                                   |                          | -10-1                       |                             |                                |
|           | Li <sup>+</sup> -78 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 15 %),<br>TEHP ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %) | Na+, -1.6<br>Na+, -1.9                                                                                                                   | SSM<br>FIM | 0.1<br>-                   | 0.1<br>0.1                                            | 55                       | $10^{-5.0}$<br>$-10^{-1}$   | 20 °C                       | [18]                           |
| Li+-79    | <b>Li+-79</b> ( $w = 2.5 \%$ ),<br>BBPA ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                            | $Na^+$ , -0.25; K <sup>+</sup> , -0.4; H <sup>+</sup> , +1.1; $Mg^{2+}$ , -2.2; $Ca^{2+}$ , -1.0                                         | SSM        | 0.1                        | 0.1                                                   | 45                       | $10^{-3.8}$<br>$-10^{-1}$   | 20 °C; r.o.o.g.             | [18]                           |
|           | Li <sup>+-</sup> 79 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>v</i> i = 15 %),<br>BBPA ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %)            | Na+, -0.1                                                                                                                                | SSM        | 0.1                        | 0.1                                                   | 51                       | $10^{-4}$ -10 <sup>-1</sup> | 20 °C                       | [18]                           |
|           | Li <sup>+-</sup> 79 (w = 2.5 %),<br>KTpCIPB (x <sub>i</sub> = 15 %),<br>oNPOE (w = 65 %), PVC (w = 33 %)                                | Na+, -0.75                                                                                                                               | SSM        | 0.1                        | 0.1                                                   | 51                       | $10^{-4}$ $-10^{-1}$        | 20 °C                       | [18]                           |
| Li+-80    | Li <sup>+</sup> -80 ( $w = 2.5 \%$ ),<br>BBPA ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                      | $\label{eq:Masser} \begin{array}{l} Na^+, +1.5;  K^+, -0.2;  H^+,  +0.1; \\ Mg^{2+}, -2.2;  Ca^{2+},  +0.6 \end{array}$                  | SSM        | 0.1                        | 0.1                                                   | 50                       | $10^{-3.5}$<br>$-10^{-1}$   | 20 °C; r.o.o.g.             | [18]                           |
|           | Li+-80 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>v</i> i = 15 %),<br>BBPA ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %)                         | Na+, +1.23                                                                                                                               | SSM        | 0.1                        | 0.1                                                   | 50                       | $10^{-4}$ $-10^{-1}$        | 20 °C                       | [18]                           |
|           | Li+-80 (w = 2.5 %),<br>KTpCIPB (vi = 15 %),<br>BEHS (w = 65 %), PVC (w = 33 %)                                                          | Na+, +1.4                                                                                                                                | SSM        | 0.1                        | 0.1                                                   | 51                       | $10^{-4}$ -10 <sup>-1</sup> | 20 °C                       | [18]                           |
| Li+-81    | <b>Li+-81</b> ( $w = 2.5 \%$ ),<br>BBPA ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                            | $\begin{array}{l} Na^+, -1.6; K^+, -2.5; H^+, -1.2; \\ Mg^{2+}, -3.9; Ca^{2+}, -1.3 \end{array}$                                         | SSM        | 0.1                        | 0.1                                                   | 58                       | $10^{-5.0}$<br>$-10^{-1}$   | 20 °C; r.o.o.g.             | [18]                           |
|           | Li+-81 (w = 2.5 %),<br>KTpCIPB (vi = 15 %),<br>BBPA (w = 65 %), PVC (w = 33 %)                                                          | Na+, -1.5                                                                                                                                | SSM        | 0.1                        | 0.1                                                   | 59                       | $10^{-5.0}$<br>$-10^{-1}$   | 20 °C                       | [18]                           |
| Li+-82    | Li+-82 ( <i>w</i> = 2.5 %),<br>BBPA ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %)                                                          | Na <sup>+</sup> , $-2.04$ ; K <sup>+</sup> , $-2.9$ ; H <sup>+</sup> , $-1.9$ ;<br>Mg <sup>2+</sup> , $-4.1$ ; Ca <sup>2+</sup> , $-2.2$ | SSM        | 0.1                        | 0.1                                                   | 59                       | $10^{-5.1}$<br>$-10^{-1}$   | 20 °C; r.o.o.g. [18]<br>con | [18]<br>continues on next page |
|           |                                                                                                                                         |                                                                                                                                          |            |                            |                                                       |                          |                             |                             |                                |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

Potentiometric selectivity coefficients of ion-selective electrodes

1883

| (Continued)               |  |
|---------------------------|--|
| 'e Electrodes             |  |
| Li <sup>+</sup> -Selectiv |  |
| ble 2:                    |  |

|        | ionophore membrane<br>composition                                                                                                    | lgKLi+,Bn+                                                                                                                                                                                 | method | primary<br>ion conc<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)    | remarks                                                                                | ref.                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|-------------------------------------------------------|--------------------------|---------------------------|----------------------------------------------------------------------------------------|----------------------|
|        | <b>Lit-82</b> ( $w = 2.5 \%$ ),<br>KTbCIPB ( $x_i = 15 \%$ ).                                                                        | Na+, -2.05                                                                                                                                                                                 | SSM    | 0.1                        | 0.1                                                   | 59                       | $10^{-5.1}$               | 20 °C                                                                                  | [18]                 |
|        | BBPA ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                                                            | Na <sup>+</sup> , -2.4                                                                                                                                                                     | FIM    | I                          | 0.1                                                   |                          |                           | 1<br>1                                                                                 |                      |
|        | Li <sup>+</sup> -82 ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> ] = 15 %),<br>TEHP ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %)         | Na+, -1.96                                                                                                                                                                                 | SSM    | 0.1                        | 0.1                                                   | 58                       | $10^{-5.0}$<br>$-10^{-1}$ | 20 °C                                                                                  | [18]                 |
|        | Li <sup>+</sup> - <b>82</b> ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> ] = 15 %),<br>BEHS ( <i>w</i> = 65 %), PVC ( <i>w</i> = 33 %) | Na+,-1.86                                                                                                                                                                                  | SSM    | 0.1                        | 0.1                                                   | 59                       | $10^{-5.0}$<br>$-10^{-1}$ | 20 °C                                                                                  | [18]                 |
|        | Li <sup>+</sup> -82 ( $w = 2.5$ %),<br>KTpCIPB ( $x_1 = 15$ %),<br>oNPOE ( $w = 65$ %), PVC ( $w = 33$ %)                            | Na+,-1.85                                                                                                                                                                                  | SSM    | 0.1                        | 0.1                                                   | 59                       | $10^{-5.0}$<br>$-10^{-1}$ | 20 °C                                                                                  | [18]                 |
| Li+-83 | Li+ <b>.83</b> ( <i>w</i> = 2.5 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 17 %),<br>TEHP ( <i>w</i> = 64 %), PVC ( <i>w</i> = 33 %)   | Na <sup>+</sup> , -2.83; K <sup>+</sup> , -4.25; Cs <sup>+</sup> , -4.56; SSM<br>NH4 <sup>+</sup> , -3.23; Mg <sup>2+</sup> , -5.78;<br>Ca <sup>2+</sup> , -5.46; Ba <sup>2+</sup> , -5.53 | SSM    | I                          | I                                                     | 58.2                     | $10^{-5.0}$<br>$-10^{-1}$ | $25  ^\circ \mathrm{C};$<br>$t_{\mathrm{resp}} < 30  \mathrm{s}$                       | [19]                 |
|        | Li <sup>1</sup> - <b>83</b> ( $w = 1.2 \%$ ),<br>oNPOE ( $w = 65.8 \%$ ),<br>PVC ( $w = 33 \%$ )                                     | Na <sup>+</sup> , -2.4; K <sup>+</sup> , -4.2; NH <sub>4</sub> <sup>+</sup> , -3.6;<br>Mg <sup>2+</sup> , -4.9; Ca <sup>2+</sup> , -4.9                                                    | MPM    | I                          | $\Delta c_{\rm B} = 0.1$                              | 56.8                     | I                         | artificial [3]<br>serum background <sup>†</sup><br>$c_{dl} = 10^{-5.86}$ M             | [3]<br>round† ;<br>M |
|        | cis-Li+-83 ( $w = 1.2 \%$ ),<br>oNPOE ( $w = 65.8 \%$ ),<br>PVC ( $w = 33 \%$ )                                                      | Na <sup>+</sup> , -2.8; K <sup>+</sup> , -4.6; NH <sub>4</sub> <sup>+</sup> , -5.4;<br>Mg <sup>2+</sup> , -5.7; Ca <sup>2+</sup> , -5.4                                                    | MPM    | I                          | $\Delta c_{\rm B} = 0.1$                              | 55.7                     | I                         | artificial [3]<br>serum background <sup>†</sup> ;<br>$c_{dl} = 10^{-6.09}$ M           | [3]<br>round†;<br>M  |
|        | cis-Li+-83 ( $w = 1.2  \%$ ),<br>oNPOE ( $w = 65.8  \%$ ),<br>KTpCIPB ( $x_1 = 26  \%$ ),<br>PVC ( $w = 33  \%$ )                    | Na <sup>+</sup> , -2.1; K <sup>+</sup> , -3.7; NH <sub>4</sub> <sup>+</sup> , -4.2;<br>Mg <sup>2+</sup> , -4.7; Ca <sup>2+</sup> , -4.8                                                    | MPM    | I                          | $\Delta c_{\rm B} = 0.1$                              | 58.9                     | I                         | artificial [3]<br>serum background <sup>+</sup> ;<br>$c_{\rm dl} = 10^{-6.47} {\rm M}$ | [3]<br>round†;<br>M  |
|        | cis-Li+-83 ( $w = 1.2  \%$ ),<br>oNPOE ( $w = 65.8  \%$ ),<br>KTpCIPB ( $x_1 = 70  \%$ ),<br>PVC ( $w = 33  \%$ )                    | Na+, -2.0; K+, -3.5; NH <sub>4</sub> +, -4.0;<br>Mg <sup>2+</sup> , -4.4; Ca <sup>2+</sup> , -4.9                                                                                          | MPM    | I                          | $\Delta c_{\rm B} = 0.1$                              | 60.3                     | I                         | artificial [3]<br>serum background <sup>†</sup> ;<br>$c_{\rm dl} = 10^{-6.30} {\rm M}$ | [3]<br>round†;<br>M  |
|        | <i>cis</i> <b>-Li+-83</b> ( <i>w</i> = 1.2 %),<br>DOS ( <i>w</i> = 65.8 %),<br>PVC ( <i>w</i> = 33 %)                                | Na <sup>+</sup> , -2.6; K <sup>+</sup> , -4.8; NH <sub>4</sub> <sup>+</sup> , -5.3;<br>Mg <sup>2+</sup> , -5.5; Ca <sup>2+</sup> , -5.7                                                    | MPM    | I                          | $\Delta c_{\rm B} = 0.1$                              | 58.1                     | I                         | artificial [3]<br>serum background <sup>†</sup> ;<br>$c_{dl} = 10^{-6.80} M$           | [3]<br>round†;<br>M  |

<sup>†</sup> artificial serum background: NaH2PO4, 8 mM: Na2HPO4, 1.5 mM; CaCl2, 2.0 mM; MgCl2, 0.8 mM; KCl, 4.5 mM; NH4Cl, 0.05 mM; glucose, 4.7 mM; urea, 2.5 mM; NaCl, 135 mM; 145 mM; and 155 mM.

## Y. UMEZAWA et al.

| ionophore | membrane<br>composition                                                                                                   | lgKLi+,Bn+                                                                                                                                                                                                         | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                                          | ref.              |
|-----------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------------------------------------------------------------------------------------|-------------------|
|           | <i>cis</i> - <b>Li<sup>+</sup>-83</b> ( <i>w</i> = 1.2 %),<br>DBP ( <i>w</i> = 65.8 %),<br>PVC ( <i>w</i> = 33 %)         | Na+, -2.6; K+, -4.6; NH <sub>4</sub> +, -4.7;<br>Mg <sup>2+</sup> , -5.4; Ca <sup>2+</sup> , -5.5                                                                                                                  | MPM    | I                           | $\Delta c_{\rm B}=0.1$                                | 56.6                     | I                      | artificial [3]<br>serum background <sup>†</sup> ;<br>$c_{dl} = 10^{-6.49} \text{ M}$             | [3]<br>und†;<br>1 |
|           | <i>cis</i> - <b>Li+-83</b> ( <i>w</i> = 1.2 %),<br>TEHP ( <i>w</i> = 65.8 %),<br>PVC ( <i>w</i> = 33 %)                   | Na <sup>+</sup> , –2.5; K <sup>+</sup> , –5.7; NH <sub>4</sub> <sup>+</sup> , –3.4;<br>Mg <sup>2+</sup> , –2.9; Ca <sup>2+</sup> , –4.4                                                                            | MPM    | I                           | $\Delta c_{\rm B} = 0.1$                              | 50.7                     | I                      | artificial [3]<br>serum background <sup>†</sup> ;<br>$c_{dl} = 10^{-4.50}$ M                     | [3]<br>und†;<br>1 |
| Li+-84    | Lj+-84 (w = 2.5 %),<br>KTpCIPB (xi = 19 %),<br>TEHP (w = 64 %), PVC (w = 33 %)                                            | Na <sup>+</sup> , -1.38; K <sup>+</sup> , -2.39; Cs <sup>+</sup> , -2.62;<br>NH <sub>4</sub> <sup>+</sup> , -1.11; Mg <sup>2+</sup> , -3.83;<br>Ca <sup>2+</sup> , -3.49; Ba <sup>2+</sup> , -3.74                 | SSM    | I                           | I                                                     | I                        | $10^{-3}-1$            | 140 mM Na <sup>+</sup><br>background;<br>25 °C                                                   | [19]              |
| Li+-85    | Li+-85 (w = 2.5 %),<br>KTpCIPB (x <sub>i</sub> = 22 %),<br>TEHP (w = 64 %), PVC (w = 33 %)                                | Na+, -1.01; K+, -1.83;<br>NH4+, -0.51; Mg <sup>2+</sup> , -3.10;<br>Ca <sup>2+</sup> , -2.76; Ba <sup>2+</sup> , -3.14                                                                                             | SSM    | I                           | 1                                                     | I                        |                        | 25 °C                                                                                            | [19]              |
| Li+-86    | Li+-86 (w = 2.5 %),<br>KTpCIPB (xi = 24 %),<br>TEHP (w = 64 %), PVC (w = 33 %)                                            | Na <sup>+</sup> , -0.99; K <sup>+</sup> , -1.80;<br>NH <sub>4</sub> <sup>+</sup> , -0.50; Mg <sup>2+</sup> , -3.08;<br>Ca <sup>2+</sup> , -2.71; Ba <sup>2+</sup> , -3.04                                          | SSM    | I                           | 1                                                     | I                        | I                      | 25 °C                                                                                            | [19]              |
| Li+-87    | Li <sup>++</sup> 87 ( $w = 1$ %), DOPP ( $w = 67$ %),<br>PVC ( $w = 32$ %)                                                | Na <sup>+</sup> , -1.55; K <sup>+</sup> , -2.24;<br>Mg <sup>2+</sup> , -3.84; Ca <sup>2+</sup> , -2.86;<br>Ba <sup>2+</sup> , -3.15                                                                                | SSM    | 0.01                        | 0.01                                                  | 58.5                     | I                      | c <sub>dl</sub> =<br>10−5.3 M;<br>25.0 ± 0.5 °C                                                  | [20]              |
| Li+-88    | Philips (561–Li)                                                                                                          | Na <sup>+</sup> , -1.33                                                                                                                                                                                            | FIM    | I                           | 1                                                     | 61*<br>47**              | 1 1                    | $37 \circ C$ [1<br>$c_{dl} = 10^{-4.5} M^*;$<br>$c_{dl} = 10^{-2.15} M^{**};$                    | ";<br>";<br>1**   |
| Li+-89    | Lit-89 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_1 = 24.8 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )             | Na+, -0.98                                                                                                                                                                                                         | FIM    | 1                           | I                                                     | $61^{*}$<br>$26^{**}$    | 1 1                    | $37 \circ C$ [<br>$c_{\rm dl} = 10^{-5.0}  {\rm M}^*;$<br>$c_{\rm dl} = 10^{-1.8}  {\rm M}^{**}$ | "."<br>*.**       |
| Li+-90    | Lj+-90 (w = 2–3 %),<br>KTpcIPB (x <sub>i</sub> = 22.2–33.3 %),<br>PVC (w = 26–27 %),<br>BBPA (w = 70 %)                   | $\begin{array}{l} Na^+, -3.3; \ K^+, -3.7; \ Rb^+, -3.6; \\ Cs^+, -3.4; \ NH4^+, -3.8; \ H^+, -3.1; \\ Mg^{2+}, -5.0; \ Ca^{2+}, -5.5; \\ Sr^{2+}, -5.7; \ Ba^{2+}, -5.7; \end{array}$                             | FIM    | 0.1                         | 0.1                                                   | Z                        | 10 <sup>-6</sup> -1    | 10 <sup>-6</sup> -1 25.0±0.5 °C; [21]<br>r.o.o.g. & table                                        | [21]              |
|           | L <b>j</b> +- <b>90</b> ( <i>w</i> = 2–3 %),<br>KTpCIPB ( <i>x</i> <b>j</b> = 22.2–33.3 %),<br>PVC ( <i>w</i> = 26–27 %), | Na <sup>+</sup> , -3.0; K <sup>+</sup> , -3.3; Rb <sup>+</sup> , -3.3;<br>Cs <sup>+</sup> , -3.2; NH <sub>4</sub> <sup>+</sup> , -3.9; H <sup>+</sup> , -2.7;<br>Mg <sup>2+</sup> , -4.5; Ca <sup>2+</sup> , -5.0; | FIM    | 0.1                         | 0.1                                                   | I                        | I                      | 25.0 ± 0.5 °C; [21]<br>r.o.o.g.                                                                  | [21]              |
|           |                                                                                                                           |                                                                                                                                                                                                                    |        |                             |                                                       |                          |                        |                                                                                                  |                   |

continues on next page <sup>†</sup> artificial serum background: NaH<sub>2</sub>PO4, 8 mM; Na<sub>2</sub>HPO4, 1.5 mM; CaCl<sub>2</sub>, 2.0 mM; MgCl<sub>2</sub>, 0.8 mM; KCl, 4.5 mM; NH4Cl, 0.05 mM; glucose, 4.7 mM; urea, 2.5 mM; NaCl, 135 mM; 145 mM; and 155 mM.

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

|        | composition                                                                                                                                     | Q(, 17                                                                                                                                                                                                                                                                 |     |     | primary intertering<br>ion conc. ion conc.<br>(M) (M) | mV/<br>(mV/<br>decade) | range<br>(M)                              |                                   |      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------------------------------------------------------|------------------------|-------------------------------------------|-----------------------------------|------|
|        | BEHP $(w = 70 \%)$                                                                                                                              | Sr <sup>2+</sup> , -5.3; Ba <sup>2+</sup> , -5.5                                                                                                                                                                                                                       |     |     |                                                       |                        |                                           |                                   |      |
|        | L <sub>1</sub> +-90 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 22.2-33.3$ %),<br>PVC ( $w = 26-27$ %),<br>oNPOE ( $w = 70$ %)                          | Na <sup>+</sup> , -2.8; K <sup>+</sup> , -3.5; Rb <sup>+</sup> , -3.6;<br>Cs <sup>+</sup> , -3.3; NH <sub>4</sub> <sup>+</sup> , -4.0; H <sup>+</sup> , -2.7;<br>Mg <sup>2+</sup> , -4.3; Ca <sup>2+</sup> , -5.0;<br>Sr <sup>2+</sup> , -5.2; Ba <sup>2+</sup> , -5.2 | FIM | 0.1 | 0.1                                                   | I                      | I                                         | 25.0±0.5°C; [21]<br>r.o.o.g.      | [21] |
|        | Li <sup>+</sup> -90 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 22.2-33.3$ %),<br>PVC ( $w = 26-27$ %),<br>oNPPE ( $w = 70$ %)                          | $\begin{array}{l} Na^+, -2.9, K^+, -3.4; Rb^+, -3.4;\\ Cs^+, -3.3, NH_4^+, -3.8; H^+, -2.8;\\ Mg^{2+}, -4.2; Ca^{2+}, -4.9;\\ Sr^{2+}, -5.3; Ba^{2+}, -5.4 \end{array}$                                                                                                | FIM | 0.1 | 0.1                                                   | 1                      | I                                         | 25.0 ± 0.5 °C;<br>r.o.o.g.        | [21] |
| Li+-91 | Li+91 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_i = 36.6 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )                                    | Na+, -2.92                                                                                                                                                                                                                                                             | FIM | I   | 0.1                                                   | 61<br>60†              | 10 <sup>-5.1</sup><br>10 <sup>-3.8†</sup> | 37 °C;<br>clinical<br>background† | [22] |
| Li+-92 | L <sub>1</sub> +-92 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_1 = 36.6 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )                      | Na+, -3.25                                                                                                                                                                                                                                                             | FIM | I   | 0.1                                                   | 61<br>50†              | 10-5.2<br>10-4.1                          | 37 °C;<br>clinical<br>background† | [22] |
| Li+-93 | Li <sup>+</sup> -93 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_i = 46.2 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )                      | Na+, -2.93                                                                                                                                                                                                                                                             | FIM | I   | 0.1                                                   | 54<br>61†              | 10-5.5<br>10-3.7†                         | 37 °C;<br>clinical<br>background† | [22] |
| Li+-94 | Li <sup>+</sup> -94 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_i = 28.7 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )                      | Na+, -2.25<br>protein: significant interference                                                                                                                                                                                                                        | FIM | I   | 0.1                                                   | 61<br>60†              | $10^{-4.4}$<br>$10^{-3.2}$ †              | 37 °C;<br>clinical<br>background† | [22] |
| Li+-95 | Li <sup>+</sup> -95 ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_i = 31.4 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )                      | Na <sup>+</sup> , -2.30                                                                                                                                                                                                                                                | FIM | I   | 0.1                                                   | 60<br>61†              | $10^{-5.0}$ $10^{-3.1}$                   | 37 °C;<br>clinical<br>background† | [22] |
| Li+-96 | mixture of Li+-96, Li+-97 (w = 1.2 %), Na <sup>+</sup> , -2.30<br>oNPOE (w = 65.6 %),<br>KTpCIPB (x <sub>i</sub> = 48.2 %),<br>PVC (w = 32.8 %) | %), Na+, -2.30                                                                                                                                                                                                                                                         | FIM | I   | 0.1                                                   | 59<br>61†              | $10^{-4.9}$ $10^{-3.1}$                   | 37 °C;<br>clinical<br>background† | [22] |

Y. UMEZAWA et al.

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

 $^\dagger$ clinical background: NaCl 150 mM; KCl 4.3 mM; CaCl\_2 1.26 mM; MgCl\_2 0.9 mM

| 1 :+ 07 | composition                                                                                                                     | 15^1_L1 <sup>+</sup> ,B <sup>1+</sup>                                                                                          |     | ion conc.<br>(M) | primary mericring<br>ion conc. ion conc.<br>(M) (M) | stope<br>(mV/<br>decade) | range<br>(M)      |                                   |        |
|---------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-----------------------------------------------------|--------------------------|-------------------|-----------------------------------|--------|
| 16-     | Li <sup>+-97</sup> ( $w = 1.2 \%$ ),<br>KTpCIPB ( $x_1 = 48.2 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ )       | Na <sup>+</sup> , -2.30                                                                                                        | HIM | I                | 0.1                                                 | 58<br>60†                | 10-4.9<br>10-3.1† | 37 °C;<br>clinical<br>background† | [22]   |
| Li+-98  | Li <sup>+</sup> -98 ( $w = 1.4 \%$ ),<br>KTpCIPB ( $x_1 = 64.2 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>PVC ( $w = 27.9 \%$ )      | Na <sup>+</sup> , -2.6; K <sup>+</sup> , -2.9; H <sup>+</sup> , +3.5;<br>Mg <sup>2+</sup> , -3.0; Ca <sup>2+</sup> , -3.2      | SSM | 1                | -                                                   | 1                        | I                 | I.0.0.g.                          | [23]   |
| Li+-99  | <b>Li<sup>+</sup>-99</b> ( $w = 1.4 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),<br>KTpCIPB ( $x_i = 65.9 \%$ ),<br>PVC ( $w = 27.9 \%$ ) | Na <sup>+</sup> , -2.5; K <sup>+</sup> , -3.1; H <sup>+</sup> , +3.4;<br>Mg <sup>2+</sup> , -3.4; Ca <sup>2+</sup> , -3.4      | SSM | 1                | -                                                   | I                        | I                 | r.o.o.g.                          | [23]   |
|         | <b>Li<sup>+</sup>-99</b> ( $w = 1.4 \%$ ),<br>FNDPE ( $w = 69.8 \%$ ),<br>KTpCIPB ( $x_i = 65.9 \%$ ),<br>PVC ( $w = 27.9 \%$ ) | Na <sup>+</sup> , -2.7; K <sup>+</sup> , -2.9; H <sup>+</sup> , +2.3;<br>Mg <sup>2+</sup> , -3.0; Ca <sup>2+</sup> , -3.2      | SSM | 1                | -                                                   | I                        | I                 | 1.0.0.g.                          | [23]   |
|         | <b>Li<sup>+</sup>-99</b> ( $w = 1.4 \%$ ),<br>oNPPE ( $w = 69.8 \%$ ),<br>KTpCIPB ( $x_i = 65.9 \%$ ),<br>PVC ( $w = 27.9 \%$ ) | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -2.8; H <sup>+</sup> , +3.7;<br>Mg <sup>2+</sup> , -2.5; Ca <sup>2+</sup> , -3.2      | SSM | 1                | -                                                   | I                        | I                 | r.o.o.g.                          | [23]   |
| Li+-100 | <b>Li+-100</b> ( $w = 1.4 \%$ ),<br>oNPOE ( $w = 69.8 \%$ ),                                                                    | Na+, -3.23; K+, -3.75; H+, +2.57<br>Mg <sup>2+</sup> , -3.25; Ca <sup>2+</sup> , -3.35                                         | SSM | 1                | 1                                                   | 56                       | I                 | fresh electrode [23]              | 5 [23] |
|         | KTpCIPB ( $x_i = 67.6 \%$ ),<br>PVC ( $w = 27.9 \%$ )                                                                           | Na <sup>+</sup> , -3.21; K <sup>+</sup> , -3.68; H <sup>+</sup> , +2.46;<br>Mg <sup>2+</sup> , -3.10; Ca <sup>2+</sup> , -3.18 | SSM | _                | -                                                   | 56                       | I                 | 1 d<br>old electrode              |        |
|         |                                                                                                                                 | Na <sup>+</sup> , -3.21; K <sup>+</sup> , -3.60; H <sup>+</sup> , +2.43;<br>Mg <sup>2+</sup> , -3.07; Ca <sup>2+</sup> , -3.19 | SSM | 1                | 1                                                   | 54                       | I                 | 3 d<br>old electrode              |        |
|         |                                                                                                                                 | Na <sup>+</sup> , $-3.11$ ; K <sup>+</sup> , $-3.40$ ; H <sup>+</sup> , $+2.37$ ;<br>Ca <sup>2+</sup> $-3.32$                  | SSM | 1                | 1                                                   | 51                       | I                 | 4 d<br>old electrode              |        |
|         |                                                                                                                                 | Na <sup>+</sup> , $-3.10$ ; K <sup>+</sup> , $-3.36$ ;<br>Ma <sup>2+</sup> $-7.79$ ; Ca <sup>2+</sup> $-7.96$                  | SSM | 1                | 1                                                   | 51                       | I                 | 5 d<br>S d                        |        |
|         |                                                                                                                                 | Na <sup>+</sup> , -3.04; K <sup>+</sup> , -3.26; H <sup>+</sup> , +2.35;                                                       | SSM | 1                | 1                                                   | 51                       | I                 | 6 d                               |        |
|         |                                                                                                                                 | Mg <sup>2+</sup> , -2.55; Ca <sup>2+</sup> , -2.86<br>Na <sup>+</sup> , -3.23; K <sup>+</sup> , +3.71; H <sup>+</sup> , +3.45; | SSM | 1                | 1                                                   | I                        | I                 | old electrode                     |        |
|         |                                                                                                                                 | Mg <sup>2+,</sup> 3.48; Ca <sup>4+</sup> , -3.48<br>Na <sup>4</sup> , -3.1; K <sup>+</sup> , -3.6; Ca <sup>2+</sup> , -3.3     | FIM | I                | Na+, 0.14;<br>K+, 1.0;<br>Ca+ 0.1                   | I                        | I                 | fresh electrode                   |        |

## Potentiometric selectivity coefficients of ion-selective electrodes

continues on next page

 $^\dagger$ clinical background: NaCl 150 mM; KCl 4.3 mM; CaCl\_2 1.26 mM; MgCl\_2 0.9 mM

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)

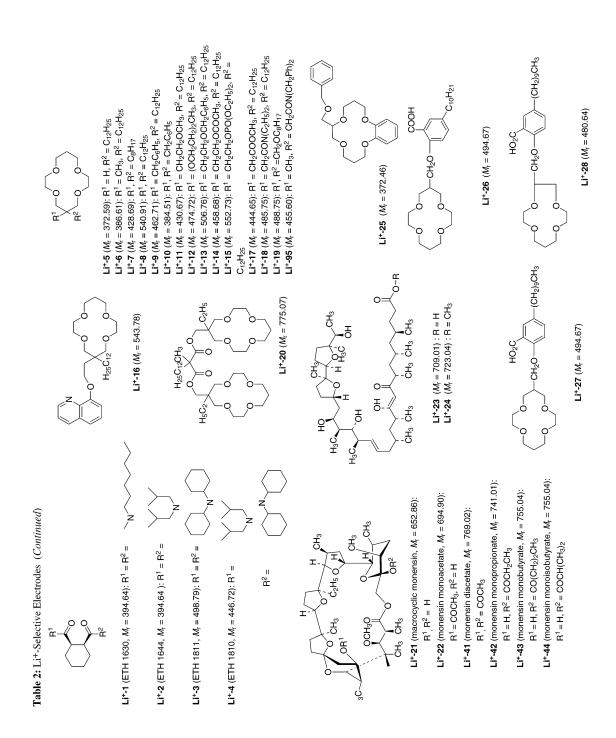
| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 2: Li <sup>+</sup> -Selective Electrodes |  |

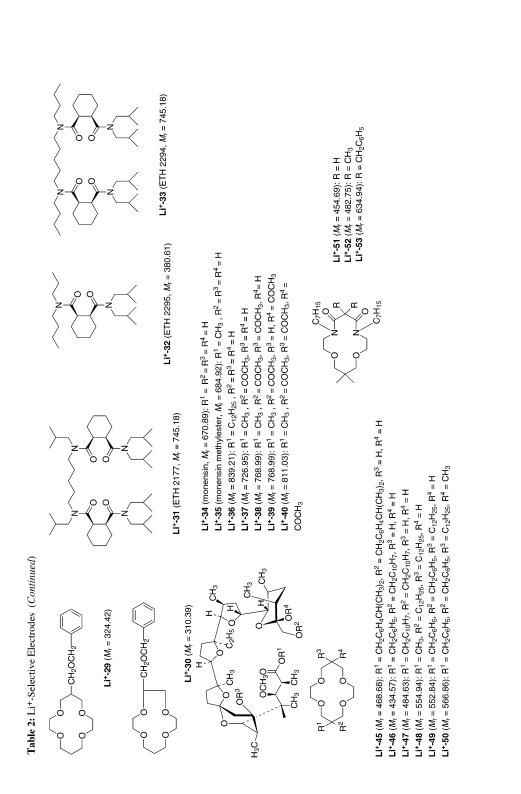
| ionophore | ionophore membrane                                                                                                                                 | lgKi :+ Rn+                                                                                                                    | method | primarv          | primary interfering                                                       | slope           | linear       | remarks  | ref. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---------------------------------------------------------------------------|-----------------|--------------|----------|------|
|           | composition                                                                                                                                        | Ĵ.                                                                                                                             |        | ion conc.<br>(M) | ion conc. ion conc.<br>(M) (M)                                            | (mV/<br>decade) | range<br>(M) |          |      |
|           | <b>Li+100</b> ( $w = 0.8 \%$ ),<br>oNPOE ( $w = 70.2 \%$ ),                                                                                        | Na <sup>+</sup> , -2.00; K <sup>+</sup> , -2.08; H <sup>+</sup> , +2.32;<br>Mg <sup>2+</sup> , -3.19; Ca <sup>2+</sup> , -3.36 | SSM    | 1                | 1                                                                         | I               | I            |          | [23] |
|           | KTpCIPB ( $x_i = 67.6 \%$ ),<br>PVC ( $w = 28.1 \%$ )                                                                                              | Na <sup>+</sup> , -2.6; K <sup>+</sup> , -3.5; Ca <sup>2+</sup> , -3.7                                                         | FIM    | 1                | Na <sup>+</sup> , 0.14;<br>K <sup>+</sup> , 1.0;<br>Ca <sup>+</sup> , 0.1 | 1               | I            |          |      |
|           | <b>Li+-100</b> $(w = 1.4 \%)$ ,<br>oNPOE $(w = 70.4 \%)$ ,<br>PVC $(w = 28.2 \%)$                                                                  | Na <sup>+</sup> , -0.29; K+, -0.42; H <sup>+</sup> , +2.29;<br>Mg <sup>2+</sup> , -1.13; Ca <sup>2+</sup> , -1.33              | SSM    | 1                | 1                                                                         | I               | I            |          | [23] |
|           | <b>Li+-100</b> ( $w = 2.8 \%$ ),<br>oNPOE ( $w = 68.9 \%$ ),                                                                                       | Na <sup>+</sup> , -2.97; K <sup>+</sup> , -3.47; H <sup>+</sup> , +2.83;<br>Mg <sup>2+</sup> , -3.62; Ca <sup>2+</sup> , -3.71 | SSM    | 1                | 1                                                                         | I               | I            |          | [23] |
|           | KTpCIPB ( $x_i = 67.6 \%$ ),<br>PVC ( $w = 27.5 \%$ )                                                                                              | Na <sup>+</sup> , -2.8; K <sup>+</sup> , -3.4; Ca <sup>2+</sup> , -3.5                                                         | FIM    | I                | Na+, 0.14;<br>K+, 1.0;<br>Ca+, 0.1                                        | I               | I            |          |      |
|           | Li <sup>+</sup> -100 ( $w = 1.4$ %),<br>FNDPE ( $w = 69.8$ %),<br>KTPCIPB ( $x_1 = 67.6$ %),<br>PVC ( $w = 27.9$ %)                                | Na+, -2.8; K+, -3.0; H+, +3.2;<br>Mg <sup>2+</sup> , -3.4; Ca <sup>2+</sup> , -3.5                                             | SSM    | -                | 1                                                                         | 1               | I            | r.o.o.g. | [23] |
|           | Li <sup>+</sup> -100 ( $w = 1.4$ %),<br>oNPPE ( $w = 69.8$ %),<br>KTpCIPB ( $x_1 = 67.6$ %),<br>PVC ( $w = 27.9$ %)                                | Na+, -2.2; K+, -2.5; H+, +2.9;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -3.7                                             | SSM    | -                | 1                                                                         | 1               | I            | r.o.o.g. | [23] |
| Li+-101   | <b>Li+-101</b> ( $w = 1.4$ %),<br>oNPOE ( $w = 69.8$ %),<br>KTpCIPB ( $x_1 = 69.3$ %),<br>PVC ( $w = 27.9$ %)                                      | Na+, -3.0; K+, -3.6; H+, +2.9;<br>Mg <sup>2+</sup> , -3.3; Ca <sup>2+</sup> , -3.3                                             | SSM    | -                | 1                                                                         | 1               | I            | r.o.o.g. | [23] |
|           | Li <sup>1</sup> -101 ( <i>w</i> = 1.4 %),<br>FNDPE ( <i>w</i> = 69.8 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 69.3 %),<br>PVC ( <i>w</i> = 27.9 %) | Na+, -2.0; K+, -2.2; H+, +3.2;<br>Mg <sup>2+</sup> , -2.5; Ca <sup>2+</sup> , -3.2                                             | SSM    | -                | 1                                                                         | I               | I            | r.o.o.g. | [23] |
|           | Li <sup>+</sup> -101 ( $w = 1.4 \%$ ),<br>oNPPE ( $w = 69.8 \%$ ),<br>KTpCIPB ( $x_1 = 69.3 \%$ ),<br>PVC ( $w = 27.9 \%$ )                        | Na+, -2.5; K+, -2.9; H+, +3.3;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -3.5                                             | SSM    | -                | 1                                                                         | 1               | I            | r.o.o.g. | [23] |
| Li+-102   | <b>Lit-102</b> ( <i>w</i> = 1.4 %),<br>oNPOE ( <i>w</i> = 69.8 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 71.0 %),<br>PVC ( <i>w</i> = 27.9 %)       | Na+, -3.0; K+, -3.5; H+, +3.0;<br>Mg <sup>2+</sup> , -3.4; Ca <sup>2+</sup> , -3.4                                             | SSM    | -                | 1                                                                         | 1               | I            | r.o.o.g. | [23] |

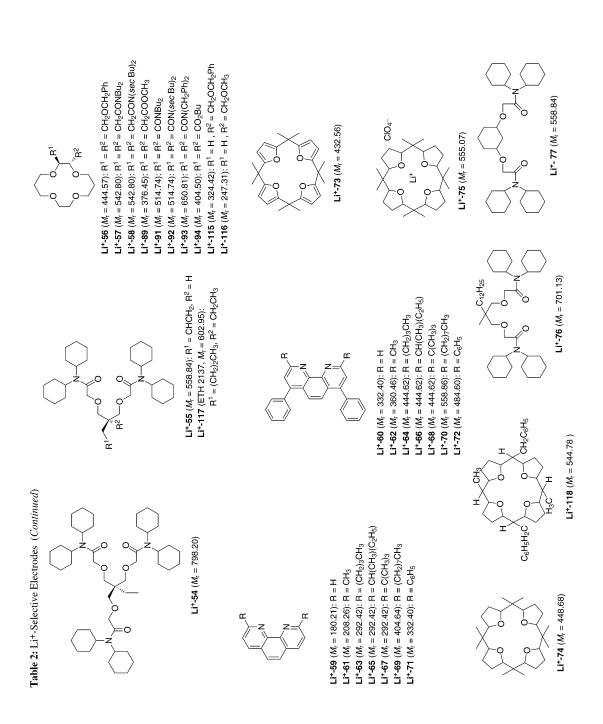
Y. UMEZAWA et al.

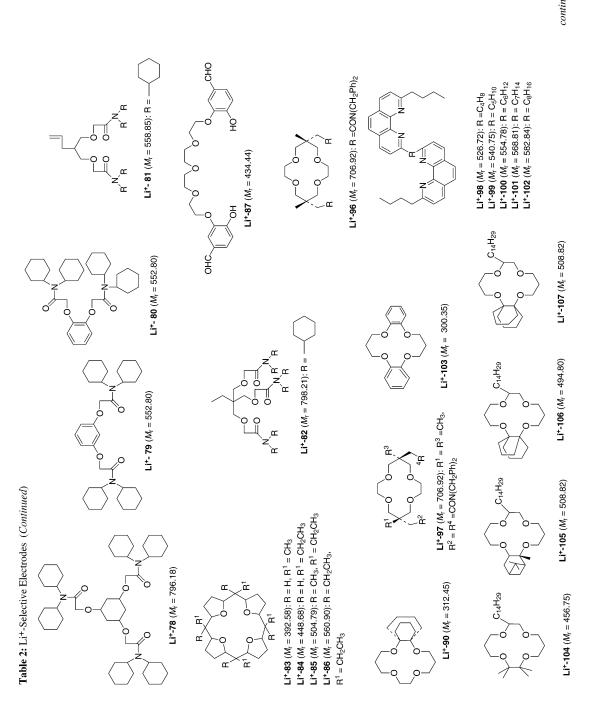
.

| ionophore | e membrane<br>composition                                                                                               | lgKLi+,Bn+                                                                                                                                                                                                                                      | method |     | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                                     | remarks                                                                  | ref.         |
|-----------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------------------------------------------------------|--------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|--------------|
| Li+-103   | Lit-103 ( $w = 2-3\%$ ),<br>KTpCIPB ( $x_i = 20-30\%$ ),<br>BBPA ( $w = 70\%$ ),<br>PVC ( $w = 26-27\%$ )               | $\begin{array}{l} Na^+, -0.9;  K+, -1.2;  Rb^+, -1.5; \\ Cs^+, -1.6;  NH4^+, -1.9; \\ Mg^{2+}, -4.2;  Ca^{2+}, -4.1;  Sr^{2+}, -4.2; \\ Ba^{2+}, -4.2 \end{array}$                                                                              | SSM    | 0.1 | 0.1                                                   | I                        | I                                                          | 25 ± 0.5 °C                                                              | [24]         |
| Li+-104   | Li <sup>+</sup> -104 (w = 2–3 %),<br>KTpCIPB (x <sub>i</sub> = 20–30 %),<br>BBPA (w = 70 %),<br>PVC (w = 26–27 %)       | $\begin{array}{l} Na^+, -2.6;  K^+, -2.9;  Rb^+, -3.0; \\ Cs^+, -3.0;  NH_4^+, -3.0; \\ Mg^{2+}, -5.3;  Ca^{2+}, -4.7;  Sr^{2+}, -5.0; \\ Ba^{2+}, -5.0 \end{array}$                                                                            | SSM ;  | 0.1 | 0.1                                                   | I                        | I                                                          | $25 \pm 0.5  ^{\circ}\text{C};$ $1gP_{\text{TLC}} =$ $14.0 \pm 0.2$      | [24]         |
| Li+-105   | Li <sup>+1</sup> -105 ( $w = 2-3$ %),<br>KTpCIPB ( $x_i = 20-30$ %),<br>BBPA ( $w = 70$ %),<br>PVC ( $w = 26-27$ %)     | Na <sup>+</sup> , -2.8; K <sup>+</sup> , -3.3; Rb <sup>+</sup> , -3.7;<br>Cs <sup>+</sup> , -3.6; NH <sub>4</sub> <sup>+</sup> , -3.7;<br>Mg <sup>2+</sup> , -6.1; Ca <sup>2+</sup> , -5.2; Sr <sup>2+</sup> , -5.0;<br>Ba <sup>2+</sup> , -5.0 | SSM    | 0.1 | 0.1                                                   | I                        | I                                                          | $25.0 \pm 0.5 ^{\circ}\text{C};$<br>$\lg P_{\text{TLC}} =$<br>14.9 ± 0.2 | [24]         |
| Li+-106   | Li <sup>+-</sup> 106 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>BBPA ( $w = 70$ %),<br>PVC ( $w = 26-27$ %)      | $\begin{array}{l} Na^+,-2.9;K+,-3.4;Rb^+,-3.6;\\ Cs^+,-3.7;NH_4^+,-3.5;\\ Mg^{2+},-5.0;Ca^{2+},-5.0;Sr^{2+},-5.1;\\ Ba^{2+},-5.0\end{array}$                                                                                                    | SSM :  | 0.1 | 0.1                                                   | I                        | I                                                          | $25 \pm 0.5  ^{\circ}$ C;<br>$1gP_{TLC} =$<br>$16.3 \pm 0.3$             | [24]         |
| Li+-107   | Li <sup>+</sup> -107 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>PVC ( $w = 26-27$ %),<br>BBPA ( $w = 70$ %)      | $\begin{array}{l} Na^+, -3.0; \ K^+, -3.6; \ Rb^+, -3.6; \\ Cs^+, -3.5; \ NH4^+, -3.7; \\ Mg^{2+}, -5.0; \ Ca^{2+}, -4.9; \\ Sr^{2+}, -5.0; \ Ba^{2+}, -5.0 \end{array}$                                                                        | SSM    | 0.1 | 0.1                                                   | Z                        | $2 \times 10^{-6} - 1 \ 2 \times 10^{-6} - 1 \ -10^{-3} *$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$                     | [24]<br>NaCI |
|           |                                                                                                                         | $\begin{array}{l} Na^+, -3.1;  K^+, -3.6;  Rb^+, -3.7; \\ Cs^+, -3.6;  NH_4^+, -3.8; \\ Mg^{2+}, <-5.0;  Ca^{2+}, <-5.0; \\ Sr^{2+}, <-5.0;  Ba^{2+}, <-5.0; \end{array}$                                                                       | FIM    | I   | 0.15                                                  |                          |                                                            |                                                                          |              |
| Li+-108   | <b>Li<sup>+1</sup>108</b> ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>PVC ( $w = 26-27$ %),<br>BBPA ( $w = 70$ %) | Na <sup>+</sup> , -1.9; K <sup>+</sup> , -2.1; Rb <sup>+</sup> , -2.3;<br>Cs <sup>+</sup> , -2.5; NH <sub>4</sub> <sup>+</sup> , -2.5;<br>Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -2.9; Sr <sup>2+</sup> , -2.8;<br>Ba <sup>2+</sup> , -2.9 | SSM :  | 0.1 | 0.1                                                   | I                        | I                                                          | 25.0 ± 0.5 °C                                                            | [24]         |
| Li+-109   | <b>Li<sup>+1</sup>109</b> ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>PVC ( $w = 26-27$ %),<br>BBPA ( $w = 70$ %) | $\begin{array}{l} Na^{+}, -2.5;  K^{+}, -3.2;  Rb^{+}, -3.4; \\ Cs^{+}, -3.5;  NH4^{+}, -3.4; \\ Mg^{2+}, -4.3;  Ca^{2+}, -4.9;  Sr^{2+}, -4.9; \\ Ba^{2+}, -5.2 \end{array}$                                                                   | SSM    | 0.1 | 0.1                                                   | I                        | I                                                          | 25.0 ± 0.5 °C                                                            | [24]         |
| Li+-110   | Li <sup>+</sup> -110 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>PVC ( $w = 26-27$ %),<br>BBPA ( $w = 70$ %)      | $\begin{array}{l} Na^+, -2.3;  K^+, -3.0;  Rb^+, -3.2; \\ Cs^+, -3.1;  NH_4^+, -3.0; \\ Mg^2+, -4.0;  Ca^{2+}, -4.2;  Sr^{2+}, -4.2; \\ Ba^{2+}, -4.1 \end{array}$                                                                              | SSM    | 0.1 | 0.1                                                   | I                        | I                                                          | 25.0 ± 0.5 °C                                                            | [24]         |
|           |                                                                                                                         | •                                                                                                                                                                                                                                               |        |     |                                                       |                          |                                                            |                                                                          |              |


 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)


© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

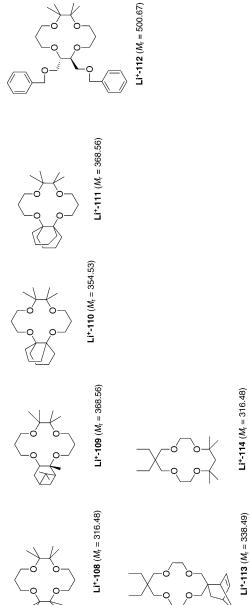

 Table 2: Li<sup>+</sup>-Selective Electrodes (Continued)


| ionophore                   | membrane                                                                                                                      | lgKLi+.Bn+                                                                                                                                                                | method | primary          | interfering                    | slope           | linear       | remarks                                                                                                   | ref.                                          |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|--------------------------------|-----------------|--------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                             | composition                                                                                                                   |                                                                                                                                                                           |        | ion conc.<br>(M) | ion conc. ion conc.<br>(M) (M) | (mV/<br>decade) | range<br>(M) |                                                                                                           |                                               |
| Li+-111                     | Li <sup>+</sup> -111 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>PVC ( $w = 26-27$ %),<br>BBPA ( $w = 70$ %)            | $\begin{array}{l} Na^+,-2.0;K^+,-2.7;Rb^+,-2.8;\\ Cs^+,-2.5;NH_{4}^+,-3.0;\\ Mg^{2+},-4.2;Ca^{2+},-5.0;Sr^{2+},-4.7;\\ Ba^{2+},-4.7\end{array}$                           | SSM    | 0.1              | 0.1                            | 1               | I            | 25.0 ± 0.5 °C                                                                                             | [24]                                          |
| Li+-112                     | Li <sup>+</sup> -112 (w = 2–3 %),<br>KTpCIPB (x <sub>1</sub> = 20–30 %),<br>PVC (w = 26–27 %),<br>BBPA (w = 70 %)             | $\begin{array}{l} Na^+, -2.8; K^+, -3.7; Rb^+, -3.5; \\ Cs^+, -3.3; NH_4^+, -3.5; \\ Mg^{2+}, -5.0; Ca^{2+}, -3.9; Sr^{2+}, -4.7; \\ Ba^{2+}, -4.7 \end{array}$           | SSM    | 0.1              | 0.1                            | I               | I            | 25.0 ± 0.5 °C                                                                                             | [24]                                          |
| Li+-113                     | Li <sup>+</sup> -113 ( $w = 2-3$ %),<br>KTpCIPB ( $x_1 = 20-30$ %),<br>PVC ( $w = 26-27$ %),<br>BBPA ( $w = 70$ %),           | $\begin{array}{l} Na^+, -1.9; \ K^+, -2.0; \ Rb^+, -2.0; \\ Cs^+, -2.0; \ NH_4^+, -2.0; \\ Mg^{2+}, -5.0; \ Ca^{2+}, -4.1; \ Sr^{2+}, -4.5; \\ Ba^{2+}, -4.4 \end{array}$ | SSM    | 0.1              | 0.1                            | I               | I            | 25.0 ± 0.5 °C                                                                                             | [24]                                          |
| Li+-114                     | Li <sup>+-</sup> 114 ( $w = 2-3\%$ ),<br>KTpCIPB ( $x_1 = 20-30\%$ ),<br>PVC ( $w = 26-27\%$ ),<br>BBPA ( $w = 70\%$ ),       | $\begin{array}{l} Na^+,-2.4;K^+,-3.0;Rb^+,-3.2;\\ Cs^+,-3.3;NH_4^+,-3.2;\\ Mg^{2+},-5.5;Ca^{2+},-5.2;Sr^{2+},-5.5;\\ Ba^{2+},-5.4\end{array}$                             | SSM    | 0.1              | 0.1                            | 1               | I            | 25.0 ± 0.5 °C                                                                                             | [24]                                          |
| Li+-115                     | Li <sup>+</sup> -115 ( $w = 1.2$ %),<br>oNPOE ( $w = 65.6$ %),<br>KTpCIPB ( $x_1 = 23.0$ %),<br>PVC ( $w = 32.8$ %)           | Na <sup>+</sup> , -1.35                                                                                                                                                   | FIM    | I                | 0.1;<br>H <sup>+</sup> , 0.001 | 53.1†<br>45.0†† | I            | 37 °C; [<br>$c_{dl} = 10^{-4.9} \text{ M}^{\dagger}$ ;<br>$c_{dl} = 10^{-2.2} \text{ M}^{\dagger\dagger}$ | $^{\dagger}_{^{\dagger}};^{13]}_{^{\dagger}}$ |
| Li+-116                     | <b>Lit-116</b> $(w = 1.2 \%)$ ,<br>oNPOE $(w = 65.6 \%)$ ,<br>KTpCIPB $(x_1 = 23.5 \%)$ ,<br>PVC $(w = 32.8 \%)$              | Na <sup>+</sup> , -1.14                                                                                                                                                   | FIM    | I                | 0.1<br>H <sup>+</sup> , 0.001  | 60.0†<br>44.0†† | I            | 37 °C; [<br>$c_{\rm dl} = 10^{-5.1} {\rm M}^{+};$<br>$c_{\rm dl} = 10^{-2.0} {\rm M}^{+\dagger};$         | $^{[13]}_{^{\ddagger}};$                      |
| Li+-117                     | Li+117 (w = 2.0 %),<br>BBPA (w = 65.6 %),<br>PVC (w = 32.4 %)                                                                 | Na+, -1.24; K+, -1.29;<br>NH4+, -1.33; Mg <sup>2+</sup> , -2.33                                                                                                           | SSM    | 0.01             | 0.01                           | 56.0            | I            | $23 \pm 2$ °C; [2<br>$c_{\rm dl} = 10^{-4.32}$ M;<br>coated glassy<br>carbon electrode                    | [25]<br>1;<br>de                              |
|                             | Li <sup>+</sup> -117 ( $w = 1.9$ %),<br>BBPA ( $w = 62.3$ %),<br>PVC ( $w = 30.8$ %),<br>poly(3-octylthiophene) ( $w = 5$ %)  | Na+, -1.27; K+, -1.29;<br>NH4+, -1.39; Mg <sup>2+</sup> , -2.39                                                                                                           | SSM    | 0.01             | 0.01                           | 56.0            | I            | $23 \pm 2$ °C; [7<br>$c_{\rm dl} = 10^{-4.41}$ M;<br>coated glassy<br>carbon electrode                    | [25]<br>1;<br>de                              |
|                             | Li <sup>+</sup> -117 ( $w = 1.8$ %),<br>BBPA ( $w = 59.0$ %),<br>PVC ( $w = 29.2$ %),<br>poly(3-octylthiophene) ( $w = 10$ %) | Na <sup>+</sup> , -1.31; K <sup>+</sup> , -1.46;<br>NH <sub>4</sub> <sup>+</sup> , -1.49; Mg <sup>2+</sup> , -2.43                                                        | SSM    | 0.01             | 0.01                           | 56.8            | I            | 23 $\pm$ 2 °C; []<br>$c_{dl} = 10^{-4.23}$ M;<br>coated glassy<br>carbon electrode                        | [25]<br>1;<br>de                              |
| † in water.<br>†† in 150 mN | $^\dagger$ in water. $^{\dagger\dagger}$ in 150 mM NaCl, 1.26 mM CaCl $_2$ , and 4.3 mM KCl.                                  |                                                                                                                                                                           |        |                  |                                |                 |              |                                                                                                           |                                               |

| iononhore                                  | membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lgKr :+ Bn+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nrimarv                                                                                 | nrimarv interferinø                          | slone           | linear       | remarks ref.                                                                                    | 1                      |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|-----------------|--------------|-------------------------------------------------------------------------------------------------|------------------------|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ion conc.<br>(M)                                                                        | ion conc.<br>(M)                             | (mV/<br>decade) | range<br>(M) |                                                                                                 |                        |
|                                            | Li <sup>+</sup> -117 ( $w = 1.7$ %),<br>BBPA ( $w = 55.8$ %),<br>PVC ( $w = 27.5$ %),<br>poly(3-octylthiophene) ( $w = 15$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Na <sup>+</sup> , -1.40; K <sup>+</sup> , -1.48;<br>NH <sub>4</sub> <sup>+</sup> , -1.61; Mg <sup>2+</sup> , -2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                    | 0.01                                         | 57.8            |              | $23 \pm 2$ °C; [25]<br>$c_{\rm dl} = 10^{-4.26}$ M;<br>coated glassy<br>carbon electrode        | I                      |
|                                            | Li <sup>+-</sup> 117 ( $w = 1.6$ %),<br>BBPA ( $w = 52.5$ %),<br>PVC ( $w = 25.9$ %),<br>poly(3-octylthiophene) ( $w = 20$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Na <sup>+</sup> , -1.37; K+, -1.47;<br>NH <sub>4</sub> <sup>+</sup> , -1.57; Mg <sup>2+</sup> , -2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                    | 0.01                                         | 55.5            | I            | $23 \pm 2^{\circ}$ C; [25]<br>$c_{\rm dl} = 10^{-4.20}$ M;<br>coated glassy<br>carbon electrode |                        |
|                                            | Li <sup>+-</sup> 117 ( $w = 1.5$ %),<br>BBPA ( $w = 49.2$ %),<br>PVC ( $w = 24.3$ %),<br>poly(3-octylthiophene) ( $w = 25$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Na <sup>+</sup> , -1.40; K <sup>+</sup> , -1.47;<br>NH <sub>4</sub> <sup>+</sup> , -1.62; Mg <sup>2+</sup> , -2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                    | 0.01                                         | 56.0            | I            | $23 \pm 2$ °C; [25]<br>$c_{\rm dl} = 10^{-4.26}$ M;<br>coated glassy<br>carbon electrode        |                        |
| Li+-118                                    | Li <sup>+</sup> -118 ( $w = 1.2 \%$ ),<br>oNPOE ( $w = 65.8 \%$ ),<br>PVC ( $w = 33 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Na <sup>+</sup> , $-0.2$ ; K <sup>+</sup> , $+1.1$ ; NH <sub>4</sub> <sup>+</sup> , $+1.3$ ;<br>Mg <sup>2+</sup> , $+0.6$ ; Ca <sup>2+</sup> , $+0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                       | $\Delta c_{\rm B} = 0.1$                     | 6.3             | I            | artificial [3]<br>serum background;<br>$c_{\rm dl} = 10^{-3.69}$ M                              |                        |
| (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2 | <ul> <li>E. Metzger, D. Ammann, U. Schefer, E. Pretsch, W. Simon, <i>Chimia</i>, <b>38</b>, 440–442 (1984).</li> <li>W.E. Morf, R. Bliggensdorfer, W. Simon, <i>Anal. Sci.</i>, <b>5</b>, 453–458 (1989).</li> <li>W.E. Morf, R. Bliggensdorfer, W. Simon, <i>Anal. Sci.</i>, <b>5</b>, 453–458 (1989).</li> <li>A.S. Attiyat, G.D. Christian, J.L. Hallman, R.A. Bartsch, <i>Talanta</i>, <b>35</b>, 789–794 (1987).</li> <li>K. Kimura, H. Yano, S. Kitazawa, T. Shono, <i>J. Chem. Soc. Perkin Trans.</i> 2, 1945–1951 (1986).</li> <li>K. Suzuki, K. Tohda, H. Sasakura, H. Inoue, K. Tatsuta, T. Shirai, <i>J. Chem. Soc. Chem. Commun.</i>, 932–934 (1987).</li> <li>K. Suzuki, K. Tohda, H. Sasakura, H. Inoue, K. Tatsuta, T. Shirai, <i>J. Chem. Soc. Chem. Commun.</i>, 932–934 (1990).</li> <li>K. Suzuki, N. Kosuge, K. Watanebe, H. Nagashima, H. Inoue, T. Shirai, <i>Anal. Chem.</i>, <b>62</b>, 936–942 (1990).</li> <li>A.S. Attiyat, G.D. Christian, <i>Anal Sci.</i>, 4, 13–16 (1988).</li> <li>A.S. Attiyat, G.D. Christian, <i>Anal Sci.</i>, 4, 13–16 (1988).</li> <li>A.S. Attiyat, G.D. Christian, <i>Anal Sci.</i>, 4, 13–16 (1988).</li> <li>A.S. Attiyat, G.D. Christian, <i>Anal Sci.</i>, 4, 13–16 (1990).</li> <li>A.S. Attiyat, G.D. Christian, <i>Anal Sci.</i>, 6, 233–237 (1990).</li> <li>A.S. Attiyat, G.D. Christian, <i>Anal Sci.</i>, 9, 593–597 (1990).</li> <li>A.S. Attiyat, A. K. Kovingion, <i>Anal'N. Trans.</i> 2, 311–327 (1991).</li> <li>A. Sataky, P.E. Nicholson, D. Parker, <i>J. Chem. Soc.</i>, <i>Perkin Trans.</i> 2, 31–327 (1991).</li> <li>R. Kataky, P.E. Nicholson, D. Parker, <i>J. Chem. Soc.</i>, <i>Perkin Trans.</i> 2, 321–327 (1992).</li> <li>S. Kataky, P.E. Nicholson, D. Parker, <i>J. Chem. Soc.</i>, <i>Perkin Trans.</i> 2, 321–327 (1992).</li> <li>S. Kataky, P.E. Nicholson, D. Parker, <i>J. Chem. Soc.</i>, <i>Id.</i> 135–140 (1991).</li> <li>R. Kataky, P.E. Nicholson, D. Parker, <i>J. Chem. Soc.</i>, <i>Id.</i> 132–127 (1995).</li> <li>S. Kataky, P.E. Nicholson, D. Parker, <i>J. Chem. Soc.</i>, <i>Id.</i> 123–127 (1993).</li> <li>S. Kim, S.O. Jung, S.S. Lee, SJ. Kim, <i>Bull. Korean Chem. Soc.</i>, <i>16</i>, 199–199 (1995).</li> <li>S. Moody, B.B. Saad, J.D. Thonas, F.H. Kohnke, <i>J.F. Stodhat</i></li></ul> | <ul> <li>T. E. Pretsch, W. Simon, <i>Chimia</i>, <b>38</b>, 440–442 (1984).</li> <li>Simon, <i>Anal. Sci.</i>, <b>5</b>, 453–458 (1989).</li> <li>Cha, S.O. Jung, J.S. Kim, <i>Analyst</i>, <b>122</b>, 1445–1450 (1997).</li> <li>S. Cha, Bartsch, <i>Talanta</i>, <b>35</b>, 789–794 (1986).</li> <li>H. Inoue, K. Tatsuta, T. Shirai, <i>J. Chem. Soc. Chem. Commun.</i>, 932–934 (1987).</li> <li>Watanabe, H. Nagashima, H. Inoue, T. Shirai, <i>Anal. Chem.</i>, <b>62</b>, 936–942 (1990).</li> <li>Siei, <b>4</b>, 13–16 (1988).</li> <li>T. Shono, <i>J. Chem. Soc. Chem. Commun.</i>, 932–934 (1987).</li> <li>Watanabe, H. Nagashima, H. Inoue, T. Shirai, <i>Anal. Chem.</i>, <b>62</b>, 936–942 (1990).</li> <li>Siei, <b>4</b>, 13–16 (1988).</li> <li>T. Shono, <i>Bunseki Kagaku</i>, <b>39</b>, 779–783 (1990).</li> <li>M. Acta, <b>111</b>, 277–281 (1990).</li> <li>M. A. Lorem, Soc., <i>Perkin Trans.</i> 2, 321–327 (1990).</li> <li><i>Analyst</i>, <b>116</b>, 135–140 (1991).</li> <li><i>Anal Sci.</i>, <b>9</b>, 593–597 (1990).</li> <li><i>Analyst</i>, <b>116</b>, 123–127 (1993).</li> <li><i>Analyst</i>, <b>120</b>, 2381–2386 (1995).</li> <li><i>Analyst</i>, <b>120</b>, 2381–2386 (1995).</li> <li>Sim Bull, <i>Korean Chem. Soc.</i>, <b>16</b>, 197–199 (1995).</li> <li>Armadist, <b>120</b>, 2381–2386 (1995).</li> <li>Armadist, <b>13</b>, 1255–1258 (1988).</li> <li>H. Yannaka, <i>Kauki Anal. Lett.</i>, <b>26</b>, 49–54 (1993).</li> <li>Armadist, <b>120</b>, 2381–2386 (1995).</li> <li>Armadist, <b>13</b>, 1255–1258 (1986).</li> <li>Armadist, <i>14</i>, Analyst, <i>113</i>, 1255–1258 (1988).</li> <li>Armadist, <i>14</i>, Analyst, <i>113</i>, 1255–1258 (1995).</li> <li>Armadist, <i>14</i>, Analyst, <i>113</i>, 1255–1258 (1995).</li> <li>Armadist, <i>14</i>, Analyst, <i>14</i>, 49–54 (1993).<th><ul> <li>(1984).</li> <li>-1450 (1998).</li> <li>-1951 (1998).</li> <li>-1951 (11951).</li> <li>-1951 (11951).</li> <li>-233-237</li> <li>-233-237</li> <li>-233-237</li> <li>-233-237</li> <li>-1951).</li> <li>-1095).</li> <li>-11 (1995).</li> <li>-11 (1995).<th>97).<br/>866).<br/>886).<br/>888).<br/>932<br/>1988).<br/>7 (1990).<br/>(1995).<br/>823 (1995).</th><th>2-934 (1987)<br/>136-942 (199<br/>14-3410 (199</th><th>.0).<br/>(0).</th><th></th><th></th><th></th></li></ul></th></li></ul> | <ul> <li>(1984).</li> <li>-1450 (1998).</li> <li>-1951 (1998).</li> <li>-1951 (11951).</li> <li>-1951 (11951).</li> <li>-233-237</li> <li>-233-237</li> <li>-233-237</li> <li>-233-237</li> <li>-1951).</li> <li>-1095).</li> <li>-11 (1995).</li> <li>-11 (1995).<th>97).<br/>866).<br/>886).<br/>888).<br/>932<br/>1988).<br/>7 (1990).<br/>(1995).<br/>823 (1995).</th><th>2-934 (1987)<br/>136-942 (199<br/>14-3410 (199</th><th>.0).<br/>(0).</th><th></th><th></th><th></th></li></ul> | 97).<br>866).<br>886).<br>888).<br>932<br>1988).<br>7 (1990).<br>(1995).<br>823 (1995). | 2-934 (1987)<br>136-942 (199<br>14-3410 (199 | .0).<br>(0).    |              |                                                                                                 |                        |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                              |                 |              | continue                                                                                        | continues on next page |










Potentiometric selectivity coefficients of ion-selective electrodes

1895

continues on next page



| Table 3: Na <sup>+</sup> –Selective Electrodes | a - BUILDER LINCEDURS                                                                          |                                                                                                                          |        |                             |                                                  |                            |                        |                                               |       |
|------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|-----------------------------------------------|-------|
| ionophore                                      | membrane<br>composition                                                                        | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                           | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                       | ref.  |
| Na+-1                                          | <b>Na+1</b> ( $w = 9.7$ %).<br>sodium dipicrylamide ( $x_i = 16$ %),<br>FNDPE ( $w = 65.5$ %). | Li <sup>+</sup> , -3.0; K <sup>+</sup> , -2.4;<br>Rb <sup>+</sup> , -3.1; Cs <sup>+</sup> , -3.5;<br>H <sup>+</sup> -1 9 | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ –1.0         | 25 °C                                         | [1]   |
|                                                | PVC(w = 24.3%)                                                                                 | $\begin{array}{l} Mg^{2+},-4.0;\ Ca^{2+},-3.8;\\ Sr^{2+},-4.0;\ Ba^{2+},-3.2;\\ NH_4^+,-4.2\end{array}$                  | FIM    | I                           | 0.5                                              |                            |                        |                                               |       |
|                                                | <b>Na+-1</b> ( $w = 9.7-24.4$ %),<br>DOP ( $w = 65.5-54.9$ %),                                 | Li <sup>+</sup> , -2.81; K <sup>+</sup> , -2.17;<br>H <sup>+</sup> , -3.53                                               | FIM    | I                           | 0.05                                             | I                          | I                      | 25.0 ± 0.1 °C [2]                             | [2]   |
|                                                | NaTFPB $(x_1 = 8-3\%)$ ,<br>PVC $(w = 24.3-20.3\%)$                                            | NH4 <sup>+</sup> , -3.34; Mg <sup>2+</sup> , -4.39; FIM<br>Ca <sup>2+</sup> , -3.94                                      | 9; FIM | I                           | 0.5                                              |                            |                        |                                               |       |
| Na+-2                                          | <b>Na+.2</b> ( $w = 9.7$ %),<br>sodium dipicrylamide ( $x_i = 15$ %),<br>BEHS ( $w = 65.5$ %). | Li+, -2.4; K+, -2.1;<br>Rb+; -3.2; Cs+, -3.9;<br>H <sup>+</sup> , -2.5                                                   | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ -1.0         | 25 °C                                         | [1]   |
|                                                | PVC(w = 24.3%)                                                                                 | NH4+, -4.3; Mg <sup>2+</sup> , -4.7;<br>Ca <sup>2+</sup> , -2.8; Sr <sup>2+</sup> , -2.9;<br>Ba <sup>2+</sup> , -3.1     | FIM    | 1                           | 0.5                                              |                            |                        |                                               |       |
| Na+-3                                          | Na+-3 ( $w = 0.7$ %),<br>KTpCIPB ( $x_i = 57$ %),                                              | Li <sup>+</sup> , -2.5; K <sup>+</sup> , -1.9;<br>Cs <sup>+</sup> , -1.6                                                 | SSM    | 0.1                         | 0.1                                              | 60.0                       | I                      | $c_{\rm dl} = 3.5 \times 10^{-6} \mathrm{M};$ | [3]   |
|                                                | oNPOE $(w = 66.1 \%)$ ,<br>PVC $(w = 33.0 \%)$                                                 | $Mg^{2+} > -6; Ca^{2+}, -2.5$                                                                                            | FIM    | I                           | 0.1                                              |                            |                        | $t_{\rm resp} = 20.0 \ {\rm s}$               |       |
|                                                | <b>Na+-3</b> ( $w = 9.7-24.4$ %),<br>DOP ( $w = 65.5-54.9$ %),                                 | Li <sup>+</sup> , -3.44; K <sup>+</sup> , -2.56;<br>H <sup>+</sup> , -3.49                                               | FIM    | I                           | 0.05                                             | 58-59                      | $10^{-5.0}$ -1.0       | 25.0 ± 0.1 °C [2]                             | [2]   |
|                                                | NaTFPB $(x_1 = 5.6-1.8 \%)$ ,<br>PVC $(w = 24.3-20.3 \%)$                                      | NH <sub>4</sub> +, -4.42; Mg <sup>2+</sup> , -4.64;FIM<br>Ca <sup>2+</sup> , -4.09                                       | 4;FIM  | I                           | 0.5                                              |                            |                        |                                               |       |
|                                                | <b>Na+-3</b> ( $w = 9.7-24.4$ %),<br>oNPOE ( $w = 65.5-54.9$ %),                               | Li <sup>+</sup> , -2.98; K <sup>+</sup> , -2.51;<br>H <sup>+</sup> , -3.10                                               | FIM    | I                           | 0.05                                             | 58-59                      | $10^{-5.0}$ -1.0       | 25.0 ± 0.1 °C [2]                             | [2]   |
|                                                | NaTFPB $(x_1 = 5.6-1.8 \%)$ ,<br>PVC $(w = 24.3-20.3 \%)$                                      | NH4 <sup>+</sup> , -4.03; Mg <sup>2+</sup> , -4.39; FIM<br>Ca <sup>2+</sup> , -3.98                                      | 9; FIM | I                           | 0.5                                              |                            |                        |                                               |       |
|                                                | <b>Na+-3</b> ( $w = 9.7-24.4$ %),<br>FNDPE ( $w = 65.5-54.9$ %).                               | Li+, -3.39; K+, -2.57;<br>H+, -2.49                                                                                      | FIM    | I                           | 0.05                                             | 50                         | $10^{-5.0}$ -1.0       | 25.0 ± 0.1 °C [2]                             | c [2] |
|                                                | NaTFPB $(x_i = 5.6-1.8 \%)$ ,<br>PVC $(w = 24.3-20.3 \%)$                                      | NH <sub>4</sub> +, -4.18; Mg <sup>2+</sup> , -4.62; FIM<br>Ca <sup>2+</sup> , -4.11                                      | 2; FIM | I                           | 0.5                                              |                            |                        |                                               |       |
|                                                | Na+-3,<br>sodium triphenyl 1-(4-methacryl                                                      | Li+, -2.9, -2.8;*<br>K+, -2.3; -2.4;*                                                                                    | FIM    | I                           | 0.5                                              | 56–58<br>55–57*            |                        | ISEFT;<br>*after 90 d                         | [4]   |

| (Continued)              |  |
|--------------------------|--|
| Na+-Selective Electrodes |  |
| ole 3:                   |  |

| ionophore | ionophore membrane<br>composition                                                                                  | $\lg K_{\mathrm{Na}^+,\mathrm{B}^{\mathrm{n}+}}$                                                                                                                         | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | t slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                                                             | ref.      |
|-----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|
|           | oxymethylphenyl) borate<br>Both were covalently attached to poly-<br>siloxane and cyanopropyl copolymer.           | $\begin{array}{l} Rb^+,-2.9,-2.7;*\\ Cs^+,-2.6,-2.4;*\\ Mg^{2+},-3.3,-3.6;*\\ Ca^{2+},-3.1,-3.0*\\ \end{array}$                                                          |        |                             |                                                  |                            |                        | in 0.1 M NaCl;<br>$t_{resp} < 250 ms;$<br>$\tau = 180-270 d$                                                        | ۲;<br>م   |
|           | <b>Na+.3</b> ( $w = 1.0$ %),<br>DOS ( $w = 6.0$ %),<br>NaTFPB ( $x_1 = 22$ %),<br>silicone rubber ( $w = 92.8$ %)  | K+, -2.5;<br>Ca <sup>2+</sup> , -3.3                                                                                                                                     | FIM    | I                           | 0.1                                              | 59.7                       | I                      | 22 ± 2 °C;<br>ISFET                                                                                                 | [5]       |
|           | <b>Na+.3</b> ( $w = 1.0$ %),<br>DOS ( $w = 5.1$ %),<br>NaTFPB ( $x_1 = 50$ %),<br>silicone rubber ( $w = 93.45$ %) | K <sup>+</sup> , -2.6;<br>Ca <sup>2+</sup> , -3.3                                                                                                                        | FIM    | I                           | 0.1                                              | 59.1                       | I                      | 22 ± 2 °C;<br>ISFET                                                                                                 | [5]       |
|           | <b>Na+.3</b> ( <i>w</i> = 1.0 %),<br>NaTFPB ( $x_1 = 50$ %),<br>silicone rubber ( <i>w</i> = 98.55 %)              | K <sup>+</sup> , -2.5;<br>Ca <sup>2+</sup> , -3.4                                                                                                                        | FIM    | I                           | 0.1                                              | 59.4                       | I                      | 22 ± 2 °C                                                                                                           | [5]       |
|           | <b>Na+3</b> ( $w = 1.1$ %),<br>NaTFPB ( $x_1 = 56$ %),<br>DOS ( $w = 4.6$ %),<br>silicone rubber ( $w = 93.8$ %)   | K+, -2.6;<br>Ca <sup>2+</sup> , -3.4                                                                                                                                     | FIM    | I                           | 0.1                                              | 58.7                       | 1                      | 22 ± 2 °C;<br>solid-state                                                                                           | [5]       |
|           | <b>Na+.3</b> ( <i>w</i> = 1.1 %),<br>NaTFPB ( $x_i = 56$ %),<br>silicone rubber ( <i>w</i> = 98.4 %)               | K+, -2.5;<br>Ca <sup>2+</sup> , -3.3                                                                                                                                     | FIM    | I                           | 0.1                                              | 58.1                       | I                      | 22 ± 2 °C;<br>solid-state                                                                                           | [5]       |
|           | <b>Na+.3</b> ( $w = 10$ %), silicone rubber ( $w = 90$ %)                                                          | K <sup>+</sup> , -2.4; H <sup>+</sup> , -3.0;<br>Li <sup>+</sup> , -2.9; Mg <sup>2+</sup> , -3.5;<br>Ca <sup>2+</sup> , -3.9                                             | FIM    | 1 1                         | 0.1<br>0.5                                       | Z                          | I                      | ISFET;<br>190 = 3 s;<br>r.o.o.g.                                                                                    | [6]       |
| Na+-4     | $Na^{+}4$ (w = 0.7 %),<br>KTpCIPB (x <sub>i</sub> = 50 %),<br>oNPOF (w = 66.1 %).                                  | Li+, -2.5; K+, -2.3;<br>Cs+, -2.7;<br>M <sup>g2+</sup> , -2.3; Ca <sup>2+</sup> , -2.6                                                                                   | SSM    | 0.1                         | 0.1                                              | 57.0                       | I                      | $c_{\rm dl} = 3.1 \times 10^{-6} \mathrm{M};$<br>$t_{\rm max} = 20.0 \mathrm{s}$                                    | [3]       |
|           | PVC $(w = 33.0 \%)$<br>Na+.4 $(w = 0.66 \%)$ ,<br>oNPOE $(w = 66.33 \%)$ ,<br>PVC $(w = 33.11 \%)$                 | Li+, -2.37; K+, -2.44;<br>Cs+, -3.57; NH <sub>4</sub> +, -3.32;<br>Mg <sup>2+</sup> , -2.10; Ca <sup>2+</sup> , -2.59                                                    | SSM    | 0.1                         | 0.1                                              | 58.0                       | ī                      | $25  ^{\circ}\text{C}; c_{\text{dl}} = 2.8 \times 10^{-6} \text{ M};$<br>$p_{00} < 10  s;$<br>$p_{\text{H}} = 10.5$ | [7]<br>4; |
|           | Na <sup>+</sup> -4 ( $w$ = 0.66 %),<br>oNPOE ( $w$ = 66.10 %),<br>KTpCIPB ( $x_i$ = 50 %),<br>PVC ( $w$ = 33.05 %) | Li <sup>+</sup> , -2.46; K <sup>+</sup> , -2.44;<br>Cs <sup>+</sup> , -3.81; NH <sub>4</sub> <sup>+</sup> , -3.50;<br>Mg <sup>2+</sup> , -2.18; Ca <sup>2+</sup> , -2.63 | MSM    | I                           | 0.001                                            | 59.7                       | I                      | 25 °C; $c_{\rm dl} = -$<br>2.3 × 10 <sup>-6</sup> M;<br>$t_{90} < 10$ s;<br>pH = 10.5;                              | [7]<br>4: |

Y. UMEZAWA et al.

| ionophore | : membrane<br>composition                                                                                                       | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                                                       | method     | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                    |                              |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------|------------------------------|
|           | Na+4 (w = 0.66 %),<br>KTpCIPB (xi = 50 %),<br>DOS (w = 66.10 %),<br>PVC (w = 33.05 %)                                           | Li+, -2.46; K+, -2.42;<br>Cs+, -3.60; NH <sub>4</sub> +, -3.37;<br>Mg <sup>2+</sup> , -2.22; Ca <sup>2+</sup> , -2.57                                                                | SSM        | I                           | I                                                | 60.3                       | I                      | $c_{\rm ell} = 3.1 \times [7]$<br>$10^{-6}$ M;<br>$25 ^{\circ}$ C; pH = 10.5;<br>$\tau = 120$ d |                              |
|           | Na+4 ( $w = 0.66 \%$ ),<br>DOPP ( $w = 66.10 \%$ ),<br>KTpCIPB ( $v_1 = 50 \%$ ),<br>PVC ( $w = 33.05 \%$ )                     | Li <sup>+</sup> , -0.54; K <sup>+</sup> , -1.49;<br>Cs <sup>+</sup> , -1.92; NH <sub>4</sub> <sup>+</sup> , -0.49;<br>Mg <sup>2</sup> <sup>+</sup> , -2.02; Ca <sup>2+</sup> , -2.32 | SSM        | I                           | I                                                | 53.6                       | I                      | $c_{\rm dl} = 8.7 \times [7]$<br>$10^{-7}$ M;<br>$25 ^{\circ}$ C;<br>pH = 10.5                  |                              |
| Na+-5     | Na <sup>+</sup> -5 ( $w$ = 2.3 %),<br>KTpCIPB ( $x_1$ = 50–60 %),<br>BEHS or BBPA ( $w$ = 64.7 %),<br>PVC ( $w$ = 32.4–32.3 %), | Li <sup>+</sup> , $-2.31 \pm 0.03$ ;<br>Rb <sup>+</sup> , $-2.56 \pm 0.07$ ;<br>Ca <sup>2+</sup> , $-2.90 \pm 0.32$ ;<br>K <sup>+</sup> , $-1.38 \pm 0.006$                          | FIM        | 1 1                         | 0.1<br>0.01                                      | z                          | I                      | ISFET; [8]<br>interlayer: poly<br>(12-hydroxymethyl<br>methacrylate)                            |                              |
|           | Na <sup>+</sup> -5 ( $w = 0.7 \%$ ),<br>KTpCIPB ( $x_1 = 60 \%$ ),<br>oNPOE ( $w = 66.1 \%$ ),<br>PVC ( $w = 33.0 \%$ )         | Li+, -1.7; K+, -1.1;<br>Cs+, -2.3;<br>Mg <sup>2+</sup> , -2.3; Ca <sup>2+</sup> , -2.8                                                                                               | SSM<br>FIM | 0.1                         | 0.1<br>0.1                                       | 64.0                       | I                      | $c_{\rm dl} = 6.3 \times [3]$<br>$10^{-6} \text{ M};$<br>$t_{\rm resp} = 40.0 \text{ s}$        |                              |
| Na+-6     | Na <sup>+</sup> -6 ( $w = 0.7 \%$ ),<br>KTpCIPB ( $x_i = 78 \%$ ),<br>oNPOE ( $w = 66.1 \%$ ),<br>PVC ( $w = 33.0 \%$ )         | Li <sup>+</sup> , -0.7; K <sup>+</sup> , -0.1;<br>Cs <sup>+</sup> , -1.6<br>Mg <sup>2+</sup> , -1.9; Ca <sup>2+</sup> , -1.0                                                         | SSM<br>FIM | 0.1                         | 0.1<br>0.1                                       | 53.3                       | I                      | $c_{\rm dl} = 7.9 \times [3]$<br>10 <sup>-6</sup> M;<br>$t_{\rm resp} = 60.0  {\rm s}$          |                              |
| Na+-7     | Na <sup>+</sup> 7 ( $w = 9.7-24.4$ %),<br>DOP ( $w = 65.5-54.9$ %),<br>NaTFPB ( $x_1 = 5.6-1.8$ %),<br>PVC ( $w = 24.3-20.3$ %) | K <sup>+</sup> , -2.25; H <sup>+</sup> , -3.18                                                                                                                                       | FIM        | I                           | 0.05                                             | I                          | I                      | 25.0 [2]<br>±0.1 °C                                                                             |                              |
|           | Na+7 ( $w = 0.7  \%$ ),<br>KTpCIPB ( $x_1 = 54  \%$ ),<br>oNPOE ( $w = 66.1  \%$ ),<br>PVC ( $w = 33.0  \%$ )                   | Li <sup>+</sup> , -2.5; K <sup>+</sup> , -2.2;<br>Cs <sup>+</sup> , -1.8<br>Mg <sup>2+</sup> , >-6.0; Ca <sup>2+</sup> , -5.7                                                        | SSM<br>FIM | 0.1                         | 0.1<br>0.1                                       | 60.0                       | I                      | $c_{\rm dl} = 2.3 \times [3]$<br>$10^{-6} \text{ M};$<br>$t_{\rm resp} = 60.0 \text{ s}$        |                              |
|           | Na <sup>+</sup> -7 ( $w = 1, 3$ %),<br>KTpCIPB ( $w = 44$ %),<br>oNPOE ( $w = 65.0$ %),<br>PVC ( $w = 33.0$ %)                  | $\begin{array}{l} Li^+,-2.78; K^+,-2.47;\\ Cs^+,-1.51; NH_4^+,-2.74;\\ H^+,-1.88; Mg^{2+},-3.12;\\ Ca^{2+},-3.74\end{array}$                                                         | SSM        | 0.1                         | 0.1                                              | 58.1 ± 0.8                 | I                      | $20 \pm 0.1$ °C; [9]<br>pH = 7.4;<br>minielectrode                                              |                              |
|           | Na+7 ( $w = 0.7 $ %),<br>KTpCIPB ( $v_1 = 45 $ %),<br>oNPOE ( $w = 66.2 $ %),<br>PVC ( $w = 32.9 $ %)                           | Li <sup>+</sup> , -2.86; K <sup>+</sup> , -2.59;<br>H <sup>+</sup> , -1.98                                                                                                           | FIM        | 1                           | 0.1                                              | 59.6<br>± 0.17             | 10-4-10-1              | $t_{90} < 10$ s; [10]<br>21 ± 1 °C;<br>5.5 < pH < 9.5<br>con                                    | 0]<br>continues on next page |

Potentiometric selectivity coefficients of ion-selective electrodes

1899

| ionophore | membrane<br>composition                                                                                                    | $\lg K_{\mathrm{Na}^+,\mathrm{Bn}^+}$                                                                                                                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade) | linear<br>range<br>(M)      | remarks                                                                                                 | ref.    |
|-----------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|---------|
| Na+-8     | <b>Na+-8</b> ( <i>w</i> = 3.0 %),<br>TEHP ( <i>w</i> = 67.0 %),<br>PVC ( <i>w</i> = 30.0 %)                                | Li <sup>+</sup> , -2.24; K <sup>+</sup> , -2.66;<br>Rb <sup>+</sup> , -3.31; Cs <sup>+</sup> , -3.84;<br>NH <sub>4</sub> <sup>+</sup> , -2.45;<br>Mg <sup>2+</sup> , -4.65; Ca <sup>2+</sup> , -4.30;<br>Sr <sup>2+</sup> , -3.86; Ba <sup>2+</sup> , -4.56;                                                     | FIM :  | I                           | 0.15                                             | 59.2 ± 0.1                 |                             | 25 °C;<br>c <sub>dl</sub> = 5.5 ×<br>10 <sup>-5</sup> M                                                 | [11]    |
|           |                                                                                                                            | H <sup>+</sup> , +0.66                                                                                                                                                                                                                                                                                           | FIM    | I                           | 0.01                                             |                            |                             |                                                                                                         |         |
| Na+-9     | Na <sup>+</sup> -9 ( $w = 0.66 \%$ ),<br>KTpCIPB ( $x_1 = 58 \%$ ),<br>DBS ( $w = 65.84 \%$ ),<br>PVC ( $w = 33.33 \%$ )   | Li <sup>+</sup> , -2.38; K <sup>+</sup> , -1.83;<br>Rb <sup>+</sup> , -2.09; Cs <sup>+</sup> , -1.80;<br>NH <sub>4</sub> <sup>+</sup> , -0.85; H <sup>+</sup> , -1.91;<br>Be <sup>2+</sup> , -2.70; Mg <sup>2+</sup> , -2.86;<br>Ca <sup>2+</sup> , -2.86; Sr <sup>2+</sup> , -1.73;<br>Ba <sup>2+</sup> , -1.90 | SSM    | 0.1                         | 0.1                                              | 46.6                       | T                           | cdi =<br>10-4.5 M;<br>25 °C                                                                             | [12]    |
|           | Na <sup>+</sup> -9 ( $w = 0.66 \%$ ),<br>KTpCIPB ( $x_i = 58 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>PVC ( $w = 33.33 \%$ ) | $\begin{array}{l} Li^+,-3.75;\; K^+,-2.54;\\ Rb^+,-2.59;\; Cs^+,-3.40;\\ H^+,-2.80;\; NH_4^+,-2.76;\\ Be^{24},-3.21;\; Mg^{24},-4.29;\\ Ca^{2+},-4.27;\; Si^{2+},-3.10;\\ Ba^{2+},-4.08\end{array}$                                                                                                              | SSM    | 0.1                         | 0.1                                              | 53.6                       | I                           | $c_{dl} = 10^{-4.6} \text{ M};$<br>25 °C;<br>$t_{\text{resp}} < 2 \text{ s};$<br>$\tau > 100 \text{ d}$ | [12,14] |
|           |                                                                                                                            | $\begin{array}{l} Li^+,-2.7;K^+,-2.2;\\ Rb^+,-2.4;Cs^+,-2.0;\\ H^+,-2.3;NH_4^+,-2.0;\\ Be^{24},-3.7;Mg^{24},-3.5;\\ Ca^{24},-3.5;Sr^{24},-3.2;\\ Ba^{24},-3.1\end{array}$                                                                                                                                        | FIM    | I                           | 0.01                                             | I                          | 1                           |                                                                                                         |         |
| Na+-10    | Na+-10 ( $w = 9.7 \ \%$ ),<br>NaTFPB ( $x_1 = 6.9 \ \%$ ),<br>DOP ( $w = 65.5 \ \%$ )                                      | Li+, -3.2; K+, -2.4;<br>Rb+, -3.0; Cs+, -2.9;<br>H+, -3.3;                                                                                                                                                                                                                                                       | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ - $10^{-1}$       | 25.0 ± 0.1 °C;[13]<br>r.o.o.g.                                                                          | °C;[13] |
|           | PVC(w = 24.3%)                                                                                                             | NH4+,-4.1; Ca <sup>2+</sup> ,-3.7;<br>Mg <sup>2+</sup> ,-4.3; Sr <sup>2+</sup> ,-3.9;<br>Ba <sup>2+</sup> ,-4.2                                                                                                                                                                                                  | FIM    | I                           | 0.5                                              |                            |                             |                                                                                                         |         |
|           | Na+10 ( $w = 9.7 \%$ ),<br>sodium dipicrylamide ( $x_i = 14 \%$ ),<br>DOP ( $w = 65.5 \%$ ),<br>PVC ( $w = 24.3 \%$ )      | K <sup>+</sup> , –1.94                                                                                                                                                                                                                                                                                           | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ – $10^{-1}$       | 25.0 ± 0.1 °C [13]                                                                                      | °C [13] |
|           | Na+10 (w = 9.7 %),<br>$KTpCIPB (v_i = 12 \%),$<br>DOP (w = 65.5 %),<br>PVC (w = 24.3 %)                                    | K+, -2.29                                                                                                                                                                                                                                                                                                        | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ -10 <sup>-1</sup> | 25.0±0.1 °C [13]                                                                                        | °C [13] |
|           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |        |                             |                                                  |                            |                             |                                                                                                         |         |

| ionophore | ionophore membrane<br>composition                                                                                                           | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                                                      | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                                                                        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <b>Na+-10</b> ( $w = 9.7$ %),<br><b>NaTFPB</b> ( $x_1 = 6.9$ %),<br><i>disented</i> adjust ( $(x_1 = 6.5$ %))                               | Li+, -3.1; K+, -2.4;<br>Rb+, -2.6; Cs+, -2.6;<br>H+-3.7                                                                                                                             | FIM    | I                           | 0.05                                             | 59                         | $10^{-4} - 10^{-1}$    | 25.0 ± 0.1 °C;[13]<br>r.o.o.g.                                                                                                                      |
|           | PVC (w = 24.3 %)                                                                                                                            | M <sup>2+</sup> ,<br>NH4 <sup>+</sup> , -3.5, Ca <sup>2+</sup> , -3.7;<br>Mg <sup>2+</sup> , -4.4; Sr <sup>2+</sup> , -3.8;<br>Ba <sup>2+</sup> , -4.0                              | FIM    | I                           | 0.5                                              |                            |                        |                                                                                                                                                     |
|           | <b>Na+10</b> ( $w = 9.7$ %),<br>NaTFPB ( $x_1 = 6.9$ %),<br>BFHS ( $w = 65.5$ %).                                                           | Li+, -3.2; K+, -2.2;<br>Rb+, -3.1; Cs+, -2.9;<br>H+3.1                                                                                                                              | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}-10^{-1}$      | 25.0±0.1 °C;[13]<br>r.o.o.g.                                                                                                                        |
|           | PVC(w = 24.3 %)                                                                                                                             | NH4+,-3.7; Ca <sup>2+</sup> , -3.9;<br>Mg <sup>2+</sup> ,-3.6; Sr <sup>2+</sup> , -4.0;<br>Ba <sup>2+</sup> ,-4.2                                                                   | FIM    | I                           | 0.5                                              |                            |                        |                                                                                                                                                     |
|           | Na+10 ( $w = 9.7$ %),<br>NaTFPB ( $x_1 = 6.9$ %),<br>oNPOE ( $w = 65.5$ %).                                                                 | Li+, -2.9; K+, -1.7;<br>Rb+, -2.9; Cs+, -2.8;<br>H+, -3.1                                                                                                                           | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ - $10^{-1}$  | 25.0±0.1 °C;[13]<br>r.o.o.g.                                                                                                                        |
|           | PVC(w = 24.3 %)                                                                                                                             | NH <sub>4</sub> +, -3.7; Ca <sup>2+</sup> , -3.6;<br>Mg <sup>2+</sup> , -3.4; Sr <sup>2+</sup> , -3.7;<br>Ba <sup>2+</sup> , -3.9                                                   | FIM    | I                           | 0.5                                              |                            |                        |                                                                                                                                                     |
|           | <b>Na+10</b> ( $w = 9.7 \%$ ),<br>NaTFPB ( $x_i = 6.9 \%$ ),<br>FNDPE ( $w = 65.5 \%$ ),                                                    | Li+, -2.7; K+, -1.8;<br>Rb+, -2.5; Cs+, -2.8;<br>H+, -2.7;                                                                                                                          | FIM    | I                           | 0.05                                             | 59                         | $10^{-4}$ - $10^{-1}$  | 25.0±0.1 °C;[13]<br>r.o.o.g.                                                                                                                        |
|           | PVC $(w = 24.3 \%)$                                                                                                                         | $NH_{4}^{+}$ , -3.5; $Mg^{2+}$ , -4.0; $Ca^{2+}$ , -3.7                                                                                                                             |        | I                           | 0.5                                              |                            |                        |                                                                                                                                                     |
| Na+-11    | Na+.11 ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTpCIPB ( $x_i = 62 \%$ ),<br>PVC ( $w = 33.33 \%$ )                              | $\begin{array}{l} Li^+,-2.5;K^+,-1.5;\\ Rb^+,-1.4;Cs^+,-1.2;\\ NH_4^+,-2.4;H^+,-1.2;\\ Be^{2+},-2.6;Mg^{2+},-3.3;\\ Ca^{2+},-3.0;Sr^{2+},-2.8;\\ Ba^{2+},-3.3\end{array}$           | SSM    | I                           | I                                                | 55.6                       | I                      | $c_{\rm dl} = \begin{bmatrix} 1 4] \\ 10^{-3.8} \text{ M}; 25 ^{\circ}\text{C}; \\ \tau = 7 \text{ d}; \\ t_{\rm resp} < 2 \text{ s} \end{bmatrix}$ |
| Na+-12    | <b>Na+12</b> ( <i>w</i> = 0.66 %),<br>oNPOE ( <i>w</i> = 65.84 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 58 %),<br>PVC ( <i>w</i> = 33.33 %) | $\begin{array}{l} Li^+,-2.7;\;K^+,-2.3;\\ Rb^+,-3.7;\;Cs^+,-3.9;\\ NH_4^+,-3.5;\;H^+,-3.1;\\ Be^{24},-3.9;\;Mg^{24},-4.2;\\ Ca^{2+},-4.3;\;Sr^{2+},-3.3;\\ Ba^{2+},-4.4\end{array}$ | NSS    | 1                           | I                                                | 59.0                       | 1                      | $c_{\rm cl} = [14]$<br>10 <sup>-3.9</sup> M; 25 °C;<br>$\tau = 3$ d;<br>$t_{\rm resp} < 2$ s                                                        |

continues on next page

|        | ionophore membrane<br>composition                                                                                                        | $\lg K_{\mathrm{Na^+,Bn^+}}$                                                                                                                                                                              | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M)                    | remarks ref.                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|        | Na+12 ( $w = 2.3 \%$ ),<br>KTpCIPB ( $x_i = 50-60 \%$ ),<br>BEHS or BBPA ( $w \approx 65 \%$ ),                                          | Li <sup>+</sup> , $-2.50 \pm 0.11$ ;<br>Rb <sup>+</sup> , $-3.05 \pm 0.05$ ;<br>Cs <sup>+</sup> , $-3.30 \pm 0.02$ ;                                                                                      | FIM    | I                           | 0.1                             | z                                                  | I                                         | ISFET; [8]<br>interlayer: poly<br>(12-hydroxyethyl                                                                                          |
|        | $PVC(w \approx 32\%)$                                                                                                                    | $Mg^{2+}, -3.61 \pm 0.03;$<br>$Ca^{2+}, -3.54 \pm 0.08;$<br>$K^{+}, -1.85 \pm 0.10$                                                                                                                       | FIM    | I                           | 0.01                            |                                                    |                                           | methacrylate)                                                                                                                               |
| Na+-13 | Na+-13 ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTpCIPB ( $x_{\rm I} = 57 \%$ ),<br>PVC ( $w = 33.33 \%$ )                     | $\begin{array}{l} K^+, -0.4;  Rb^+, -1.0; \\ Cs^+, -0.5;  H^+, -0.5; \\ Mg^{2+}, -0.6;  Ca^{2+}, -0.4; \\ Sr^{2+}, -0.6;  Ba^{2+}, -1.1 \end{array}$                                                      | SSM    | I                           | I                               | 46.1                                               | 10 <sup>-4.4</sup><br>-10 <sup>-1.9</sup> | 25 °C; [14]<br>$c_{\rm cll} = 10^{-4.4}$ M;<br>$\tau = 30$ d;<br>$t_{\rm resp} < 2$ s                                                       |
| Na+-14 | Na+14 ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTpCIPB ( $x_1 = 61 \%$ ),<br>PVC ( $w = 33.33 \%$ )                            | $\begin{array}{l} Li^+, -0.6;  K^+, -0.8; \\ Rb^+, -1.1;  Cs^+, -1.5; \\ NH_4^+, -0.2;  H^+, -0.3; \\ Be^{2+}, -0.8;  Mg^{2+}, -1.4; \\ Ca^{2+}, -0.4;  Sr^{2+}, -0.5; \\ Ba^{2+}, -0.9 \end{array}$      | SSM    | 1                           | I                               | 43.6                                               | 1                                         | $c_{\rm dl} = \begin{bmatrix} 14\\ 10^{-3.5} \text{ M}; 25 \text{ °C}; \\ \tau = 60 \text{ d}; \\ t_{\rm resp} < 2 \text{ s} \end{bmatrix}$ |
| Na+-15 | Na <sup>+-15</sup> ( $w = 9.7-24.4 \%$ ),<br>DOP ( $w = 65.5-54.9 \%$ ),<br>NaTFPB ( $x_i = 6.3-2.1 \%$ ),<br>PVC ( $w = 24.3-20.3 \%$ ) | K+, -1.70; H+, -3.40                                                                                                                                                                                      | FIM    | I                           | 0.05                            | I                                                  | I                                         | 25.0±0.1 °C; [2]                                                                                                                            |
|        | Na+15 ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTpCIPB ( $x_1 = 57 \%$ ),<br>PVC ( $w = 33.33 \%$ )                            | $\begin{array}{l} Li^+,-2.1;K^+,-1.4\\ Rb^+,-0.2;Cs^+,-2.9;\\ NH_4^+,-2.7;H^+,-2.3;\\ Be^{2+},-2.8;Mg^{2+},-5.4;\\ Ca^{2+},-3.4;Sr^{2+},-5.9;\\ Ba^{2+},-3.0\end{array}$                                  | SSM    | 1                           | 1                               | 1                                                  | I                                         | 25 °C; [14]<br>$t_{\text{resp}} < 2$ s                                                                                                      |
| Na+-16 | Na+16 ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTpCIPB ( $x_1 = 56 \%$ ),<br>PVC ( $w = 33.33 \%$ )                            | $\begin{array}{c} Li^+, -3.1; \ K^+, -1.3; \\ Rb^+, -3.4; \ Cs^+, -3.1; \\ NH_4^+, -2.9; \ H^+, -4.1; \\ Be^{2+}, -4.9; \ Mg^{2+}, -5.3; \\ Ca^{2+}, -4.9; \ Sr^{2+}, -4.7; \\ Ba^{2+}, -4.6 \end{array}$ | SSM    | 1                           | I                               | I                                                  | 1                                         | 25 °C; [14]<br>I <sub>resp</sub> < 2 s                                                                                                      |
| Na+-17 | Na+-17 ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTpCIPB ( $w = 0.17 \%$ ),<br>PVC ( $w = 33.33 \%$ )                           | $\begin{array}{l} Li^+,-2.4;K^+,-0.9;\\ Rb^+,-1.4;Cs^+,-1.2;\\ NH_4^+,-1.8;H^+,-2.2;\\ Be^{2+},-3.1;Mg^{2+},-2.8;\\ Ca^{2+},-3.0;Sr^{2+},-2.5;\\ Ba^{2+},-4.6\end{array}$                                 | SSM    | I                           | I                               | I                                                  | 1                                         | 25 °C; [14]<br>t <sub>resp</sub> < 2 s                                                                                                      |

| Table 3: N | Table 3: Na <sup>+</sup> -Selective Electrodes (Continued)                                                                        |                                                                                                                                                                                                          |              |                             |                                                  |                          |                        |                                                      |       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|--------------------------------------------------|--------------------------|------------------------|------------------------------------------------------|-------|
| ionophore  | membrane<br>composition                                                                                                           | $\lg K_{\mathrm{Na^+,Bn^+}}$                                                                                                                                                                             | method       | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                              | ref.  |
| Na+-18     | <b>Na<sup>+</sup>-18</b> ( $w = 0.66$ %),<br>oNPOE ( $w = 65.84$ %),<br>KTpCIPB ( $x_1 = 69$ %),<br>PVC ( $w = 33.33$ %)          | $\begin{array}{l} Li^+,-2.8;K^+,-1.5;\\ Pb^+,-2.4;Cs^+,-2.3;\\ NH_4^+,-3.1;H^+,-2.7;\\ Be^{2+},-3.3;Mg^{2+},-3.2;\\ Ca^{2+},-3.1;Sr^{2+},-2.5;\\ Ba^{2+},-3.1\end{cases}$                                | SSM          | I                           | I                                                | I                        | I                      | 25 °C;<br>t <sub>resp</sub> < 2 s                    | [14]  |
| Na+-19     | Na+-19 (w = 0.66 %),<br>oNPOE (w = 65.84 %),<br>KTpCIPB (x <sub>1</sub> = 53 %),<br>PVC (w = 33.33 %)                             | $\begin{array}{l} Li^+, -0.8;  K^+,  +0.7; \\ Rb^+, +1.0;  Cs^+,  +0.9; \\ NH_4^+,  -0.5;  H^+,  -0.5; \\ Be^{2+}, -1.3;  Mg^{2+}, -1.4; \\ Ca^{2+}, -1.8;  Sr^{2+}, -1.4; \\ Ba^{2+}, -1.2 \end{array}$ | SSM          | I                           | I                                                | I                        | I                      | $25 ^{\circ}$ C;<br>$t_{\text{resp}} < 2 ^{\circ}$ s | [14]  |
| Na+-20     | Na+-20 (w = 0.66 %),<br>oNPOE (w = 65.84 %),<br>KTpCIPB (x <sub>1</sub> = 51 %),<br>PVC (w = 33.33 %)                             | $\begin{array}{l} Li^+, -1.8;  K^+, +0.5; \\ Rb^+, -1.8;  Cs^+, -1.7; \\ NH_4^+, -1.8;  H^+, -3.0; \\ Be^{24}, -2.9;  Mg^{24}, -3.5; \\ Ca^{2+}, -3.4;  Sr^{2+}, -3.4; \\ Ba^{2+}, -3.4; \end{array}$    | SSM          | I                           | l                                                | I                        | I                      | $25 ^{\circ}$ C;<br>$t_{\text{resp}} < 2 ^{\circ}$ s | [14]  |
| Na+-21     | Na+-21 ( <i>w</i> = 0.66 %),<br>oNPOE ( <i>w</i> = 65.84 %),<br>KTpCIPB ( <i>x</i> i = 53 %),<br>PVC ( <i>w</i> = 33.33 %)        | $\begin{array}{l} Li^+, -1.3;  K^+, +1.2; \\ Rb^+, +1.5;  Cs^+, +2.1; \\ NH_4^+, +0.4;  H^+, -0.3; \\ Be^{24}, -1.6;  Mg^{24}, -1.5; \\ Ca^{24}, -1.5;  Sr^{24}, -1.8; \\ Ba^{22}, -0.8 \end{array}$     | SSM          | I                           | l                                                | I                        | I                      | $25 \circ C;$<br>$t_{\text{resp}} < 2 s$             | [14]  |
| Na+-22     | Na+22 ( $w = 9.7-24.4  \%$ ),<br>DOP ( $w = 65.5-54.9  \%$ ),<br>NaTFPB ( $x_1 = 5.9-2.0  \%$ ),<br>PVC ( $w = 24.3-20.3  \%$ )   | Li+, -3.40; K+, -2.51; FIM<br>H+, -3.75;<br>NH <sub>4</sub> +, -4.26; Mg <sup>2+</sup> , -4.62;FIM<br>Ca <sup>2+</sup> , -4.10                                                                           | FIM<br>2;FIM | 1 1                         | 0.05                                             | I                        | I                      | 25.0 ± 0.1 °C [2]                                    | C [2] |
| Na+-23     | Na+23 ( $w = 9.7-24.4$ %),<br>DOP ( $w = 65.5-54.9$ %),<br>NaTFPB ( $x_1 = 6.3-2.1$ %),<br>PVC ( $w = 24.3-20.3$ %)               | Li <sup>+</sup> , -3.36; K <sup>+</sup> , -2.49; FIM<br>H <sup>+</sup> , -3.55;<br>NH <sub>4</sub> <sup>+</sup> , -4.20; Mg <sup>2+</sup> , -4.69; FIM<br>Ca <sup>2+</sup> , -4.06                       | FIM<br>; FIM | 1 1                         | 0.05                                             | I                        | I                      | 25.0 ± 0.1 °C [2]                                    | c [2] |
| Na+-24     | Na <sup>+</sup> -24 ( $w = 9.7-24.4$ %),<br>DOP ( $w = 65.5-54.9$ %),<br>NaTFPB ( $x_i = 6.9-2.3$ %),<br>PVC ( $w = 24.3-20.3$ %) | Li <sup>+</sup> , -3.49; K <sup>+</sup> , -2.57; FIM<br>H <sup>+</sup> , -4.00;<br>NH <sub>4</sub> <sup>+</sup> , -4.27; Mg <sup>2+</sup> , -4.96;FIM<br>Ca <sup>2+</sup> , -4.14                        | FIM<br>s;FIM | 1 1                         | 0.05                                             | I                        | I                      | 25.0 ± 0.1 °C [2]                                    | C [2] |

| ionophore | membrane<br>composition                                  | $\lg K_{\mathrm{Na}^+,\mathrm{B}^{\mathrm{n}+}}$                                                     | method | primary<br>ion conc. | interfering slope<br>ion conc. (mV/ | g slope<br>(mV/ | linear<br>range | remarks                             | ref.  |
|-----------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------|----------------------|-------------------------------------|-----------------|-----------------|-------------------------------------|-------|
|           |                                                          |                                                                                                      |        | (W)                  | (W)                                 | decade)         | (W)             |                                     |       |
|           | <b>Na+-24</b> ( $w = 9.7-24.4\%$ ),                      | Li <sup>+</sup> , -3.40; K <sup>+</sup> , -2.38;                                                     | FIM    | I                    | 0.05                                | I               | I               | $25.0 \pm 0.1 ^{\circ}\text{C}$ [2] | c [2] |
|           | oNPOE ( $w = 65.5 - 54.9 \%$ ),                          | H <sup>+</sup> , –3.18;                                                                              |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB $(x_{\rm i} = 6.9-2.3 \%)$ ,                      | NH4 <sup>+</sup> , -4.40; Mg <sup>2+</sup> , -4.35;FIM                                               | 5;FIM  | I                    | 0.5                                 |                 |                 |                                     |       |
|           | PVC ( $w = 24.3 - 20.3 \%$ )                             | Ca <sup>2+</sup> , -3.78                                                                             |        |                      |                                     |                 |                 |                                     |       |
|           | $Na^{+}-24 (w = 9.7-24.4 \%),$                           | Li <sup>+</sup> , -3.02; K <sup>+</sup> , -2.07;                                                     | FIM    | I                    | 0.05                                | I               | I               | $25.0 \pm 0.1 \ ^{\circ}C \ [2]$    | C [2] |
|           | FNDPE ( $w = 65.5 - 54.9 \%$ ),                          | H <sup>+</sup> , –3.64;                                                                              |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB $(x_{\rm i} = 6.9-2.3 \%)$ ,                      | NH4 <sup>+</sup> , -4.06; Mg <sup>2+</sup> , -4.57;FIM                                               | 7;FIM  | I                    | 0.5                                 | I               | I               |                                     |       |
|           | PVC ( $w = 24.3 - 20.3\%$ )                              | Ca <sup>2+</sup> , -4.11                                                                             |        |                      |                                     |                 |                 |                                     |       |
| Na+-25    | $Na^{+}-25 (w = 9.7-24.4 \%),$                           | Li <sup>+</sup> , -3.30; K <sup>+</sup> , -1.92;                                                     | FIM    | I                    | 0.05                                | I               | I               | $25.0 \pm 0.1 ^{\circ}\text{C}$ [2] | C [2] |
|           | DOP ( $w = 65.5 - 54.9 \ \%$ ),                          | H+, –3.49;                                                                                           |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB $(x_{\rm i} = 6.1-2.0 \%)$ ,                      | NH4 <sup>+</sup> , -3.93; Mg <sup>2+</sup> , -4.76; FIM                                              | 6; FIM | I                    | 0.5                                 |                 |                 |                                     |       |
|           | PVC ( $w = 24.3 - 20.3 \%$ )                             | Ca <sup>2+</sup> , -4.09                                                                             |        |                      |                                     |                 |                 |                                     |       |
|           | <b>Na<sup>+</sup>-25</b> ( $w = 9.7-24.4$ %),            | Li+, -3.08; K+, -1.85;                                                                               | FIM    | I                    | 0.05                                | I               | I               | $25.0 \pm 0.1 \ ^{\circ}C$ [2]      | C [2] |
|           | oNPOE ( $w = 65.5 - 54.9 \%$ ),                          | H <sup>+</sup> , –2.94;                                                                              |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB $(x_1 = 6.1 - 2.0 \%)$ ,                          | NH4 <sup>+</sup> , -3.36; Mg <sup>2+</sup> , -4.10;FIM                                               | 0;FIM  | I                    | 0.5                                 |                 |                 |                                     |       |
|           | PVC ( $w = 24.3 - 20.3 \%$ )                             | Ca <sup>2+</sup> , –3.67                                                                             |        |                      |                                     |                 |                 |                                     |       |
|           | $Na^{+}-25 (w = 9.7-24.4 \%),$                           | Li <sup>+</sup> , -2.79; K <sup>+</sup> , -1.76;                                                     | FIM    | I                    | 0.05                                | I               | 1               | $25.0 \pm 0.1 ^{\circ}C$ [2]        | C [2] |
|           | FNDPE ( $w = 65.5 - 54.9 \%$ ),                          | H+, -2.03;                                                                                           |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB ( $x_i = 6.1-2.0$ %),                             | NH4 <sup>+</sup> , -3.06; Mg <sup>2+</sup> , -3.49;FIM                                               | 9;FIM  | I                    | 0.5                                 |                 |                 |                                     |       |
|           | PVC ( $w = 24.3 - 20.3 \%$ )                             | Ca <sup>2+</sup> , –3.43                                                                             |        |                      |                                     |                 |                 |                                     |       |
| Na+-26    | <b>Na+-26</b> ( $w = 9.7-24.4$ %),                       | Li <sup>+</sup> , -3.15; K <sup>+</sup> , -2.20;                                                     | FIM    | I                    | 0.05                                | I               | I               | 25.0 ± 0.1 °C [2]                   | C [2] |
|           | DOP ( $w = 65.5 - 54.9 \%$ ),                            | H <sup>+</sup> , –2.58;                                                                              |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB $(x_i = 6.3 - 2.1 \%)$ ,                          | NH4 <sup>+</sup> , -3.63; Mg <sup>2+</sup> , -3.82;FIM                                               | 2;FIM  | Ι                    | 0.5                                 |                 |                 |                                     |       |
|           | PVC ( $w = 24.3 - 20.3 \%$ )                             | Ca <sup>2+</sup> , –3.24                                                                             |        |                      |                                     |                 |                 |                                     |       |
| Na+-27    | $Na^{+}-27 (w = 9.7-24.4 \%),$                           | Li <sup>+</sup> , -3.29; K <sup>+</sup> , -1.67;                                                     | FIM    | I                    | 0.05                                | I               | I               | $25.0 \pm 0.1 \ ^{\circ}C$ [2]      | C [2] |
|           | DOP ( $w = 65.5 - 54.9 \%$ ),                            | H <sup>+</sup> , –2.76;                                                                              |        |                      |                                     |                 |                 |                                     |       |
|           | NaTFPB ( $x_i = 6.3-2.1$ %),<br>PVC ( $w = 24.3-20.3$ %) | Ca <sup>2+</sup> , -3.67                                                                             | FIM    | I                    | 0.5                                 |                 |                 |                                     |       |
| Na+-28    | $Na^{+}-28 (w = 3.2 \%),$                                | Li+, -1.8; K+, -3.15;                                                                                | I      | I                    | I                                   | > 57            | I               | 25 °C;                              | [15]  |
|           | oNPOE ( $w = 64.1$ %),                                   | Rb <sup>+</sup> , -2.2; Cs <sup>+</sup> , -1.1;                                                      |        |                      |                                     |                 |                 | $c_{\rm dl} = 1.0 \times$           |       |
|           | KTpCIPB $(x_1 = 21 \%)$ ,                                | NH4 <sup>+</sup> , -3.85; H <sup>+</sup> , -4.2;                                                     |        |                      |                                     |                 |                 | 10 <sup>-4</sup> M;                 |       |
|           | PVC ( $w = 32.1  \%$ )                                   | Mg <sup>2+</sup> , -3.65; Ca <sup>2+</sup> , -4.2;<br>S <sup>+2+</sup> -4 1: R <sup>a2+</sup> -4 8   |        |                      |                                     |                 |                 | r.o.o.g.                            |       |
| No+-20    | $N_{e}$ +-38 ( 3 3 %)                                    | $1 :+ 175 \cdot V + 27$                                                                              |        |                      |                                     | ~ 57            |                 | .Jo sc                              | [15]  |
| 67 RV     | 1.427 (W = 3.2.70),                                      | $D_{1}^{+}$ , $-1.70$ , $N^{+}$ , $-0.2$ , $D_{2}^{+}$ , $-1.6$ , $D_{2}^{+}$ , $-1.6$ , $D_{3}^{-}$ | I      | I                    | I                                   |                 | I               |                                     | [71]  |
|           | $\operatorname{OINFOE}(W = 04.1 \%),$                    | KD <sup>+</sup> , -2.33; US <sup>+</sup> , -1.3;                                                     |        |                      |                                     |                 |                 | $c_{\rm dl} = 1.0 \times 10^{-1}$   |       |
|           | <b>K</b> 1 pute ( $x_1 = 20\%$ ),                        | NH4 <sup>+</sup> , -3.8; H <sup>+</sup> , -4.3;                                                      |        |                      |                                     |                 |                 | 10 + M;                             |       |

Table 3: Na<sup>+</sup>–Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| ionophore | ionophore membrane<br>composition                                                                           | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M) | remarks                                                              | ref.                           |
|-----------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|----------------------------------------------------|------------------------|----------------------------------------------------------------------|--------------------------------|
|           | PVC ( $w = 32.1\%$ )                                                                                        | Mg <sup>2+</sup> , -3.7; Ca <sup>2+</sup> , -4.2<br>Sr <sup>2+</sup> , -4.05; Ba <sup>2+</sup> , -4.7                                                                                      |        |                             |                                                    |                        | r.o.o.g.                                                             |                                |
| Na+-30    | Na+.30 ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>KTpCIPB ( $x_1 = 30 \%$ ),<br>PVC ( $w = 32.1 \%$ ) | $\begin{array}{l} Li^+, -1.8;  K^+, -3.5; \\ Rb^+, -3.6;  Cs^+, -2.8; \\ NH_4^+, -3.9;  H^+, -4.7; \\ Mg^{2+}, -4.1;  Ca^{2+}, -4.1; \\ Sr^{2+}, -4.1;  Ba^{2+}, -4.7 \end{array}$         | I      | I                           | - > 57                                             | I                      | 25 °C;<br>c <sub>dl</sub> = 1.0 ×<br>10 <sup>-4</sup> M;<br>r.o.o.g. | [15]                           |
|           | Na+.30 ( $w = 3.2 \%$ ),<br>FNDPE ( $w = 64.1 \%$ ),<br>KTpCIPB ( $x_1 = 30 \%$ ),<br>PVC ( $w = 32.1 \%$ ) | $\begin{array}{l} Li^+, -I.8;  K^+, -3.6; \\ Rb^+, -3.8;  Cs^+, -3.1; \\ NH4^+, -3.9;  H^+, -5.0; \\ Mg^{2+}, -4.5;  Ca^{2+}, -4.1; \\ Sr^{2+}, -4.0;  Ba^{2+}, -4.3; \end{array}$         | I      | I                           | - >57                                              | I                      | 25 °C;<br>c <sub>dl</sub> = 1.0 ×<br>10 <sup>-4</sup> M;<br>r.o.o.g. | [15]                           |
| Na+-31    | Na+.31 ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>KTpCIPB ( $x_i = 22 \%$ ),<br>PVC ( $w = 32.1 \%$ ) | $\begin{array}{l} Li^+,-2.0;K^+,-3.5;\\ Rb^+,-3.6;Cs^+,-2.6;\\ NH_4^+,-3.9;H^+,-4.0;\\ Mg^{2+},-4.3;Ca^{2+},-4.1\\ Sr^{2+},-4.1;Ba^{2+},-4.6\end{array}$                                   | I      | I                           | - >57                                              | I                      | 25 °C;<br>c <sub>dl</sub> = 1.0 ×<br>10 <sup>-4</sup> M;<br>r.o.o.g. | [15]                           |
| Na+-32    | Na+.32 ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>KTpCIPB ( $x_1 = 13 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | $\begin{array}{l} Rb^+, +0.06; \ Cs^+, -0.48; \\ NH_4^+, -0.94; \\ Mg^{2+}, -3.36; \\ Ca^{2+}, -2.49; \\ Ca^{2+}, -2.22; \ Ba^{2+}, -2.62 \\ Sr^{2+}, -2.22; \ Ba^{2+}, -2.62 \end{array}$ | FIM    | 1 1 1 1                     | 0.02 or 0.01<br>0.10 or 0.50<br>1.0<br>0.5         | I                      | 24–25 °C                                                             | [16]                           |
|           | Na+.32 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 13 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | Li <sup>+</sup> , -2.48 ± 0.03;<br>K <sup>+</sup> , +0.42 ± 0.04                                                                                                                           | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                                                             | [17]                           |
| Na+-33    | Na+.33 ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>KTpCIPB ( $x_1 = 15 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | $\begin{array}{l} Rb^+, -0.29; Cs^+, -0.88;\\ NH_4^+, -1.48;\\ Mg^{2+}, -3.53;\\ Ca^{2+}, -2.88; Sr^{2+}, -2.50;\\ Ba^{2+}, -2.59 \end{array}$                                             | FIM    | 1 1 1 1                     | 0.02 or 0.01<br>0.10 or 0.50<br>1.0<br>0.5         | I                      | 24–25 °C                                                             | [16]                           |
|           | Na+.33 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 15 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | $Li^+, -3.08 \pm 0.07;$<br>$K^+, +0.07 \pm 0.03$                                                                                                                                           | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                                                             | [17]                           |
| Na+-34    | <b>Na+.34</b> ( $w = 3.2$ %),<br>oNPOE ( $w = 64.1$ %),                                                     | Li <sup>+</sup> , -3.23;<br>K <sup>+</sup> , -0.46;                                                                                                                                        | FIM    |                             | 0.10 or 0.05<br>0.01 or 0.05                       | I                      | 24–25 °C                                                             | [16]<br>continues on next page |

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 3: Na <sup>+</sup> -Selective Electrodes |  |

| ionophore | e membrane<br>composition                                                                                                | lgK <sub>Na</sub> +,Bn+                                                                                                                                | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M) | remarks  | ref. |
|-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|----------------------------------------------------|------------------------|----------|------|
|           | KTpCIPB ( <sub>ij</sub> = 16 %),<br>PVC ( <i>w</i> = 32.0 %)                                                             | $\begin{array}{l} Rb^+, -0.81;  Cs^+, -1.49; \\ NH_4^+, -1.93; \\ Mg^{2+}, -3.67; \\ Ca^{2+}, -3.20;  Sr^{2+}, -2.62; \\ Ba^{2+}, -3.08 \end{array}$   |        | 1 1 1 1                     | 0.02 or 0.10<br>0.10 or 0.50<br>1.0<br>0.50        |                        |          |      |
| Na+-35    | Na <sup>+</sup> -35 ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>KTPCIPB ( $x_1 = 17 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | $\begin{array}{l} Rb^+, -0.88;  Cs^+, -1.46; \\ NH_4^+, -1.97; \\ Mg^{2+}, -3.81; \\ Ca^{2+}, -3.40;  Sr^{2+}, -2.63; \\ Ba^{2+}, -2.56 \end{array}$   | FIM    | 1 1 1 1                     | 0.02 or 0.10<br>0.10 or 0.50<br>1.0<br>0.50        | I                      | 24–25 °C | [16] |
|           | Na <sup>+</sup> -35 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $i_1 = 17 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | $Li^+, -3.87 \pm 0.04;$<br>$K^+, -0.05 \pm 0.04$                                                                                                       | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C | [17] |
| Na+-36    | Na <sup>+</sup> .36 ( $w = 3.2$ %),<br>oNPOE ( $w = 64.1$ %),<br>KTpCIPB ( $x_i = 18$ %),<br>PVC ( $w = 32.0$ %)         | $\begin{array}{l} Rb^+, -1.42; \ Cs^+, -2.05; \\ NH_4^+, -2.11; \\ Mg^{2+}, -3.76; \\ Ca^{2+}, -2.90; \ Sr^{2+}, -2.31; \\ Ba^{2+}, -1.40 \end{array}$ | FIM    | 1 1 1 1                     | 0.02 or 0.10<br>0.10 or 0.50<br>1.0<br>0.50        | 1                      | 24-25 °C | [16] |
|           | Na+.36 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 19 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ )              | $Li^+, -3.02 \pm 0.06;$<br>$K^+, -0.79 \pm 0.03$                                                                                                       | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C | [17] |
| Na+-37    | Na <sup>+</sup> -37 ( $w$ = 3.2 %),<br>oNPOE ( $w$ = 64.1 %),<br>KTPCIPB ( $x_1$ = 22 %),<br>PVC ( $w$ = 32.0 %)         | $\begin{array}{l} Rb^+,-1.48;\ Cs^+,-2.18;\\ NH_4^+,-2.13;\\ Mg^{2+},-3.88;\\ Ca^{2+},-3.19;\ Sr^{2+},-2.41;\\ Ba^{2+},-1.56\end{array}$               | FIM    | 1 1 1 1                     | 0.02 or 0.10<br>0.10 or 0.50<br>1.0<br>0.50        | I                      | 24–25 °C | [16] |
|           | Na <sup>+</sup> . 37 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 22$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)        | $Li^+$ , -3.14 ± 0.02;<br>$K^+$ , -0.98 ± 0.013                                                                                                        | FIM    |                             | 0.01 – 0.05                                        | I                      | 24–25 °C | [18] |
| Na+-38    | Na+.38 ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>KTPCIPB ( $x_1 = 16 \%$ ),<br>PVC ( $w = 32.0 \%$ )              | $\begin{array}{l} Rb^+, -0.35;  Cs^+, -1.08; \\ NH_4^+, -1.68; \\ Mg^{2+}, -3.73; \\ Ca^{2+}, -3.25;  Sr^{2+}, -2.53; \\ Ba^{2+}, -3.09 \end{array}$   | FIM    | 1 1 1 1                     | 0.02 or 0.10<br>0.10 or 0.50<br>1.0<br>0.50        | 1                      | 24–25 °C | [16] |
|           |                                                                                                                          |                                                                                                                                                        |        |                             |                                                    |                        |          |      |

| Lable 3: Nat>stecture Electrodes (Continued)<br>ionophore membrane<br>commosition                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                               |
| $Li^+, -2.99 \pm 0.02;$<br>$K^+, -0.34 \pm 0.03$                                                                                                                              |
| $\begin{array}{l} Li^+, -3.49; \ K^+, +1.34\\ Rb^+, -1.96; \ Cs^+, -2.53;\\ NH_4^+, -3.03;\\ Mg^{2+}, -3.81;\\ Ca^{2+}, -3.78; \ Sr^{2+}, -2.62;\\ Ba^{2+}, -3.63\end{array}$ |
| $\begin{array}{l} Rb^+, -2.16; \ Cs^+, -2.61; \\ NH_4^+, -3.20; \\ Mg^{2+}, -3.80; \\ Ca^{2+}, -3.84; \ Sr^{2+}, -2.70; \\ Ba^{2+}, -3.18 \end{array}$                        |
| Li <sup>+</sup> , -3.74;<br>K <sup>+</sup> , -1.36                                                                                                                            |
| $\begin{array}{l} Rb^+,-2.62;\ Cs^+,-3.07;\\ NH_{4}^+,-3.02;\\ Mg^{2+},-3.83;\\ Ca^{2+},-3.83;\\ Ca^{2+},-3.55;\ Sr^{2+},-2.66;\\ Ba^{2+},-2.76\end{array}$                   |
| $\begin{array}{l} Rb^+,-2.77; Cs^+,-3.18;\\ NH_4^+,-3.12;\\ Mg^{2+},-3.85;\\ Ca^{2+},-3.63; Sr^{2+},-2.71;\\ Ba^{2+},-2.68\end{array}$                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                          |
| K <sup>+</sup> , -1.9;<br>Li <sup>+</sup> , -3.0; Rb <sup>+</sup> , -2.7;<br>Cs <sup>+</sup> , -3.2; H <sup>+</sup> , -2.7;                                                   |

| ionophore | membrane<br>composition                                                                                                          | $\lg K_{\mathrm{Na^+,Bn^+}}$                                                                                                                                                                         | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade) | linear<br>range<br>(M)  | remarks                                                              | ref. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|-------------------------|----------------------------------------------------------------------|------|
|           | PVC ( $w = 32.0 \%$ )                                                                                                            | Mg <sup>2+</sup> , -3.7;<br>NH <sub>4</sub> <sup>+</sup> , -3.0; Ca <sup>2+</sup> , -3.9;<br>Sr <sup>2+</sup> , -2.7; Ba <sup>2+</sup> , -3.3                                                        |        | 1 1                         | $1.0 \\ 0.5$                                     |                            |                         |                                                                      |      |
|           | Na <sup>+</sup> -42 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 24 \%$ ),<br>DOS ( $w = 64.1 \%$ ),                                    | K+, -1.90<br>Li <sup>+</sup> , -3.1; Rb <sup>+</sup> , -2.7;<br>Cs <sup>+</sup> , -3.2; H <sup>+</sup> , -2.9;                                                                                       | FIM    | 1 1                         | 0.05<br>0.01                                     | I                          | I                       | 24–25 °C;<br>r.o.o.g.                                                | [18] |
|           | PVC ( $w = 32.0 \%$ )                                                                                                            | Mg <sup>2+</sup> , -3.9;<br>NH <sub>4</sub> +, -3.1; Ca <sup>2+</sup> , -3.9;<br>Sr <sup>2+</sup> , -2.9; Ba <sup>2+</sup> , -3.2                                                                    |        | 1 1                         | $1.0 \\ 0.5$                                     |                            |                         |                                                                      |      |
|           | Na <sup>+</sup> -42 ( $w = 3.2 \ \%$ ),<br>KTpCIPB ( $x_1 = 20 \ \%$ ),<br>oNPOE ( $w = 64.1 \ \%$ ),<br>PVC ( $w = 32.0 \ \%$ ) | $Li^+$ , -2.84 ± 0.01;<br>K <sup>+</sup> , -1.98 ± 0.02                                                                                                                                              | FIM    | 1 1                         | 0.1 or 0.5 5<br>0.05 or 0.01                     | 59<br>01                   | I                       | 24–25 °C                                                             | [17] |
| Na+-43    | Na+-43 ( $w = 0.9 \%$ ),<br>BBPA ( $w = 67.4 \%$ ),<br>PVC ( $w = 31.7 \%$ )                                                     | K <sup>+</sup> , –1.43                                                                                                                                                                               | SSM    | 0.01                        | 0.01                                             | 53.0                       | I                       | 25 ± 0.5 °C;<br>c <sub>dl</sub> = 4.0 ×<br>10 <sup>-6</sup> M; FIA   | [20] |
|           | Na <sup>+</sup> -43 ( $w = 0.9 \%$ ),<br>BEHS ( $w = 67.4 \%$ ),<br>PVC ( $w = 31.7 \%$ )                                        | K <sup>+</sup> , -0.81                                                                                                                                                                               | SSM    | 0.01                        | 0.01                                             | 52.0                       | I                       | 25 ± 0.5 °C;<br>c <sub>dl</sub> = 1.8 ×<br>10 <sup>-6</sup> M; FIA   | [20] |
|           | Na+-43 (w = 0.9 %),<br>DOS (w = 67.4 %),<br>PVC (w = 31.7 %)                                                                     | Li+, -2.93; K+, -1.38;<br>Mg <sup>2+</sup> , -3.96; Ca <sup>2+</sup> , -4.06                                                                                                                         | SSM    | 0.01                        | 0.01                                             | 60.0                       | I                       | $25 \pm 0.5 ^{\circ}$ C;<br>$c_{\rm dl} = 1.3 \times 10^{-6}$ M; FIA | [20] |
|           | Na <sup>+</sup> -43 ( $w = 0.9 \ \%$ ),<br>oNPOE ( $w = 67.4 \ \%$ ),<br>PVC ( $w = 31.7 \ \%$ )                                 | Li+, -2.40; K+, -1.74;<br>Mg <sup>2+</sup> , -3.94; Ca <sup>2+</sup> , -3.88                                                                                                                         | SSM    | 0.01                        | 0.01                                             | 60.8                       | I                       | 25 ± 0.5 °C;<br>c <sub>dl</sub> = 6.3 ×<br>10 <sup>-6</sup> M; FIA   | [20] |
|           | Na <sup>+</sup> -43 ( $w = 0.9 \ \%$ ),<br>oNPOE ( $w = 67.2 \ \%$ ),<br>KTpCIPB ( $x_1 = 50 \ \%$ ),<br>PVC ( $w = 31.7 \ \%$ ) | Li <sup>+</sup> , -1.80; K <sup>+</sup> , -1.85;<br>Mg <sup>2+</sup> , -3.15; Ca <sup>2+</sup> , -3.68                                                                                               | SSM    | 0.01                        | 0.01                                             | 61.0                       | I                       | 25 ± 0.5 °C;<br>c <sub>dl</sub> = 6.0 ×<br>10 <sup>-6</sup> M; FIA   | [20] |
|           | <b>Na+-43</b><br>(membrane composition<br>not reported)                                                                          | $\begin{array}{l} Li^{+}, -3.7;  K^{+}, -1.9; \\ NH_{4}^{+}, -3.0;  Ca^{2+}, -4.2 \\ N(CH_{3})_{4}^{+}, -2.3; \\ N(C_{4}H_{11})_{4}^{+}, +2.1; \\ N(CH_{3})_{3}(C_{18}H_{37})^{+}, +3.9 \end{array}$ | SSM    | I                           | 0.1                                              | 55–57                      | $5 \times 10^{-5}$ -1.0 | 25 °C;<br>$t_{90} = 10$ s;<br>$\tau > 120$ d                         | [21] |

Table 3: Na<sup>+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

## Y. UMEZAWA et al.

| ionophore membrane<br>compositio | onophore membrane<br>composition                                                                 | $\lg K_{\mathrm{Na}^+,\mathrm{Bn}^+}$                                                                                                                                                                                                                                          | method | primary<br>ion conc. | interfering slope<br>ion conc. (mV/ |               | linear<br>range              | remarks  | ref. |
|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|-------------------------------------|---------------|------------------------------|----------|------|
|                                  | Na+-43,<br>DOA,<br>PVC<br>(weight ratio not reported)                                            | $\begin{array}{c} Li^+, -3.8;  K^+, -1.7; \\ Rb^+, -2.0;  Cs^+, -2.2; \\ NH_4^+, -2.7;  Ca^{2+}, -4.3; \\ Sr^{2+}, -4.5;  Mg^{2+}, -4.2; \\ Ba^{2+}, -4.2; \end{array}$                                                                                                        | SSM    | (M) -                | (M)<br>0.05                         | decade)<br>55 | (M) $5 \times 10^{-5} - 1.0$ | r.o.o.g. | [22] |
|                                  | Na+-43,<br>NaTFPB (xi = 5 %),<br>DOA,<br>PVC<br>(weight ratio not reported)                      | Li <sup>+</sup> , $-3.6$ ; K <sup>+</sup> , $-1.8$ ;<br>Rb <sup>+</sup> , $-2.1$ ; Cs <sup>+</sup> , $-2.4$ ;<br>NH <sub>4</sub> <sup>+</sup> , $-2.9$ ; Ca <sup>2+</sup> , $-3.2$ ;<br>Sr <sup>2+</sup> , $-4.4$ ; Mg <sup>2+</sup> , $-3.4$ ;<br>Ba <sup>2+</sup> , $-3.7$ ; | SSM    | 1                    | 0.05                                | 55            | $5 \times 10^{-5}$ -1        | I.0.0.g. | [22] |
|                                  | Na+-43,<br>NaTFPB ( $x_i = 15$ %),<br>DOA,<br>PVC<br>(weight ratio not reported)                 | $\begin{array}{c} Li^{+}, -4.0; \ K^{+}, -1.8; \\ Rb^{+}, -2.0; \ Cs^{+}, -2.3; \\ NH_{4}^{+}, -2.8; \ Ca^{2+}, -4.0; \\ Sr^{2+}, -4.2; \ Mg^{2+}, -4.2; \\ Ba^{2+}, -3.4 \end{array}$                                                                                         | SSM    | I                    | 0.05                                | 55            | $5 \times 10^{-5} - 1.0$     | 1.0.0.g. | [22] |
|                                  | Na+43,<br>NaTFPB ( $x_1 = 20 \%$ ),<br>DOA,<br>PVC<br>(weight ratio not reported)                | $\begin{array}{l} Li^+, -3.5;  K^+, -1.7; \\ Rb^+, -2.0;  Cs^+, -2.3; \\ NH_4^+, -2.8;  Ca^{2+}, -4.0; \\ Sr^{2+}, -4.0;  Mg^{2+}, -4.3; \\ Ba^{2+}, -3.3 \end{array}$                                                                                                         | SSM    | I                    | 0.05                                | 55            | $5 \times 10^{-5} - 1.0$     | T.0.0.g. | [22] |
|                                  | Na+43,<br>NaTFPB ( $x_i = 30 \%$ ),<br>DOA,<br>PVC<br>(weight ratio not reported)                | $\begin{array}{l} Li^+, -3.4;  K^+, -1.7; \\ Rb^+, -1.9;  Cs^+, -2.2; \\ NH_4^+, -2.7;  Ca^{2+}, -3.8; \\ Sr^{2+}, -3.7;  Mg^{2+}, -4.1; \\ Ba^{2+}, -3.1 \end{array}$                                                                                                         | SSM    | 1                    | 0.05                                | 55            | $5 \times 10^{-5} - 1.0$     | T.0.0.g. | [22] |
|                                  | Na+43,<br>NaTFPB ( $x_i = 45 \%$ ),<br>DOA,<br>PVC<br>(weight ratio not reported)                | $\begin{array}{l} Li^+,-3.2;K^+,-1.4;\\ Rb^+,-1.7;Cs^+,-1.9;\\ NH_4^+,-2.3;Ca^{2+},-3.5;\\ Sr^{2+},-3.4;Mg^{2+},-3.8;\\ Ba^{2+},-2.7\end{array}$                                                                                                                               | SSM    | 1                    | 0.05                                | 55            | $5 \times 10^{-5} - 1.0$     | 1.0.0.g. | [22] |
|                                  | <b>Na+-43</b> ,<br>NaTFPB (x <sub>1</sub> = 75 %),<br>DOA,<br>PVC<br>(weight ratio not reported) | $\begin{array}{l} Li^+,-2.2;\;K^+,-0.6;\\ Rb^+,-0.8;\;Cs^+,-1.0;\\ NH_4^+,-1.5;\;Ca^{2+},-2.4;\\ Sr^{2+},-2.3;\;Mg^{2+},-2.9;\\ Ba^{2+},-1.4\end{array}$                                                                                                                       | SSM    | I                    | 0.05                                | 55            | $5 \times 10^{-5} - 1.0$     | 1.0.0.g. | [22] |

| Table 3: N | Table 3: Na <sup>+</sup> -Selective Electrodes (Continued)                   |                                                                                                                                                                                              |        |                             |                                                  |                            |                          |                                           |            |
|------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|--------------------------|-------------------------------------------|------------|
| ionophore  | membrane<br>composition                                                      | $\lg K_{\mathrm{Na}^+,\mathrm{Bn}^+}$                                                                                                                                                        | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade) | linear<br>range<br>(M)   | remarks                                   | ref.       |
|            | Na+-43,<br>NaTFPB (xi = 94 %),<br>DOA,<br>PVC<br>(weight ratio not reported) | $\begin{array}{l} Li^+, -0.5; \ K^+, +0.6; \\ Rb^+, +0.5; \ Cs^+, +0.5; \\ NH_4^+, +0.1; \ Ca^{2+}, -1.0; \\ Sr^{2+}, -0.8; \ Mg^{2+}, -1.5; \\ Ba^{2+}, +0.3 \end{array}$                   | SSM    | I                           | 0.05                                             | 55                         | $5 \times 10^{-5}$ -1.0  | I.0.0.g.                                  | [22]       |
|            | Na+-43,<br>NaTFPB,<br>DOS,<br>PVC<br>(weight ratio not reported)             | $\begin{array}{c} Li^+, -3.5;  K^+, -1.7; \\ Rb^+, -1.9;  Cs^+, -2.1; \\ NH_4^+, -2.6;  Ca^{2+}, -4.2; \\ Sr^{2+}, -4.4;  Mg^{2+}, -4.0; \\ Ba^{2+}, -4.1 \end{array}$                       | SSM    | I                           | 0.05                                             | 56                         | $5 \times 10^{-5} - 1.0$ | I.0.0.g.                                  | [22]       |
|            | Na+-43,<br>NaTFPB,<br>DBS,<br>PVC<br>(weight ratio not reported)             | $\begin{array}{c} Li^+, -3.5;  K^+, -1.8; \\ Rb^+, -1.9;  Gs^+, -2.1; \\ NH_4^+, -2.7;  Ga^{2+}, -4.2; \\ Sr^{2+}, -4.5;  Mg^{2+}, -4.2; \\ Ba^{2+}, -4.2. \end{array}$                      | SSM    | I                           | 0.05                                             | 56                         | $5 \times 10^{-5} - 1.0$ | T.0.0.g.                                  | [22]       |
|            | Na+-43,<br>NaTFPB,<br>DPP,<br>PVC<br>(weight ratio not reported)             | $\begin{array}{l} Li^+, -3.6; \ K^+, -2.0; \\ Rb^+, -2.2; \ Cs^+, -2.5; \\ NH_4^+, -3.1; \ Ca^{2+}, -4.9; \\ Sr^{2+}, -5.2; \ Mg^{2+}, -4.8; \\ Ba^{2+}, -4.7 \end{array}$                   | SSM    | I                           | 0.05                                             | 55                         | $5 \times 10^{-5} - 1.0$ | 1.0.0.g.                                  | [22]       |
|            | Na+-43,<br>NaTFPB,<br>TEHP,<br>PVC<br>(weight ratio not reported)            | $\begin{array}{l} Li^+, -1.5;  K^+, -1.9; \\ Rb^+, -1.8;  Cs^+, -2.1; \\ NH_4^+, -1.7;  Ca^{2+}, -2.4; \\ Sr^{2+}, -3.1;  Mg^{2+}, -3.3; \\ Ba^{2+}, -2.8 \end{array}$                       | SSM    | I                           | 0.05                                             | 55                         | $5 \times 10^{-5}$ -1.0  | I.0.0.g.                                  | [22]       |
|            | Na+43,<br>NaTFPB,<br>oNPOE,<br>PVC<br>(weight ratio not reported)            | $\begin{array}{l} Li^+, -2.6;  K^+, -1.9; \\ Rb^+, -2.1;  Cs^+, -2.2; \\ NH_4^+, -2.2;  Ca^{2+}, -3.7; \\ Sr^{2+}, -3.1;  Mg^{2+}, -3.0; \\ Ba^{2+}, -2.9 \end{array}$                       | SSM    | I                           | 0.05                                             | 46                         | $5 \times 10^{-4}$ -1.0  | 1.0.0.g.                                  | [22]       |
|            |                                                                              | $\begin{array}{l} Li^+, -3.6; * \; K^+, -2.1; * \\ Rb^+, -2.4 *, \; Cs^+, -3.2; * \\ NH_4^+, -3.2; * \; Ca^2+, -3.7; * \\ Sr^2+, -4.1; * \; Mg^{2+}, -3.9; * \\ Ba^{2+}, -3.8 * \end{array}$ | SSM    | I                           | 0.05                                             | 46*                        | $5 \times 10^{-4}$ -1.0* | * after 3.5 d in<br>4 M NaCl;<br>r.o.o.g. | . <u>=</u> |
|            | $Na^{+}-43 (w = 2.8 \%),$                                                    | Li <sup>+</sup> , -3.4; K <sup>+</sup> , -1.90;                                                                                                                                              | FIM    | I                           | 0.05                                             | 59                         | $10^{-4.5} - 10^{-1}$    | 25.0±0.1 °C [23]                          | C [23]     |

| ionophore | membrane<br>composition                                                                                    | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                                                       | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade) | linear<br>range<br>(M)                     | remarks                          | ref. |  |
|-----------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|--------------------------------------------|----------------------------------|------|--|
|           | NaTFPB $(x_i = 15 \%)$ ,<br>oNPOE $(w = 69.1 \%)$ ,<br>PVC $(w = 27.6 \%)$                                 | $\begin{array}{l} Rb^+,-2.3;Cs^+,-2.6;\\ H^+,-3.4;\\ NH_{4}^+,-3.3;Ca^{2+},-3.3;\\ Mg^{2+},-4.4\end{array}$                                                                          | FIM    | I                           | 0.5                                              |                            |                                            |                                  |      |  |
| Na+-44    | <b>Na+44</b> ( $w = 10$ %), silicone rubber ( $w = 90$ %)                                                  | K <sup>+</sup> , -2.5; H <sup>+</sup> , -3.15;<br>Li <sup>+</sup> , -3.1; Mg <sup>2+</sup> , -3.5;<br>Ca <sup>2+</sup> , -3.9;<br>NH4 <sup>+</sup> , -4.15                           | FIM    | 1 1 1                       | 0.1<br>0.5<br>0.8                                | Z                          | 1                                          | ISFET;<br>190 = 1 s;<br>r.o.o.g. | [9]  |  |
|           | <b>Na+-44</b> ( $w = 10$ %), silicone rubber ( $w = 90$ %)                                                 | K <sup>+</sup> , -2.4; H <sup>+</sup> , -3.6;<br>Li <sup>+</sup> , -2.8; Mg <sup>2+</sup> , -3.5;<br>Ca <sup>2+</sup> , -3.9;<br>NH <sub>4</sub> <sup>+</sup> , -4.2                 | FIM    | 1 1 1                       | 0.1<br>0.5<br>1.0                                | Z                          | $3 \times 10^{-5}$ -<br>$6 \times 10^{-1}$ | I.0.0.g                          | [24] |  |
|           | Na <sup>+</sup> -44 ( $w = 6.3 \%$ ),<br>DOS ( $w = 62.5 \%$ ),<br>PVC ( $w = 31.2 \%$ )                   | K+, -2.37; H+, -3.06;<br>Li <sup>+</sup> , -3.5; Mg <sup>2+</sup> , -3.87;<br>Ca <sup>2+</sup> , -4.25;<br>NH <sub>4</sub> <sup>+</sup> , -4.06                                      | FIM    | 1 1 1                       | 0.1<br>0.5<br>1.0                                | Z                          | I                                          | 1.0.0.g.                         | [24] |  |
| Na+-45    | <b>Na+45</b> $(w = 10 \ \%)$ , silicone rubber $(w = 90 \ \%)$                                             | $\begin{array}{l} K^+,-2.0;H^+,-0.95;\\ Li^+,-2.9;Mg^{2+},-3.4;\\ Ca^{2+},-3.7;\\ NH_4^+,-2.7\end{array}$                                                                            | FIM    | 1 1 1                       | 0.1<br>0.5<br>0.8                                | Z                          | 1                                          | ISFET;<br>190 = 1 s;<br>r.o.o.g. | [9]  |  |
| Na+-46    | Na+46 ( $w = 1.0 \%$ ),<br>KTFPB ( $x_1 = 49.8 \%$ ),<br>oNPOE ( $w = 65.6 \%$ ),<br>PVC ( $w = 32.8 \%$ ) | $\begin{array}{l} Li^+,-0.2;K^+,-0.7;\\ Rb^+,-1.4;Cs^+,-1.3;\\ NH_4^+,-1.7;H^+,-2.4;\\ Mg^{2+},-3.5;Ca^{2+},-2.9;\\ Sr^{2+},-2.7;Ba^{2+},-1.9 \end{array}$                           | SSM    | 0.1                         | 0.1                                              | 53.6 ± 0.2                 | I                                          | 22 ± 1 °C;<br>r.o.o.g.           | [25] |  |
|           | Na+46 ( $w = 1.0 \%$ ),<br>KTFPB ( $x_1 = 10.1 \%$ ),<br>oNPOE ( $w = 65.1 \%$ ),<br>PVC ( $w = 32.6 \%$ ) | $\begin{array}{l} Li+,-0.6;K+,-1.2;\\ Rb^+,-2.0;Cs+,-2.3;\\ NH_4+,-2.3;H+,-2.95;\\ Mg^{2+},-3.9;Ca^{2+},-3.3;\\ Sr^{2+},-3.1;Ba^{2+},-1.4 \end{array}$                               | SSM    | 0.1                         | 0.1                                              | 59.6 ± 0.9                 | 1                                          | 22 ± 1 °C;<br>r.o.o.g            | [25] |  |
|           | <b>Na+46</b> ( <i>w</i> = 1.1 %),<br>oNPOE ( <i>w</i> = 65.9 %),<br>PVC ( <i>w</i> = 33.0 %)               | $\begin{array}{l} Li^+, -0.7;  K^+, -1.1; \\ Rb^+, -1.6;  Cs^+, -1.8; \\ NH_4^+, -0.85;  H^+, +2.20; \\ Mg^{2+}, -1.9;  Ca^{2+}, -2.1; \\ Sr^{2+}, -1.7;  Ba^{2+}, -1.0 \end{array}$ | SSM    | 0.1                         | 0.1                                              | 28.5 ± 2.0                 | I                                          | 22 ± 1 °C;<br>r.o.o.g.           | [25] |  |

| ionophore | membrane<br>composition                                                                                                                                                                                                                                                             | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade)               | linear<br>range<br>(M)                        | remarks                                                                                                                  | ref.                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|
|           | Na+-46 ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 45$ %),<br>DBE ( $w = 70$ %),<br>PVC ( $w = 26$ %)                                                                                                                                                                                         | Li+, -1.2; K+, -1.2;<br>Rb+, -2.0; Cs+, -2.4;<br>Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -2.7;<br>Sr <sup>2+</sup> , -2.5; Ba <sup>2+</sup> , -0.8                                                                                                                                     | SSM    | 0.1                         | 0.1                                              | I                                        |                                               | pH = 6.00;<br>r.o.o.g.                                                                                                   | [26]                       |
|           |                                                                                                                                                                                                                                                                                     | $\begin{array}{l} Li+,+0.1;K+,-0.1;\\ Rb+,-0.7;Cs+,-1.0;\\ Mg^{2+},-2.8;Ca^{2+},-1.1;\\ Sr^{2+},-0.2;Ba^{2+},+1.0 \end{array}$                                                                                                                                                             | SSM    | 0.1                         | 0.1                                              | I                                        | I                                             | pH = 8.00;<br>r.o.o.g.                                                                                                   | [26]                       |
| Na+-47    | Na+.47 (w = 3.2 %),<br>KTpCIPB (xi = 0.05 %),<br>DOS (w = 63.2 %),<br>PVC (w = 31.6 %)                                                                                                                                                                                              | $\begin{array}{l} K^+,-4.9\pm0.1;\\ Mg^{2+},-8.0\pm0.1;\\ Ca^{2+},-7.7\pm0.1\\ K^+,-3.5\pm0.1;\\ \end{array}$                                                                                                                                                                              | 1 1    | 1 1                         | 1 1                                              | $61.3 \pm 1.5$ -<br>$59.5 \pm 0.1^{*}$ - | 1 1                                           | $21.5 \pm [2]$ $0.5 \circ C;$ conditioned in 0.01 M KCI;                                                                 | [27]<br>Cl;                |
|           |                                                                                                                                                                                                                                                                                     | Mg <sup>2+</sup> , -4.5 ± 0.1;*<br>Ca <sup>2+</sup> , -4.2 ± 0.1*                                                                                                                                                                                                                          |        |                             |                                                  |                                          |                                               | *conditioned<br>in 0.01 M NaCl                                                                                           | l<br>aCl                   |
| Na+-48    | Na <sup>+</sup> -48 ( $w = 2.2 \%$ ),<br>KTpcIPB ( $x_1 = 20 \%$ ),<br>aromatic epoxyacrylate ( $w = 45.3 \%$ ),<br>copolymerizable benzophenone<br>photoinitator ( $w = 5.6 \%$ ),<br>bis(2-ethylhexyl) phtalate ( $w = 23.6 \%$ ),<br>1,6-hexanediyl diacrylate ( $w = 22.6 \%$ ) | $\begin{array}{c} {\rm Li}^+,-1.9,{\rm K}^+,-0.4;\\ {\rm NH}_4,-1.5,{\rm Mg}^{2+},-2.9;\\ {\rm Ca}^{2+},-1.7,{\rm Sr}^{2+},-2.2;\\ {\rm Ba}^{2+},-0.4 \end{array}$                                                                                                                         | FIM    | 1                           | I                                                | 58.3 ± 0.8                               | 58.3 ± 0.8 10 <sup>-4</sup> -10 <sup>-1</sup> | photopoly- [28<br>merised mem-<br>branes;<br>$c_{\rm dl} = 2 \times 10^{-5} \text{ M};$<br>$t_{90} < 5 \text{ s};$ $FIA$ | [28]<br>n-<br>5 M;<br>FIA; |
|           | Na+-48<br>(membrane composition<br>not reported)                                                                                                                                                                                                                                    | $\begin{array}{l} Li^+,-1.8;K^+,-0.4;\\ NH_4^+,-0.9;Ca^{2+},-3.0\\ N(CH_3)_4^+,-1.6;\\ N(C4H_{11})_4^+,+3.1;\\ N(CH_{33})_5(C_{18}H_{37})^+,+4.7 \end{array}$                                                                                                                              | SSM    | I                           | 0.1                                              | 54-56                                    | $5 \times 10^{-4}$ -1.0                       | 25 °C;<br>t <sub>90</sub> = 10 s;<br>τ > 120 d                                                                           | [21]                       |
| Na+-49    | <b>Na+49</b> ( $w = 4.2 \%$ ),<br>NaTPB ( $x_1 = 25 \%$ ),<br>oNPOE ( $w = 63.3 \%$ ),<br>PVC ( $w = 31.6 \%$ )                                                                                                                                                                     | $\begin{array}{l} Li^+, -1.3;  K^+, -2.1; \\ Rb^+, -1.8;  Cs^+, -1.7; \\ NH_4^+, -2.6;  H^+, -2.8; \\ Mg^{2^+}, -3.9;  Ca^+, -2.4; \\ Sr^2+, -3.6;  Ba^{2^+}, -3.1; \\ Sr^2+, -2.4;  Cd^{2^+}, -3.1; \\ Cu^{2^+}, -2.9;  Co^{2^+}, -3.2; \\ Fe^{3^+}, -3.3; \\ Fe^{3^+}, -3.3 \end{array}$ | SSM    | 1                           | I                                                | 58 ± 0.3                                 | 10-5-10-1                                     | c <sub>dl</sub> = [2'<br>7 × 10 <sup>-6</sup> M;<br>2.0 < pH < 10.0;<br>r.o.o.g.                                         | [29]<br>0.0;               |

Table 3: Na<sup>+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

## Y. UMEZAWA et al.

| ionophore | e membrane<br>composition                                                                                                   | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                                                                                                                                                                    | method     | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | ig slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                          | ref.                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|--------------------------------------------------|-----------------------------|------------------------|----------------------------------------------------------------------------------|--------------------------------|
| Na+-50    | <b>Na<sup>+</sup>-50</b> ( $w = 4.2 \%$ ),<br>NaTPB ( $x_i = 27 \%$ ),<br>oNPOE ( $w = 63.3 \%$ ),<br>PVC ( $w = 31.6 \%$ ) | $\begin{array}{l} Lit, -2.0; Kt, -0.7;\\ Rb^{+}; -1.3; Cs^{+}, -0.9\\ NH_{4}^{+}, -2.2; Ht^{+}, -2.7;\\ Mg^{2+}, -3.0; Ca^{2+}, -2.5;\\ Sr^{2+}, -2.9; Ba^{2+}, -2.4;\\ Al^{3+}, -1.5; Cd^{2+}, -3.2;\\ Cu^{2+}, -3.2; Co^{2+}, -3.4;\\ Zn^{2+}, -2.9; Mo^{2+}, -3.3;\\ Fe^{3+}, -2.6\end{array}$ | SSM        | I                           | I                                                | 58 ± 0.3                    |                        | c <sub>dl</sub> = [2<br>7 × 10 <sup>-6</sup> M;<br>r.o.o.g.;<br>2.0 < pH < 10.0  | [29]                           |
| Na+-51    | <b>Nat-51</b> ( $w = 4.2 \%$ ),<br>NaTPB ( $x_i = 33 \%$ ),<br>oNPOE ( $w = 63.2 \%$ ),<br>PVC ( $w = 31.6 \%$ )            | $\begin{array}{l} Li^+,-2.5;K^+,-0.8;\\ Rb^+;+1.1;Cs^+,+0.4;\\ NH_4^+,-0.1;Mg^{2+},-2.8;\\ Ca^{2+},-2.0;Sr^{2+},-2.2;\\ Ba^{2+},-1.9;\\ Al^{3+},-2.6;Cd^{2+},-2.7;\\ Cu^{2+},-2.3;Co^{2+},-3.1;\\ Ni^{2+},-1.3;Zn^{2+},-3.2;\\ Mo^{2+},-3.0;Fe^{3+},-3.2\end{array}$                              | SSM        | I                           | 1                                                | 58 ± 0.3                    | 1                      | c <sub>dl</sub> = [25<br>7 × 10 <sup>-6</sup> M;<br>2.0 < pH < 10.0;<br>r.o.o.g. | [29]                           |
| Na+-52    | Na <sup>+</sup> -52 ( $w = 9.0$ %),<br>KTpCIPB ( $x_i = 1.5$ %),<br>oNPOE ( $w = 60.5$ %),<br>PVC ( $w = 30.2$ %)           | $\begin{array}{l} K^+, +0.8 \\ Li^+, -1.5; Rb^+; +0.6; \\ Cs^+, +1.8; H^+, -2.0; \\ NH_4^+, -0.3; Mg^{2+}, -3.2; \\ Ca^{2+}, -2.8 \end{array}$                                                                                                                                                    | FIM<br>SSM | 0.01                        | 0.01                                             | 1 1                         | 1 1                    | 25 ± 1 °C;<br>r.o.o.g.                                                           | [30]                           |
| Na+-53    | Na+-53 ( $w = 9.0$ %),<br>KTpCIPB ( $x_i = 1.8$ %),<br>oNPOE ( $w = 60.5$ %),<br>PVC ( $w = 30.2$ %)                        | $\begin{array}{l} K^+,-0.95\\ Li^+,-2.4;Rb^+;-1.2;\\ Cs^+,-1.0;H^+,-3.1;\\ NH_4^+,-2.1;Mg^{2+},-4.1;\\ Ca^{2+},-3.4\end{array}$                                                                                                                                                                   | FIM<br>SSM | _<br>0.01                   | 0.01                                             | 1 1                         | 1 1                    | 25 ± 1 °C;<br>r.o.o.g.                                                           | [30]                           |
| Na+-54    | Na <sup>+</sup> -54 ( $w = 9.0$ %),<br>KTpCIPB ( $x_i = 2.2$ %),<br>oNPOE ( $w = 60.5$ %),<br>PVC ( $w = 30.2$ %)           | $\begin{array}{l} K^+, -1.0;\\ Rb^+; -0.9; Li^+, -2.0;\\ Cs^+, -1.0; H^+, -3.8;\\ NH_4^+, -1.9; Mg^{2+}, -3.9;\\ Ca^{2+}, -3.7 \end{array}$                                                                                                                                                       | FIM<br>SSM | 0.01                        | 0.01                                             | 1 1                         | 1 1                    | 25 ± 1 °C;<br>r.o.o.g.                                                           | [30]                           |
| Na+-55    | Na <sup>+</sup> -55 ( $w = 9.0$ %),<br>KTpCIPB ( $x_i = 2.9$ %),<br>oNPOE ( $w = 60.5$ %),<br>PVC ( $w = 30.2$ %)           | $\begin{array}{l} K^+,-0.92;\\ Rb^+;-1.3;Li^+,-2.6;\\ Cs^+,-0.95;H^+,-3.7;\\ NH_4^+,-2.1;Mg^{2+},-3.9;\\ Ca^{2+},-3.4\end{array}$                                                                                                                                                                 | FIM<br>SSM | 0.01                        | 0.01                                             | 1 1                         | 1 1                    | 25 ± 1 °C;<br>r.o.o.g.                                                           | [30]<br>continues on next page |

Potentiometric selectivity coefficients of ion-selective electrodes

| IOIIOPIIOI | e membrane<br>composition                                                                                         | $\lg K_{\mathrm{Na}^+,\mathrm{Bu}^+}$                                                                                                                           | method     | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M) | remarks                | ref. |
|------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------------------------|----------------------------------------------------|------------------------|------------------------|------|
| Na+-56     | Na +.56 ( $w = 9.0 \%$ ).<br>KTpCIPB ( $x_i = 1.8 \%$ ),<br>oNPOE ( $w = 60.5 \%$ ),<br>PVC ( $w = 30.2 \%$ )     | $\begin{array}{l} K^+, -0.73;\\ Rb^+; -11; Li^+, -2.5;\\ Cs^+, -0.8; H^+, -2.1;\\ NH4^+, -2.1; Mg^{2+}, -3.9;\\ Ca^{2+}, -3.5\end{array}$                       | FIM<br>SSM | -<br>0.01                   | 0.01                            | 1 1                                                | 1 1                    | 25 ± 1 °C;<br>r.o.o.g. | [30] |
| Na+-57     | Na <sup>+</sup> -57 ( $w = 9.0$ %),<br>KTpCIPB ( $x_i = 2.2$ %),<br>oNPDE ( $w = 60.5$ %),<br>PVC ( $w = 30.2$ %) | $\begin{array}{l} K^+,-0.90;\\ Rb^+,-1.2;Li^+,-2.4;\\ Cs^+,-0.9;H^+,-3.05;\\ NH_4^+,-2.05;Mg^{2^+},-3.8;\\ Ca^{2^+},-3.3\end{array}$                            | FIM<br>SSM | -<br>0.01                   | 0.01                            | 1 1                                                | 1 1                    | 25 ± 1 °C;<br>r.o.o.g. | [30] |
| Na+-58     | Na+-58 ( $w = 9.0 \%$ ),<br>KTpCIPB ( $x_i = 2.6 \%$ ),<br>oNPOE ( $w = 60.5 \%$ ),<br>PVC ( $w = 30.2 \%$ )      | $\begin{array}{l} K^+, -0.95;\\ Rb^+, -0.8; Li^+, -1.85;\\ Cs^+, -0.8; H^+, -3.5;\\ NH_4^+, -1.75; Mg^{2+}, -3.9;\\ Ca^{2+}, -3.6\end{array}$                   | FIM<br>SSM | -<br>0.01                   | 0.01<br>0.01                    | 1 1                                                | 1 1                    | 25 ± 1 °C;<br>r.o.o.g. | [30] |
| Na+-59     | Na+-59 ( $w = 3 \%$ ),<br>KTpCIPB ( $x_1 = 46 \%$ ),<br>DBE ( $w = 70 \%$ ),<br>PVC ( $w = 26 \%$ )               | $\begin{array}{l} Li^+,-0.6;K^+,-0.8;\\ Rb^+,-1.0,Cs^+,-1.8;\\ Mg^{2+},-3.6;Ca^{2+},-3.5;\\ Sr^{2+},-3.3;Ba^{2+},-3.1;\\ Sr^{2+},-3.1;Ba^{2+},-3.1.\end{array}$ | SSM        | 0.1                         | 0.1                             | I                                                  | I                      | I.0.0.g.               | [26] |
| Na+-60     | Na <sup>+-60</sup> ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 47$ %),<br>DBE ( $w = 70$ %),<br>PVC ( $w = 26$ %)           | $\begin{array}{l} Li^+, -0.5;  K^+, -1.1; \\ Rb^+, -1.8;  Cs^+, -2.6; \\ Mg^{2+}, -3.8;  Ca^{2+}, -3.5; \\ Sr^{2+}, -3.2;  Ba^{2+}, -2.8 \end{array}$           | SSM        | 0.1                         | 0.1                             | I                                                  | I                      | I.0.0.g.               | [26] |
| Na+-61     | Na <sup>+-6</sup> I ( $w = 3 \%$ ),<br>KTpCIPB ( $x_1 = 49 \%$ ),<br>DBE ( $w = 70 \%$ ),<br>PVC ( $w = 26 \%$ )  | $\begin{array}{l} Li^+,-0.4;K^+,-1.1;\\ Rb^+,-1.8;Cs^+,-2.6;\\ Mg^{2+},-4.3;Ca^{2+},-4.1;\\ Sr^{2+},-3.9;Ba^{2+},-3.6\end{array}$                               | SSM        | 0.1                         | 0.1                             | I                                                  | I                      | 1.0.0.g.               | [26] |
| Na+-62     | Na <sup>+</sup> -62 ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 51$ %),<br>DBE ( $w = 70$ %),<br>PVC ( $w = 26$ %)          | $\begin{array}{l} Li^+,-0.7;K^+,-0.7;\\ Rb^+,-1.3;Cs^+,-2.1;\\ Mg^{2+},-4.3;Ca^{2+},-4.0;\\ Sr^{2+},-3.8;Ba^{2+},-3.5 \end{array}$                              | SSM        | 0.1                         | 0.1                             | 1                                                  | I                      | r.o.o.g.               | [26] |
| Na+-63     | Na <sup>+</sup> -63 ( $w = 3$ %),<br>KTpCIPB ( $x_i = 56$ %),<br>DBE ( $w = 70$ %),<br>PVC ( $w = 26$ %)          | $\begin{array}{c} Li^+, -0.6;  K^+, -01.2 \\ Rb^+, -1.7;  Cs^+, -2.5; \\ Mg^{2+}, -4.6;  Ca^{2+}, -3.6; \\ Sr^{2+}, -3.6;  Ba^{2+}, -3.0 \end{array}$           | SSM        | 0.1                         | 0.1                             | 59                                                 | I                      | r.o.o.g.               | [26] |

1914

| ionophore | ionophore membrane<br>composition                                                                                                             | $\lg K_{\mathrm{Na^+,Bn^+}}$                                                                                                                                                                                  | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | ng slope<br>. (mV/<br>decade) | linear<br>range<br>(M) | remarks  | ref.                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|-------------------------------|------------------------|----------|------------------------|
|           | Na <sup>+</sup> -63 ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 56$ %),<br>BEHS ( $w = 70$ %),<br>PVC ( $w = 26$ %)                                     | $\begin{array}{c} Li^+, -0.6;  K^+, -0.6; \\ Rb^+, -1.1;  Cs^+, -2.8; \\ Mg^{2+}, -4.8;  Ca^{2+}, -4.2; \\ Sr^{2+}, -4.1;  Ba^{2+}, -3.8 \end{array}$                                                         | MSS    | 0.1                         | 0.1                                              | 59                            | I                      | r.o.o.g. | [26]                   |
|           | Na <sup>+</sup> -63 ( $w = 3$ %).<br>KTpCIPB ( $x_1 = 56$ %),<br>diisodecyl phosphate ( $w = 70$ %),<br>PVC ( $w = 26$ %)                     | $\begin{array}{l} Li^+, -0.7;  K^+, -0.7; \\ Rb^+ -1.2;  Cs^+, -2.7; \\ Mg^{2+}, -4.1;  Ca^{2+}, -3.6; \\ Sr^{2+}, -3.2;  Ba^{2+}, -2.8 \end{array}$                                                          | SSM    | 0.1                         | 0.1                                              | 59                            | 1                      | r.o.o.g. | [26]                   |
|           | Na <sup>+</sup> -63 ( $w = 3$ %).<br>KTpCIPB ( $v_i = 56$ %),<br>oNPOE ( $w = 70$ %).<br>PVC ( $w = 26$ %)                                    | $\begin{array}{l} Lit, -0.7; Kt, -0.7; \\ Rb+, -1.4; Cst, -2.9; \\ Mg^{2+}, -4.3; Ca^{2+}, -4.0; \\ Sr^{2+}, -3.5; Ba^{2+}, -3.0 \end{array}$                                                                 | SSM    | 0.1                         | 0.1                                              | 59                            | I                      | r.o.o.g. | [26]                   |
|           | Na <sup>+</sup> -63 ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 56$ %),<br>oNPPE ( $w = 70$ %),<br>PVC ( $w = 26$ %)                                    | $\begin{array}{l} Li^+, -0.7;  K^+, -0.8; \\ Rb^+, -1.3;  Cs^+, -2.5; \\ Mg^{2+}, -3.8;  Ca^{2+}, -3.2; \\ Sr^{2+}, -3.1;  Ba^{2+}, -2.8 \end{array}$                                                         | SSM    | 0.1                         | 0.1                                              | 59                            | I                      | r.o.o.g. | [26]                   |
| Na+-64    | Na <sup>+</sup> -64 ( $w = 10 \%$ ),<br>KTpCIPB ( $\kappa_i = 16 \%$ ),<br>DBE ( $w = 60 \%$ ),<br>PVC ( $w = 25 \%$ )                        | $\begin{array}{l} Li^+,-2.3;K^+,-0.9;\\ Rb^+,-1.1;Cs^+,-1.4;\\ Mg^{2+},-3.4;Ca^{2+},-3.2;\\ Sr^{2+},-3.2;Ba^{2+},-2.4.\end{array}$                                                                            | SSM    | 0.1                         | 0.1                                              | 1                             | I                      | r.o.o.g. | [31]                   |
| Na+-65    | Na <sup>+</sup> -65 ( $w = 10 \%$ ),<br>KTpCIPB ( $\kappa_i = 27 \%$ ),<br>DBE ( $w = 60 \%$ ),<br>PVC ( $w = 25 \%$ )                        | $\begin{array}{l} Li^+,-2.5;K^+,-1.1;\\ Rb^+,-1.3;Cs^+,-1.7;\\ Mg^{2+},-3.5;Ca^{2+},-3.2;\\ Sr^{2+},-3.0;Ba^{2+},-3.1 \end{array}$                                                                            | SSM    | 0.1                         | 0.1                                              | 1                             | I                      | r.o.o.g. | [31]                   |
| Na+-66    | <b>Na<sup>+</sup>-66</b> ( <i>w</i> = 10 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 22 %),<br>DBE ( <i>w</i> = 60 %),<br>PVC ( <i>w</i> = 25 %) | $\begin{array}{l} Li^{+},-1.7;K^{+},-2.65\\ Rb^{+};-3.1;Cs^{+},-2.4;\\ Mg^{2+},-3.3;Ca^{2+},-3.0;\\ Sr^{2+},-2.7;Ba^{2+},-1.1\\ \end{array}$                                                                  | SSM    | 0.1                         | 0.1                                              | 54-56                         | $2 \times 10^{-5}$ -1  | r.o.o.g. | [31]                   |
| Na+-67    | Na <sup>+</sup> -67 ( $w = 10$ %),<br>KTpCIPB ( $x_i = 23$ %),<br>DBE ( $w = 60$ %),<br>PVC ( $w = 25$ %)                                     | $\begin{array}{l} Li^+,-1.8;K^+,-2.75;\\ Rb^+;-3.2;Cs^+,-2.6;\\ Mg^{2+},-3.7;Ca^{2+},-3.02;\\ Sr^{2+},-3.09;Ba^{2+},-1.3\end{array}$                                                                          | SSM    | 0.1                         | 0.1                                              | 54-56                         | $2 \times 10^{-5}$ -1  | r.o.o.g. | [31]                   |
| Na+-68    | Na <sup>+</sup> -68 ( $w = 10$ %),<br>KTpCIPB ( $x_i = 25$ %),<br>DBE ( $w = 60$ %),<br>PVC ( $w = 75$ %)                                     | Li <sup>+</sup> , -1.8; K <sup>+</sup> , +0.2;<br>Rb <sup>+</sup> , +0.5; Cs <sup>+</sup> , -1.1;<br>Mg <sup>2+</sup> , -3.3; Ca <sup>2+</sup> , -3.0;<br>Sr <sup>2+</sup> , -2, 8: Ra <sup>2+</sup> , -1, 4. | SSM    | 0.1                         | 0.1                                              | I                             | I                      | r.o.o.g. | [31]                   |
|           |                                                                                                                                               | ···· · · · · · · · · · · · · · · · · ·                                                                                                                                                                        |        |                             |                                                  |                               |                        |          | continues on next page |

Potentiometric selectivity coefficients of ion-selective electrodes

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

ge

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 3: Na <sup>+</sup> -Selective Electrodes |  |

| ionophore | membrane<br>composition                                                                                                        | lgK <sub>Na</sub> +, <sub>B</sub> n+                                                                                               | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | : slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                               | ref.       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------|------------|
| Na+-69    | Na+.69 ( <i>w</i> = 10 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 28 %),<br>DBE ( <i>w</i> = 60 %),<br>PVC ( <i>w</i> = 25 %)    | $\begin{array}{l} Li^+,-1.8;K^+,+0.6;\\ Rb^+,+0.9;Cs^+,-0.8;\\ Mg^{2+},-3.1;Ca^{2+},-3.0;\\ Sr^{2+},-2.7;Ba^{2+},-1.4 \end{array}$ | SSM    | 0.1                         | 0.1                                              | I                          | I                      | r.o.o.g.                                              | [31]       |
| Na+-70    | Na+-70 (w = 1.3 %),<br>KTpcIPB (xi = 50 %),<br>oNPOE (w = 65.4 %),<br>PVC (w = 32.8 %)                                         | K <sup>+</sup> , -2.63; Mg <sup>2+</sup> , -3.0;<br>Ca <sup>2+</sup> , -0.1                                                        | FIM    | I                           | 0.1                                              | 60.5                       | I                      | $c_{\rm dl} = [32]$<br>10 <sup>-6</sup> M; 37 °C      | [32]<br>C  |
| Na+-71    | <b>Na+.71</b> ( <i>w</i> = 1.3 %),<br>KTpCIPB ( <i>x</i> i = 37 %),<br>oNPOE ( <i>w</i> = 65.4 %),<br>PVC ( <i>w</i> = 32.8 %) | $K^+$ , -0.1; $Mg^{2+}$ , -3.0; $Ca^{2+}$ , -3.1                                                                                   | FIM    | I                           | 0.1                                              | 50                         | I                      | c <sub>dl</sub> = [32]<br>10 <sup>-3.5</sup> M; 37 °C | [32]<br>°C |
| Na+-72    | Na+-72 (w = 1.3 %),<br>KTpcIPB (xi = 52 %),<br>oNPOE (w = 65.4 %),<br>PVC (w = 32.8 %)                                         | $K^+, -1.5; Mg^{2+}, 0.0; Ca^{2+}, 0.0$                                                                                            | FIM    | I                           | 0.1                                              | Z                          | I                      | c <sub>dl</sub> = [32]<br>10 <sup>-4.3</sup> M; 37 °C | [32]<br>°C |
| Na+-73    | Na+-73 (w = 1.3 %),<br>KTpCIPB (x <sub>i</sub> = 39 %),<br>oNPOE (w = 65.4 %),<br>PVC (w = 32.8 %)                             | K <sup>+</sup> , -0.2; Ca <sup>2+</sup> , -0.8                                                                                     | FIM    | 1.0                         | 0.1                                              | Z                          | I                      | c <sub>dl</sub> = [32]<br>10 <sup>-4.3</sup> M; 37 °C | [32]<br>°C |
| Na+-74    | Na+-74 (w = 3.2 %),<br>KTpcIPB (xi = 19 %),<br>oNPOE (w = 64.1 %),<br>PVC (w = 32.0 %)                                         | $Li^+, -3.31 \pm 0.06;$<br>$K^+, -0.89 \pm 0.05$                                                                                   | FIM    | 1 1                         | 0.01<br>0.05                                     | I                          | I                      | 24–25 °C                                              | [18]       |
| Na+-75    | Na+-75 (w = 3.2 %),<br>KTpcIPB (xi = 21 %),<br>oNPOE (w = 64.1 %),<br>PVC (w = 32.0 %)                                         | $Li^+, -3.21 \pm 0.02;$<br>$K^+, -1.90 \pm 0.01$                                                                                   | FIM    | 1 1                         | 0.01<br>0.05                                     | I                          | I                      | 24–25 °C                                              | [18]       |
| Na+-76    | Na+-76 (w = 3.2 %),<br>KTpcIPB (xi = 23 %),<br>oNPOE (w = 64.1 %),<br>PVC (w = 32.0 %)                                         | $Li^+, -3.02 \pm 0.03;$<br>$K^+, -2.03 \pm 0.04$                                                                                   | FIM    | 1 1                         | 0.01<br>0.05                                     | I                          | I                      | 24–25 °C;<br>r.o.o.g.                                 | [18]       |
| Na+-77    | Na+-77 (w = 3.2 %),<br>KTpcIPB (x <sub>1</sub> = 26 %),<br>oNPOE (w = 64.1 %),<br>PVC (w = 32.0 %)                             | $Li^+, -2.85 \pm 0.01;$<br>$K^+, -1.92 \pm 0.05$                                                                                   | FIM    | 1 1                         | 0.01<br>0.05                                     | I                          | I                      | 24–25 °C                                              | [18]       |
| Na+-78    | $Na^+-78$ ( $w = 3.2\%$ ),<br>KTpCIPB ( $x_i = 21\%$ ),                                                                        | $Li^+, -2.89 \pm 0.03;$<br>$K^+, -2.12 \pm 0.04$                                                                                   | FIM    | 1 1                         | 0.01<br>0.05                                     | I                          | I                      | 24–25 °C                                              | [18]       |

| nophore | ionophore membrane<br>composition                                                                                        | lgK <sub>Na</sub> +,Bn+                                                                                                     | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade) | linear<br>range<br>(M)  | remarks ref.                         |
|---------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|-------------------------|--------------------------------------|
|         | oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                                                                            |                                                                                                                             |        |                             |                                                  |                            |                         |                                      |
| Na+-79  | Na <sup>+</sup> .79 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 21 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | $L_{1}^{+}, -3.01 \pm 0.01;$<br>$K^{+}, -2.11 \pm 0.03$                                                                     | FIM    |                             | 0.01 0.05                                        | I                          | I                       | 24-25 °C [18]                        |
| Na+-80  | <b>Na+-80</b> ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_i = 17 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ),                                 | Li <sup>+</sup> , -3.4; K <sup>+</sup> , -1.91;<br>Rb <sup>+</sup> , -2.0; Cs <sup>+</sup> , -2.4;<br>H <sup>+</sup> , -3.6 | FIM    | I                           | 0.05                                             | 59                         | $10^{-4.5}$ - $10^{-1}$ | 25.0±0.1 °C [23]                     |
|         | PVC ( $w = 27.6 \%$ )                                                                                                    | NH4 <sup>+</sup> , -3.3; Ca <sup>2+</sup> , -3.8;<br>Mg <sup>2+</sup> , -4.4                                                | FIM    | I                           | 0.5                                              |                            |                         |                                      |
| Na+-81  | <b>Na+-81</b> ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_i = 19 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ),                                 | Li+, -3.3; K+, -1.95;<br>Rb+, -2.3; Cs+, -2.7;<br>H+, -4.1                                                                  | FIM    | I                           | 0.05                                             | 59                         | 10-4.5-10-1             | $25.0 \pm 0.1 ^{\circ}\text{C}$ [23] |
|         | PVC ( $w = 27.6 \%$ )                                                                                                    | NH4 <sup>+</sup> , -3.4; Ca <sup>2+</sup> , -3.9;<br>Mg <sup>2+</sup> , -4.7                                                | FIM    | I                           | 0.5                                              |                            |                         |                                      |
| Na+-82  | <b>Na+-82</b> ( $w = 2.8$ %),<br><b>NaTFPB</b> ( $x_i = 17$ %),<br>oNPOE ( $w = 69.1$ %),                                | Li <sup>+</sup> , -3.3; K <sup>+</sup> , -1.97;<br>Rb <sup>+</sup> , -2.3; Cs <sup>+</sup> , -2.6;<br>H <sup>+</sup> , -3.8 | FIM    | I                           | 0.05                                             | 59                         | $10^{-4.5}$ - $10^{-1}$ | 25.0±0.1 °C [23]                     |
|         | PVC $(w = 27.6\%)$                                                                                                       | NH4 <sup>+</sup> , -3.3; Ca <sup>2+</sup> , -3.8;<br>Mg <sup>2+</sup> , -4.2                                                | FIM    | I                           | 0.5                                              |                            |                         |                                      |
| Na+-83  | Na+-83 ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_1 = 15 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ).                                        | Li <sup>+</sup> , -3.5; K <sup>+</sup> , -2.05;<br>Rb <sup>+</sup> , -2.4; Cs <sup>+</sup> , -2.8;<br>H <sup>+</sup> , -4.4 | FIM    | I                           | 0.05                                             | 59                         | $10^{-5} - 10^{-1}$     | 25.0±0.1 °C [23]                     |
|         | <b>PVC</b> $(w = 27.6\%)$                                                                                                | NH <sub>4</sub> +, -3.6; Ca <sup>2+</sup> , -3.9;<br>Mg <sup>2+</sup> , -4.0                                                | FIM    | I                           | 0.5                                              |                            |                         |                                      |
| Na+-84  | Na+-84 ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_1 = 17 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ).                                        | Li+, -3.3; K+, -1.93;<br>Rb+, -2.3; Cs+, -2.6;<br>H+, -3.7                                                                  | FIM    | I                           | 0.05                                             | 59                         | $10^{-4.5}$ - $10^{-1}$ | 25.0±0.1 °C [23]                     |
|         | <b>PVC</b> $(w = 27.6\%)$                                                                                                | NH <sub>4</sub> +, -3.3; Ca <sup>2+</sup> , -3.8;<br>Mg <sup>2+</sup> , -4.5                                                | FIM    | I                           | 0.5                                              |                            |                         |                                      |
| Na+-85  | <b>Na+-85</b> ( $w = 2.8$ %),<br>NaTFPB ( $x_1 = 18$ %),<br>oNPOE ( $w = 69.1$ %),                                       | Li <sup>+</sup> , -3.2; K <sup>+</sup> , -1.92;<br>Rb <sup>+</sup> , -2.3; Cs <sup>+</sup> , -2.7;<br>H <sup>+</sup> , -3.5 | FIM    | I                           | 0.05                                             | 59                         | $10^{-4.5}$ - $10^{-1}$ | 25.0±0.1 °C [23]                     |
|         | PVC $(w = 27.6 \%)$                                                                                                      | NH <sub>4</sub> +, -3.3; Ca <sup>2+</sup> , -3.8;<br>Mσ <sup>2+</sup> -4 3                                                  | FIM    | I                           | 0.5                                              |                            |                         |                                      |

Potentiometric selectivity coefficients of ion-selective electrodes

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

continues on next page

| ionophore | membrane<br>composition                                                                             | lgK <sub>Na</sub> +, <sub>B</sub> n+                                                                                       | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | ig slope<br>. (mV/<br>decade) | linear<br>range<br>(M)                        | remarks ref.                                       |
|-----------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|-------------------------------|-----------------------------------------------|----------------------------------------------------|
| Na+-86    | Na+-86 ( $w = 2.8$ %),<br>NaTFPB ( $x_i = 15$ %),<br>ONDOF ( $w = 69.1$ %)                          | Li+, -3.4; K+, -1.97;<br>Rb+, -2.3; Cs+, -2.6;<br>H+3.6                                                                    | FIM    | I                           | 0.05                                             | 58                            | $10^{-4.5} - 10^{-1}$                         | 25.0±0.1 °C [23]                                   |
|           | PVC(w = 27.6%)                                                                                      | NH <sub>4</sub> +, -3.3; Ca <sup>2+</sup> , -3.9;<br>Mg <sup>2+</sup> , -4.3                                               | FIM    | I                           | 0.5                                              |                               |                                               |                                                    |
| Na+-87    | Na+-87 ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_1 = 15 \%$ ),<br>ONPOF ( $w = 69.1 \%$ ).                   | Li+, -3.4; K+, -1.93;<br>Rb+, -2.3; Cs+, -2.6;<br>H+, -3.7                                                                 | FIM    | I                           | 0.05                                             | 59                            | $10^{-4.5}$ – $10^{-1}$                       | 25.0±0.1 °C [23]                                   |
|           | PVC $(w = 27.6\%)$                                                                                  | NH <sub>4</sub> +, -3.4; Ca <sup>2+</sup> , -3.9;<br>Mg <sup>2+</sup> , -4.4                                               | FIM    | I                           | 0.5                                              |                               |                                               |                                                    |
| Na+-88    | <b>Na<sup>+-88</sup></b> ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_1 = 14 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ). | Li+, -3.1; K+, -1.5;<br>Rb+, -1.7; Cs+, -1.8;<br>H <sup>+</sup> , -3.8                                                     | FIM    | I                           | 0.05                                             | 59                            | $10^{-5} - 10^{-1}$                           | 25.0±0.1 °C [23]                                   |
|           | PVC(w = 27.6%)                                                                                      | NH4 <sup>+</sup> ,-2.6; Ca <sup>2+</sup> ,-3.3;<br>Mg <sup>2+</sup> ,-4                                                    | FIM    | I                           | 0.5                                              |                               |                                               |                                                    |
| Na+-89    | Na+-89 ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_i = 14 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ).                   | Li+, -3.6; K+, -1.7;<br>Rb+, -2.0; Cs+, -2.3;<br>H+, -3.9                                                                  | FIM    | I                           | 0.05                                             | 59                            | $10^{-4}$ - $10^{-1}$                         | 25.0±0.1 °C [23]                                   |
|           | PVC ( $w = 27.6 \%$ )                                                                               | NH <sub>4</sub> +, -3.3; Ca <sup>2+</sup> , -3.7;<br>Mg <sup>2+</sup> , -4                                                 | FIM    | I                           | 0.5                                              |                               |                                               |                                                    |
| Na+-90    | <b>Na+-90</b> ( $w = 2.8$ %),<br>NaTFPB ( $x_i = 15$ %),<br>oNPOE ( $w = 69.1$ %),                  | Li+, -2.9; K+, -1.2;<br>Rb+, -1.1; Cs+, -1.4;<br>H+, -2.6                                                                  | FIM    | I                           | 0.05                                             | 59                            | $10^{-4.5}$ - $10^{-1}$                       | 25.0±0.1 °C [23]                                   |
|           | PVC ( $w = 27.6 \%$ )                                                                               | ${ m NH_4^+, -1.4; Ca^{2+}, -2.6;}\ { m Mg^{2+}, -4}$                                                                      | FIM    | I                           | 0.5                                              |                               |                                               |                                                    |
| Na+-91    | Na+-91 ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_1 = 15 \%$ ),<br>oNPOE ( $w = 69.1 \%$ ).                   | Li <sup>+</sup> , -2.1; K <sup>+</sup> , -1.5;<br>Rb <sup>+</sup> , -1.5; Cs <sup>+</sup> , -1.3;<br>H <sup>+</sup> , -3.9 | FIM    | I                           | 0.05                                             | 59                            | $10^{-4.5}$ - $10^{-1}$                       | 25.0±0.1 °C [23]                                   |
|           | PVC ( $w = 27.6 \%$ )                                                                               | NH <sub>4</sub> +, -2.2; Ca <sup>2+</sup> , -2.2;<br>Mg <sup>2+</sup> , -4                                                 | FIM    | I                           | 0.5                                              |                               |                                               |                                                    |
| Na+-92    | Na+-92 ( $w = 2.3 \%$ ),<br>KTpCIPB ( $x_i = 50-60 \%$ ),                                           | $Li^+, -1.30 \pm 0.02;$<br>$K^+, -1.48 \pm 0.21;$                                                                          | FIM    | I                           | 0.01                                             | z                             | $10^{-4.5}$ - $10^{-1}$                       | ISFET; [8]<br>interlayer: poly                     |
|           | BEHS or BBPA ( $w \approx 65\%$ ),<br>PVC ( $w \approx 32\%$ )                                      | $Rb^+$ , $-1.75 \pm 0.05$ ;<br>$Cs^+$ , $-1.98 \pm 0.04$ ;<br>$Mg^{2+}$ , $-3.34 \pm 0.16$ ;                               | I      |                             |                                                  |                               | (2-hydroxycti<br>methacrylate)<br>* Measureme | (2-hydroxyethyl<br>methacrylate)<br>* Measurements |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

## Y. UMEZAWA et al.

| nophore | ionophore membrane<br>composition                                                                                                                             | $\lg K_{\mathrm{Na}^+,\mathrm{Bn}^+}$                                                                                                                                                                                                              | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M)  | remarks                                      | ref. |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|----------------------------------------------------|-------------------------|----------------------------------------------|------|
|         | Na+92 ( $w = 2.5 \%$ ),<br>NaTFB ( $x_1 = 39 \%$ ),<br>fluorosilicone rubber ( $w = 96.9 \%$ )                                                                | Li+,-1.3; K+, -1.8;<br>Ca <sup>2+</sup> , -3.0;<br>Mg <sup>2+</sup> ,-3.4                                                                                                                                                                          | FIM    | 1 1                         | 0.01<br>0.1                     | 47.85<br>± 3.74                                    | I                       | $c_{\rm dl} = 2.5 \times 10^{-5} \mathrm{M}$ | [33] |
|         | Na+-92<br>(membrane composition<br>not reported)                                                                                                              | $\begin{array}{l} Li^+, -1.1; \ K^+, -1.6\\ NH_4^+, -1.7; \ Ca^{2+}, -2.3\\ N(CH_3)_4^+, -2.1;\\ N(C_4H_{11})_4^+, +2.9;\\ N(CH_3)_3(C_{18}H_{37})^+, +4.7 \end{array}$                                                                            | SSM    | I                           | 0.1                             | 55–57                                              | $5 \times 10^{-5}$ -1.0 | 25 °C;<br>t90 = 10 s;<br>τ > 120 d           | [21] |
| Na+-93  | <b>Na+-93</b> ( <i>w</i> = 2.5 %),<br><b>KTpCIPB</b> ( <i>x</i> <sub>i</sub> = 21 %),<br>fluorosilicone rubber ( <i>w</i> = 96.9 %)                           | $\begin{array}{l} Li^+, -1.3, K^+, -1.8;\\ Ca^{2+}, -3.0;\\ Mg^{2+}, -3.4\end{array}$                                                                                                                                                              | FIM    | 1 1                         | 0.01 0.1                        | 55.1<br>± 0.2                                      | I                       | $c_{\rm dl} = 1.0 \times 10^{-4} \mathrm{M}$ | [33] |
| Na+-94  | <b>Na+-94</b> ( <i>w</i> = 3.0 %),<br><b>KTpCIPB</b> ( <i>x</i> ] = 10 %),<br><b>BBPA</b> ( <i>w</i> = 67.9 %),<br><b>PVC</b> ( <i>w</i> = 29.1 %)            | $\begin{array}{l} Li^+,-2.5;K^+,+0.44\\ Rb^+,+0.8;Cs^+,-0.1;\\ NH_4^+,-0.1;Ca^{2+},-3.0;\\ Mg^{2+},-2.6;Sr^{2+},-3.1;\\ Ba^{2+},-2.6\end{cases}$                                                                                                   | FIM    | I                           | 0.1                             | 1                                                  | 1                       | 25 ± 0.5 °C; [34]<br>r.o.o.g.                | [34] |
| Na+-95  | <b>Na<sup>+</sup>-95</b> ( <i>w</i> = 3.0 %),<br><b>KTpCIPB</b> ( <i>x</i> ] = 10 %),<br><b>BBPA</b> ( <i>w</i> = 67.9 %),<br><b>PVC</b> ( <i>w</i> = 29.1 %) | $\begin{array}{l} Li^+,-0.4;K^+,+0.4;\\ Rb^+,+0.4;Cs^+,-0.6;\\ NH_4^+,+0.4;Ca^{2+},-1.2;\\ Mg^{2+},-1.9;Sr^{2+},-1.2;\\ Ba^{2+},-1.4\end{cases}$                                                                                                   | FIM    | I                           | 0.1                             | I                                                  | 1                       | 25 ± 0.5 °C;<br>r.o.o.g.                     | [34] |
| Na+-96  | Na+-96 (w = 3.0 %),<br>KTpCIPB (xj = 10 %),<br>BBPA (w = 67.9 %),<br>PVC (w = 29.1 %)                                                                         | $\begin{array}{l} Li^+, -1.9; \ K^+, -1.56; \\ Rb^+, -2.0; \ Cs^+, -2.5; \\ Ca^{2+}, -3.6; \ Mg^{2+}, -4.9; \\ Sr^{2+}, -4.2; \ Ba^{2+}, -3.9 \end{array}$                                                                                         | FIM    | I                           | 0.1                             | I                                                  | I                       | 25 ± 0.5 °C; [34]<br>r.o.o.g.                | [34] |
| Na+-97  | Na+-97 (w = 3.0 %),<br>KTpCIPB (x <sub>i</sub> = 10 %),<br>BBPA (w = 67.9 %),<br>PVC (w = 29.1 %)                                                             | Li <sup>+</sup> , -2.5; K <sup>+</sup> , -2.2;<br>Rb <sup>+</sup> , -2.9; Cs <sup>+</sup> , -3.2;<br>NH <sub>4</sub> <sup>+</sup> , -2.8;<br>Ca <sup>2+</sup> , -3.6; Mg <sup>2+</sup> , -4.2;<br>Sr <sup>2+</sup> , -4.1; Ba <sup>2+</sup> , -4.2 | FIM    | I                           | 0.1                             | I                                                  | I                       | 25 ± 0.5 °C; [34]<br>r.o.o.g.                | [34] |
| Na+-98  | Na+-98 (w = 3.0 %),<br>KTpCIPB (x <sub>i</sub> = 10 %),<br>BBPA (w = 67.9 %),<br>PVC (w = 29.1 %)                                                             | $\begin{array}{l} Li^+,-2.6;K^+,-2.1;\\ Rb^+,-2.8;Cs^+,-3.0;\\ NH_4^+,-2.7;\\ Ca^{2+},-3.7;Mg^{2+},-4.0;\\ Sr^{2+},-4.1;Ba^{2+},-4.0;\\ Sr^{2+},-4.1;Ba^{2+},-4.0;\\ \end{array}$                                                                  | FIM    | I                           | 0.1                             | 1                                                  | I                       | 25 ± 0.5 °C; [34]<br>r.o.o.g.                | [34] |

Potentiometric selectivity coefficients of ion-selective electrodes

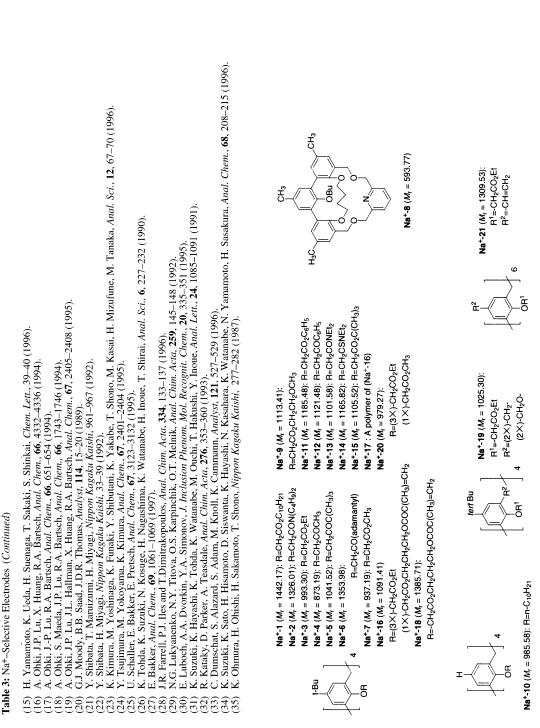
| ionophore |                                                                                                                                                     | $\lg K_{\mathrm{Na}+,\mathrm{Bn}+}$                                                                                                                                      | method | primary          | interfering slope | ig slope          | linear       | remarks ref.                  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------------------|-------------------|--------------|-------------------------------|--|
|           | composition                                                                                                                                         |                                                                                                                                                                          |        | ion conc.<br>(M) | ion conc.<br>(M)  | . (mV/<br>decade) | range<br>(M) |                               |  |
| Na+-99    | Na+-99 ( $w = 3.0$ %),<br>KTpCIPB ( $x_1 = 10$ %),<br>BBPA ( $w = 67.9$ %),<br>PVC ( $w = 29.1$ %)                                                  | $\begin{array}{l} Li^+,-2.3;K^+,-2.2;\\ Rb^+,-2.9;Cs^+,-3.3;\\ NH_4^+,-2.8;\\ Ca^{24},-4.2;Mg^{24},-4.7;\\ Sr^{2+},-4.2;Ba^{2+},-4.3;\end{array}$                        | FIM    | I                | 0.1               | 1                 | I            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
| Na+-100   | Na <sup>+</sup> -100 ( $w = 3.0$ %),<br>KTpCIPB ( $x_1 = 10$ %),<br>BBPA ( $w = 67.9$ %),<br>PVC ( $w = 29.1$ %)                                    | $\begin{array}{l} Li^+, -3.0;  K^+, -2.4; \\ Rb^+, -3.2;  Cs^+, -3.5; \\ NH_4^+, -3.0; \\ Ca^{2+}, -3.7;  Mg^{2+}, -3.7; \\ Sr^{2+}, -4.2;  Ba^{2+}, -4.2 \end{array}$   | FIM    | I                | 0.1               | I                 | I            | 25 ± 0.5 °C; [34]<br>1.0.0.g. |  |
|           | Na+100 ( $w = 3.0 \%$ ),<br>KTpCIPB ( $x_1 = 10 \%$ ),<br>DBE ( $w = 67.9 \%$ ),<br>PVC ( $w = 29.1 \%$ )                                           | $\begin{array}{l} Li^+, -2.7;  K^+, -2.5; \\ Rb^+, -3.1;  Cs^+, -3.5; \\ NH_4^+, -2.7; \\ Ca^{2+}, -4.1;  Mg^{2+}, -5.2; \\ Sr^{2+}, -4.2;  Ba^{2+}, -4.2 \end{array}$   | FIM    | I                | 0.1               | 1                 | 1            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
|           | Na <sup>+</sup> -100 ( $w = 3.0 \%$ ),<br>KTpCIPB ( $x_i = 10 \%$ ),<br>oNPOE ( $w = 67.9 \%$ ),<br>PVC ( $w = 29.1 \%$ )                           | $\begin{array}{l} Li^+,-2.6;K^+,-2.2;\\ Rb^+,-2.9;Cs^+,-3.6;\\ NH_{4^+},-2.7;\\ Ca^{2+},-3.9;Mg^{2+},-5.4;\\ Sr^{2+},-4.1;Ba^{2+},-4.4 \end{array}$                      | FIM    | I                | 0.1               | 1                 | I            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
|           | Na <sup>+</sup> -100 ( $w = 3.0 \%$ ),<br>KTpCIPB ( $x_1 = 10 \%$ ),<br>TEHP ( $w = 67.9 \%$ ),<br>PVC ( $w = 29.1 \%$ )                            | $\begin{array}{l} Li^+, -3.1;  K^+, -3.1; \\ Rb^+, -3.6;  Cs^+, -4.0; \\ NH_{4^+}, -3.3; \\ Ca^{2+}, -4.0;  Mg^{2+}, -4.2; \\ Sr^{2+}, -3.9;  Ba^{2+}, -4.3 \end{array}$ | FIM    | I                | 0.1               | 1                 | I            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
|           | Na <sup>+</sup> -100 ( $w = 3.0$ %),<br>KTpCIPB ( $x_1 = 10$ %),<br>DBE ( $w = 66.5$ %),<br>TEHP ( $w = 1.4$ %),<br>PVC ( $w = 29.1$ %)             | $\begin{array}{l} Li^+,-2.8;K^+,-2.9;\\ Rb^+,-3.5;Cs^+,-3.8;\\ NH_{4^+},-3.2;\\ Ca^{2+},-4.0;Mg^{2+},-4.0;\\ Sr^{2+},-3.7;Ba^{2+},-4.0 \end{array}$                      | FIM    | I                | 0.1               | I                 | I            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
|           | Na <sup>+</sup> -100 ( $w = 3.0 \%$ ),<br>KTpCIPB ( $x_i = 10 \%$ ),<br>oNPOE ( $w = 66.5 \%$ ),<br>TEHP ( $w = 1.4 \%$ ),<br>PVC ( $w = 29.1 \%$ ) | $\begin{array}{l} Li^+,-2.8;K^+,-2.5;\\ Rb^+,-3.2;Cs^+,-3.6;\\ NH_{4^+},-2.9;\\ Ca^{2+},-4.2;Mg^{2+},-4.1;\\ Sr^{2+},-4.0;Ba^{2+},-4.3\end{array}$                       | FIM    | I                | 0.1               | I                 | I            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
|           | Na+-100 ( $w = 3.0 \%$ ),<br>KTpCIPB ( $x_i = 10 \%$ ),                                                                                             | Li+, -2.9; K+, -2.7;<br>Rb+, -3.5; Cs+, -4.1;                                                                                                                            | FIM    | I                | 0.1               | I                 | I            | 25 ± 0.5 °C; [34]<br>r.o.o.g. |  |
|           |                                                                                                                                                     |                                                                                                                                                                          |        |                  |                   |                   |              |                               |  |

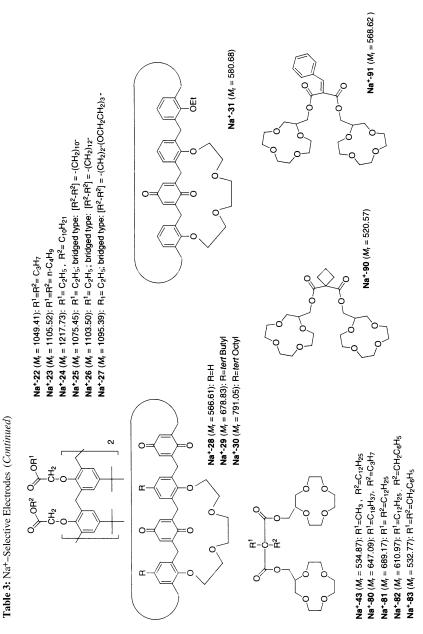
Table 3: Na<sup>+</sup>-Selective Electrodes (Continued)

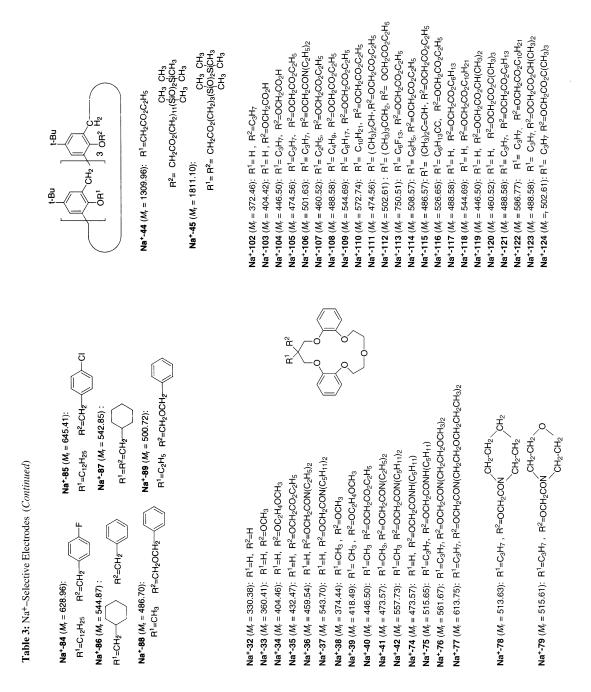
© 2000 IUPAC, Pure and Applied Chemistry 72, 1851-2082

| ionophore | e membrane<br>composition                                                                                                            | $\lg K_{\mathrm{Na}^+,\mathrm{B}^{\mathrm{n}+}}$                                                                                                  | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M) | remarks                  | ref.                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|----------------------------------------------------|------------------------|--------------------------|--------------------------------|
|           | BBPA ( <i>w</i> = 66.5 %),<br>TEHP ( <i>w</i> = 1.4 %),<br>PVC ( <i>w</i> = 29.1 %)                                                  | $\begin{array}{c} NH_{4}+,-3.3;\\ Ca^{2+},-4.1;Mg^{2+},-5.0;\\ Sr^{2+},-4.3;Ba^{2+},-4.4 \end{array}$                                             |        |                             |                                                    |                        |                          |                                |
| Na+-101   | Na <sup>+</sup> -101 ( <i>w</i> = 3.0 %),<br>KTpCIPB ( <i>x</i> i = 10 %),<br>BBPA ( <i>w</i> = 67.9 %),<br>PVC ( <i>w</i> = 29.1 %) | $\begin{array}{l} Li^+,-2.5;K^+,-2.3;\\ Rb^+,-3.1;Cs^+,-3.6;\\ NH_4^+,-2.8;\\ Ca^{2+},-3.5;Mg^{2+},-4.0;\\ Sr^{2+},-3.9;Ba^{2+},-3.7 \end{array}$ | FIM    | I                           | 0.1 –                                              | I                      | 25 ± 0.5 °C;<br>r.o.o.g. | ; [34]                         |
| Na+-102   | Na <sup>+</sup> -102 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 15$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                    | $Li^+, -2.31 \pm 0.05;$<br>$K^+, +0.68 \pm 0.02$                                                                                                  | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                 | [17]                           |
| Na+-103   | Na <sup>+</sup> -103 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 16$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                    | Li <sup>+</sup> , -3.46 ± 0.01;<br>K <sup>+</sup> , -0.65 ± 0.03                                                                                  | FIM    |                             | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                 | [17]                           |
| Na+-104   | Na <sup>+</sup> 104 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 17$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                     | Li <sup>+</sup> , -3.52 ± 0.05;<br>K <sup>+</sup> , -1.74 ± 0.03                                                                                  | FIM    |                             | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                 | [17]                           |
| Na+-105   | Na <sup>+</sup> -105 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 19$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                    | Li <sup>+</sup> , -3.73 ± 0.03;<br>K <sup>+</sup> , -1.49 ± 0.02                                                                                  | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                 | [17]                           |
| Na+-106   | Na <sup>+</sup> -106 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 17$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                    | Li <sup>+</sup> , -2.84 ± 0.01;<br>K <sup>+</sup> , -1.98 ± 0.02                                                                                  | FIM    | 1 1                         | 0.1 or 0.5 59<br>0.05 or 0.01                      | I                      | 24–25 °C                 | [17]                           |
| Na+-107   | Na <sup>+</sup> 107 ( $w = 3.2$ %),<br>KTpCIPB ( $x_i = 19$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                     | Li <sup>+</sup> , -3.73;<br>K <sup>+</sup> , -1.49                                                                                                | FIM    | 1 1                         | 0.5 59<br>0.05                                     | I                      | 24–25 °C                 | [61]                           |
| Na+-108   | Na+108 ( $w = 3.2$ %),<br>KTpcIPB ( $x_i = 20$ %),<br>oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                                  | Li <sup>+</sup> , -3.78;<br>K <sup>+</sup> , -1.54                                                                                                | FIM    | 1 1                         | 0.5 59<br>0.05                                     | I                      | 24–25 °C                 | [61]                           |
| Na+-109   | Na+-109 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 22 \%$ ),                                                                              | Li <sup>+</sup> , -3.75;<br>K <sup>+</sup> , -1.55                                                                                                | FIM    | 1 1                         | 0.5 59<br>0.05                                     | I                      | 24–25 °C                 | [19]<br>continues on next page |
|           |                                                                                                                                      |                                                                                                                                                   |        |                             |                                                    |                        |                          |                                |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082


| Table 3: N | Table 3: Na <sup>+</sup> -Selective Electrodes (Continued)                                                   |                                                                                                                                                                             |        |                             |                                                  |                           |                        |          |      |
|------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|---------------------------|------------------------|----------|------|
| ionophore  | membrane<br>composition                                                                                      | lgK <sub>Na+,B</sub> n+                                                                                                                                                     | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | (slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks  | ref. |
|            | oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                                                                |                                                                                                                                                                             |        |                             |                                                  |                           |                        |          |      |
| Na+-110    | Na+-110 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 23 \%$ ),                                                      | Li+, -3.75;<br>K+, -1.59;                                                                                                                                                   | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                        | I                      | 24–25 °C | [19] |
|            | oNPOE $(w = 64.1 \ \%)$ ,<br>PVC $(w = 32.0 \ \%)$                                                           | Rb <sup>+</sup> , -2.18; Cs <sup>+</sup> , -2.65;<br>NH <sub>4</sub> <sup>+</sup> , -3.27; Ca <sup>2+</sup> , -3.75;<br>Sr <sup>2+</sup> , -2.65; Ba <sup>2+</sup> , -3.18; |        | 1 1                         | 0.1<br>0.5                                       |                           |                        |          |      |
|            |                                                                                                              | Mg <sup>2+</sup> ,-3.83                                                                                                                                                     |        | I                           | 1.0                                              |                           |                        |          |      |
| Na+-111    | <b>Na+-111</b> ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 19 \%$ ),                                               | Li+, -3.67;<br>K+, -1.73;                                                                                                                                                   | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                        | I                      | 24–25 °C | [19] |
|            | oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                                                                | Rb <sup>+</sup> , -2.35; Cs <sup>+</sup> , -2.75;<br>NH <sub>4</sub> <sup>+</sup> , -3.30; Ca <sup>2+</sup> , -3.69;                                                        |        | 1 1                         | 0.1<br>0.5                                       |                           |                        |          |      |
|            |                                                                                                              | Sr <sup>2+</sup> , -2.72; Ba <sup>2+</sup> , -3.12;<br>Mg <sup>2+</sup> , -3.81                                                                                             |        | I                           | 1.0                                              |                           |                        |          |      |
| Na+-112    | Na+-112 ( $w = 3.2 \%$ ),                                                                                    | Li+, -3.68;                                                                                                                                                                 | FIM    | I                           | 0.5                                              | 59                        | I                      | 24–25 °C | [19] |
|            | K1 pCIPB ( $x_i = 20 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ).                                                      | K <sup>+</sup> , -1./0;<br>Rb <sup>+</sup> , -2.35; Cs <sup>+</sup> , -2.69;                                                                                                |        | 1 1                         | c0.0<br>0.1                                      |                           |                        |          |      |
|            | PVC(w = 32.0%)                                                                                               | NH4 <sup>+</sup> , -3.32; Ca <sup>2+</sup> , -3.80;<br>Sr <sup>2+</sup> , -2.66; Ba <sup>2+</sup> , -3.12;                                                                  |        | I                           | 0.5                                              |                           |                        |          |      |
|            |                                                                                                              | Mg <sup>2+</sup> , -3.86                                                                                                                                                    |        | Ι                           | 1.0                                              |                           |                        |          |      |
| Na+-113    | Na+-113 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 30 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | K <sup>+</sup> , –1.26                                                                                                                                                      | FIM    | I                           | 0.05                                             | 59                        | I                      | 24–25 °C | [19] |
| Na+-114    | Na+-114 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 20 \%$ ).                                                      | Li+, -3.83;<br>K+, -1.39;                                                                                                                                                   | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                        | I                      | 24–25 °C | [19] |
|            | oNPOE ( $w = 64.1$ %),<br>PVC ( $w = 32.0$ %)                                                                | Rb <sup>+</sup> , -1.98; Cs <sup>+</sup> , -2.35;<br>NH <sub>4</sub> <sup>+</sup> , -2.57; Ca <sup>2+</sup> , -3.78;<br>S <sup>2,2+</sup> , 2.65, B <sup>2+</sup> , -3.17;  |        | 1 1                         | $0.1 \\ 0.5$                                     |                           |                        |          |      |
|            |                                                                                                              | Mg <sup>2+</sup> , -2.09, Da <sup></sup> , -3.12,                                                                                                                           |        | I                           | 1.0                                              |                           |                        |          |      |
| Na+-115    | Na+-115 ( $w = 3.2 \%$ ),<br>KThOUBR ( $v = -21 \%$ )                                                        | Li+, -3.85;<br>K+1 25:                                                                                                                                                      | FIM    | I                           | 0.5                                              | 59                        | I                      | 24–25 °C | [19] |
|            | PVC(w = 32.0%)                                                                                               | Rb <sup>+</sup> , -1.79; Cs <sup>+</sup> , -2.37;<br>NH <sub>4</sub> <sup>+</sup> , -2.99; Ca <sup>2+</sup> , -3.79;                                                        |        |                             | 0.1<br>0.5                                       |                           |                        |          |      |
|            |                                                                                                              | Sr <sup>2+</sup> , -2.72; Ba <sup>2+</sup> , -3.11;<br>Mg <sup>2+</sup> , -3.74                                                                                             |        | I                           | 1.0                                              |                           |                        |          |      |
| Na+-116    | <b>Na+-116</b> ( $w = 3.2 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 22 \%$ ),                                        | Li <sup>+</sup> , -3.90;<br>K <sup>+</sup> , -0.94;                                                                                                                         | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                        | I                      | 24–25 °C | [19] |

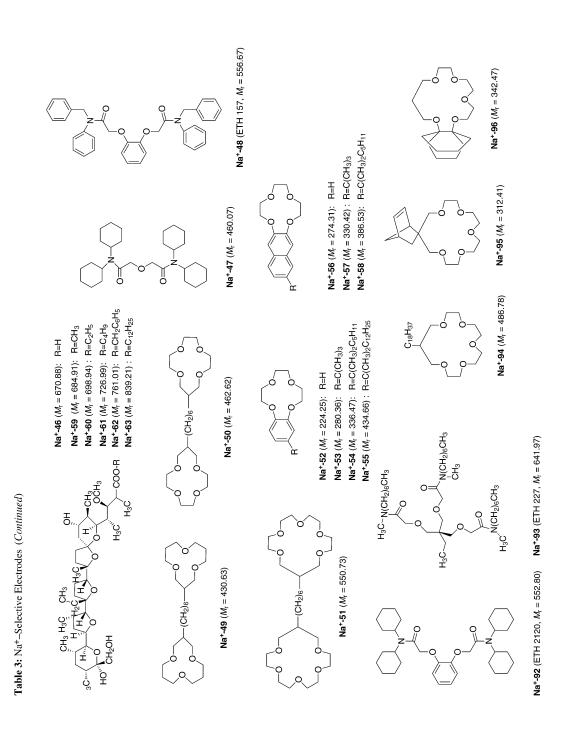

| ionophore | : membrane<br>composition                                                                                                 | $\lg K_{\mathrm{Na^+,B^{n+}}}$                                                                                                                       | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decac | g slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks           | ref.                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|-------------------|--------------------------------|
|           | oNPOE ( <i>w</i> = 64.1 %),<br>PVC ( <i>w</i> = 32.0 %)                                                                   | Rb+, -1.53; Cs+, -1.92;<br>NH4+, -2.61; Ca <sup>2+</sup> , -3.80;<br>Sr <sup>2+</sup> , -2.71; Ba <sup>2+</sup> , -2.84;<br>Mg <sup>2+</sup> , -3.75 | ÷      | 1 1 1                       | 0.1<br>0.5<br>1.0                                |                            |                        |                   |                                |
| Na+-117   | Na <sup>+</sup> -117 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 20 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | Li+, -3.83;<br>K+, -0.48                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [19]                           |
| Na+-118   | Na <sup>+</sup> -118 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_i = 22 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | Li+, -3.84;<br>K+, -0.46                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [61]                           |
| Na+-119   | Na+119 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 18 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ )               | Li <sup>+</sup> , –3.78;<br>K <sup>+</sup> , –0.42                                                                                                   | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [19]                           |
| Na+-120   | Na <sup>+</sup> -120 ( $w = 3.2 \%$ ),<br>KTpCPB ( $x_i = 19 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ )  | Li+, –3.80;<br>K+, –0.51                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [19]                           |
| Na+-121   | Na <sup>+</sup> -121 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 21 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | Li+, -3.73;<br>K+, -1.54                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [61]                           |
| Na+-122   | Na <sup>+</sup> -122 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 24 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | Li+, -3.73;<br>K+, -1.48                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [61]                           |
| Na+-123   | Na <sup>+</sup> -123 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 20 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ ) | Li+, -3.76;<br>K+, -1.51                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [19]                           |
| Na+-124   | Na+124 ( $w = 3.2 \%$ ),<br>KTpCIPB ( $x_1 = 20 \%$ ),<br>oNPOE ( $w = 64.1 \%$ ),<br>PVC ( $w = 32.0 \%$ )               | Li+, -3.63;<br>K+, -1.53                                                                                                                             | FIM    | 1 1                         | 0.5<br>0.05                                      | 59                         | I                      | 24–25 °C          | [61]                           |
| Na+-125   | Na <sup>+</sup> -125 ( $w = 2.8 \%$ ),<br>oNPOE ( $w = 64.4 \%$ ),<br>PVC ( $w = 27.8 \%$ )                               | Li <sup>+</sup> , -2.89; K <sup>+</sup> , -1.72;<br>Rb <sup>+</sup> , -1.92; Cs <sup>+</sup> , -2.11                                                 | FIM    | I                           | 0.05                                             | I                          | I                      | 25 °C;<br>pH = 11 | [35]<br>continues on next page |


© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| (Continued)                   |
|-------------------------------|
| Electrodes                    |
| Selective                     |
| e <b>3:</b> Na <sup>+</sup> - |
| le                            |

|                                                                                                                                                                                           | Na+-12<br>oNPPE<br>PVC (v  | composition                                                                           | ığ∧Na+,Bu+                                                                                           | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M) | remarks                        | ref. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|----------------------------------------------------|------------------------|--------------------------------|------|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | Na+-12<br>oNPPE<br>PVC (v  |                                                                                       | Li <sup>+</sup> , -2.59; K <sup>+</sup> , -2.89;<br>Rb <sup>+</sup> , -2.45; Cs <sup>+</sup> , -2.82 | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 12              |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | Na+-12<br>oNPPE<br>PVC (#  |                                                                                       | Li <sup>+</sup> , -2.85; K <sup>+</sup> , -2.05;<br>Rb <sup>+</sup> , -2.82; Cs <sup>+</sup> , -3.09 | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13              |      |
|                                                                                                                                                                                           |                            | <b>25</b> $(w = 2.8 \ \%)$ ,<br>2 $(w = 64.4 \ \%)$ ,<br>$v = 27.8 \ \%)$             | Li+, -2.7; K+, -1.8;<br>Rb+, -2.6; Cs+, -2.5                                                         | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13;<br>r.o.o.g. | [35] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | Na+-12<br>FNDPE<br>PVC (11 | <b>25</b> $(w = 2.8 \%)$ ,<br>$\exists (w = 64.4 \%)$ ,<br>v = 27.8 %)                | Li+, -2.7; K+, -1.9;<br>Rb+, -2.3; Cs+, -3.0                                                         | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13;<br>r.o.o.g. | [35] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | Na+-12<br>DPP (w<br>PVC (n | <b>25</b> ( $w = 2.8$ %),<br>v = 64.4 %),<br>v = 27.8 %)                              | Li+, -2.8; K+, -1.9;<br>Rb+, -2.5; Cs+, -2.2                                                         | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13;<br>r.o.o.g. | [35] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | Na+-12<br>DOS (μ<br>PVC (μ | <b>25</b> ( $w = 2.8$ %),<br>w = 64.4 %),<br>w = 27.8 %)                              | Li <sup>+</sup> , -2.8; K <sup>+</sup> , -1.7;<br>Rb <sup>+</sup> , -2.5; Cs <sup>+</sup> , -3.1     | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13;<br>r.o.o.g. | [35] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | Na+-12<br>TEHP (<br>PVC (n | <b>25</b> $(w = 2.8 \%)$ ,<br>(w = 64.4 %),<br>v = 27.8 %)                            | Li <sup>+</sup> , -1.9; K <sup>+</sup> , -1.7;<br>Rb <sup>+</sup> , -2.4; Cs <sup>+</sup> , -2.5     | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13              | [35] |
| Na+127 (w = 2.8 %),Li <sup>+</sup> , -1.0; K <sup>+</sup> , -0.1;FIM-25 °C; $oNPOE (w = 64.4 %),$ Rb <sup>+</sup> , -0.5; Cs <sup>+</sup> , -0.9 $pH = 13;$ $PVC (w = 27.8 %)$ ro.0;ro.0; |                            | 26 (w = 2.8 %),<br>3 (w = 64.4 %),<br>v = 27.8 %)                                     | Li <sup>+</sup> , -1.9; K <sup>+</sup> , -1.1;<br>Rb <sup>+</sup> , -1.3; Cs <sup>+</sup> , -1.3     | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13;<br>r.o.o.g. | [35] |
|                                                                                                                                                                                           |                            | $\begin{array}{l} 27 \ (w=2.8 \ \%),\\ 3 \ (w=64.4 \ \%),\\ v=27.8 \ \%) \end{array}$ | Li+, -1.0; K+, -0.1;<br>Rb+, -0.5; Cs+, -0.9                                                         | FIM    | I                           | 0.05                            | I                                                  | I                      | 25 °C;<br>pH = 13;<br>r.o.o.g. | [35] |








© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

1927

continues on next page



Y. UMEZAWA et al.

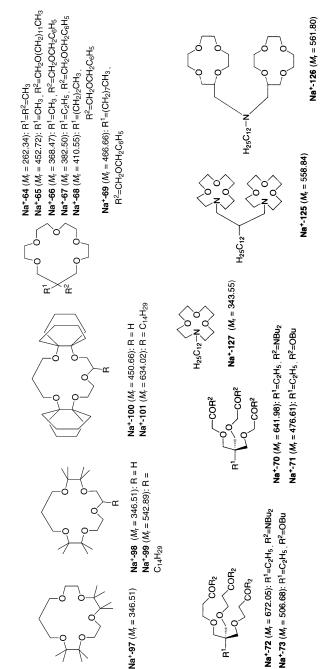



 Table 3: Na<sup>+</sup>-Selective Electrodes (Continued)

| onophore | ionophore membrane<br>composition                                                                                                                       | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                                                                                                                                       | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                        | remarks                                                                                         | ref.                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| K+-1     | <b>K<sup>+</sup>-1</b> ( $w = 2.0 \ \%$ ),<br><b>KTpCIPB</b> ( $x_i = 55 \ \%$ ),<br><b>BBPA</b> ( $w = 65.5 \ \%$ ),<br><b>PVC</b> ( $w = 33.0 \ \%$ ) | Li <sup>+</sup> , -4.0; Na <sup>+</sup> , -4.0;<br>NH <sub>4</sub> <sup>+</sup> , -1.9; Ca <sup>2+</sup> , -5.9;<br>Mg <sup>2+</sup> , -6.2                                                                                                               | SSM    | I                           | 1                                                     | 57.4                     | 1                                             | Pt CWE; [1]<br>Pt was coated with<br>poly(vinyl<br>ferrocene);<br>$c_{dl} = 5 \times 10^{-7}$ M | [1]<br>ed with<br><sup>r7</sup> M |
|          | K+.1                                                                                                                                                    | Li <sup>+</sup> , -5.2; Na <sup>+</sup> , -4.3;<br>NH <sub>4</sub> <sup>+</sup> , -2.0; Ba <sup>2+</sup> , -4.7;<br>Ca <sup>2+</sup> , -4.7                                                                                                               | FIM    | I                           | 0.1;<br>NH <sub>4</sub> +, 0.01                       | 59.0                     | I                                             | Orion 93–19 [2]<br>K+–ISE;<br>2 < pH < 12                                                       | 9 [2]<br>2                        |
|          | <b>K<sup>+</sup>-1</b> ( $w = 3$ %), silicone rubber ( $w = 97$ %)                                                                                      | Na <sup>+</sup> , <-3.7                                                                                                                                                                                                                                   | FIM    | I                           | 0.10                                                  | 56                       | 1                                             | ISFET                                                                                           | [11,14]                           |
|          | <b>K<sup>+</sup>-1</b> ( $w = 3$ %),<br>silicone rubber ( $w \approx 97$ %),<br>KTpCIPB ( $x_i = 67$ %)                                                 | Na+, <-3.7                                                                                                                                                                                                                                                | FIM    | i                           | 0.10                                                  | 56                       | I                                             | ISFET                                                                                           | [11,14]                           |
|          | <b>K<sup>+</sup>-1</b> ( $w = 3$ %),<br>silicone ruber ( $w = 88.2$ %),<br>crosslinking agent ( $w = 8.8$ %)                                            | Na <sup>+</sup> <-3.7                                                                                                                                                                                                                                     | FIM    | I                           | 0.10                                                  | 56                       | I                                             | ISFET                                                                                           | [11,14]                           |
|          | <b>K</b> +1 ( $w = 3$ %),<br>silicone ruber ( $w \approx 88$ %),<br>crosslinking agent ( $w \approx 8.8$ %),<br>KTpCIPB ( $r_i = 67$ %)                 | Na⁺ <-3.7                                                                                                                                                                                                                                                 | FIM    | 1                           | 0.10                                                  | 55                       | 1                                             | ISFET                                                                                           | [11,14]                           |
|          | <b>K</b> <sup>+</sup> - <b>I</b> ( $w = 1.0 \%$ ),<br><b>BBPA</b> ( $w = 66.0 \%$ ),<br><b>PVC</b> ( $w = 33.0 \%$ )                                    | $\begin{array}{c} \text{Li}^+,-4.3;\text{Na}^+,-4.0;\\ \text{Rb}^+,0.0;\text{Cs}^+,-0.4;\\ \text{NH}^+,-2.0;\text{H}^+-4.2;\\ \text{Mg}^{2+},-4.8;\text{Ca}^{2+},-4.6;\\ \text{Sr}^{2+}-4.4;\text{Ba}^{2+},-4.5 \end{array}$                              | 1      | 1                           | 1                                                     | 59.8 ± 0.1               | 59.8 ± 0.1 10 <sup>-4</sup> -10 <sup>-1</sup> | 22 °C                                                                                           | [12]                              |
|          | <b>K</b> +1 ( $w = 1.3$ %),<br>DOS ( $w = 68.3$ %),<br>PVC ( $w = 30.4$ %)                                                                              | $ \begin{array}{l} \text{Li}^+, -4.7;  \text{Na}^+, -3.7; \\ \text{Rb}^+, +0.4;  \text{Cs}^+, -0.4; \\ \text{NH}^+, -1.9;  \text{H}^+, -4.1; \\ \text{Mg}^{2+}, -4.6;  \text{Ca}^{2+}, -4.8; \\ \text{Sr}^{2+}, -4.9;  \text{Ba}^{2+}, -5.4 \end{array} $ | I      | I                           | 1                                                     | 59.2 ± 0.1               | 59.2 ± 0.1 10 <sup>-4</sup> -10 <sup>-1</sup> | 22 °C                                                                                           | [12]                              |
|          | <b>K</b> <sup>+</sup> -1 ( $w = 2.5 \%$ ),<br>silicone rubber ( $w = 83.0 \%$ ),<br>cross-linking agent ( $w = 14.5 \%$ )                               | $ \begin{array}{l} L_1^+, -4.3;  Na^+, -4.0; \\ Rb^+, +0.6;  Cs^+, -0.2; \\ NH_4^+, -1.8;  H^+, -4.4; \\ Mg^{2+}, -4.3;  Ca^{2+}, -4.2; \\ Sr^{2+}, -4.2,  Ra^{2+}, -3.8 \end{array} $                                                                    | 1      | 1                           | 1                                                     | 59.5 ± 0.2               | 59.5 ± 0.2 10 <sup>-4</sup> −10 <sup>-1</sup> | 22 °C;<br>minielectrode                                                                         | [12]<br>Je                        |

Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                          | lgKk+,Bn+                                                                                                                                                                                                                                                                              | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                                                      | ref.        |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------------------|--------------------------------------------------------------|-------------|
| <b>K<sup>+</sup>-1</b> ( $w = 1.0 \%$ ),<br><b>BEHS</b> ( $w = 66.0 \%$ ),<br><b>PVC</b> ( $w = 33.0 \%$ )                 | Li <sup>+</sup> , -4.15; Na <sup>+</sup> , -4.77;<br>Rb <sup>+</sup> , +0.47; Cs <sup>+</sup> , -0.39;<br>NH <sub>4</sub> <sup>+</sup> , -1.84; H <sup>+</sup> , -3.31;<br>Mg <sup>2+</sup> , -5.22; Ca <sup>2+</sup> , -5.40;<br>Sr <sup>2+</sup> , -5.30; Ba <sup>2+</sup> , -5.15   | FIM    | I                           | 0.15;<br>H <sup>+</sup> , 0.1   | I                        | 1                                  | 25 °C                                                        | [13]        |
| <b>K<sup>+</sup>-1</b> ( $w = 1.0 \%$ ),<br>bis(2-ethylhexyl)<br>adipate ( $w = 66.0 \%$ ),<br>PVC ( $w = 33.0 \%$ )       | Li <sup>+</sup> , -4.11; Na <sup>+</sup> , -4.60;<br>Rb <sup>+</sup> , +0.453; Cs <sup>+</sup> , -0.409;<br>NH <sub>4</sub> <sup>+</sup> , -1.85; H <sup>+</sup> , -2.46;<br>Mg <sup>2+</sup> , -5.10; Ca <sup>2+</sup> , -5.15;<br>Sr <sup>2+</sup> , -5.15; Ba <sup>2+</sup> , -4.05 | FIM    | I                           | 0.15;<br>H <sup>+</sup> , 0.1   | I                        | 1                                  | 25 °C                                                        | [13]        |
| <b>K<sup>+</sup>-1</b> ( $w = 3.0$ %),<br>adipic acid polycester ( $w = 67.0$ %),<br>PVC ( $w = 30.0$ %)                   | $ \begin{array}{l} L_1^+,-2.9l;Na^+,-3.08;\\ Rb^+,+0.927;Cs^+,-2.63;\\ NH_4^+,-1.63;H^+,-1.7l;\\ Mg^{2+},-4.24;Ca^{2+},-5.17;\\ Sr^{2+},-4.14;Ba^{2+},-4.16 \end{array} $                                                                                                              | FIM    | ł                           | 0.15;<br>H <sup>+</sup> , 0.1   | I                        | I                                  | 25 °C                                                        | [13]        |
| <b>K<sup>+</sup>-1</b> ( $w = 3.0$ %),<br>BEHS ( $w = 67.0$ %),<br>PVC ( $w = 30.0$ %)                                     | Li <sup>+</sup> , -4.96; Na <sup>+</sup> , -4.68;<br>Rb <sup>+</sup> , +0.480; Cs <sup>+</sup> , -0.332;<br>NH <sub>4</sub> <sup>+</sup> , -1.80; H <sup>+</sup> , -4.67;<br>Mg <sup>2+</sup> , -6.56; Ca <sup>2+</sup> , -5.52;<br>Sr <sup>2+</sup> , -6.12; Ba <sup>2+</sup> , -6.46 | FIM    | 1                           | 0.15;<br>H <sup>+</sup> , 0.1   | 1                        | I                                  | 25 °C                                                        | [13]        |
| <b>K<sup>+</sup>-1</b> ( $w = 2.4 \%$ ),<br>BEHS ( $w = 66.4 \%$ ),<br>PVC ( $w = 30.0 \%$ ),<br>KTpCIPB ( $x_1 = 88 \%$ ) | Li <sup>+</sup> , -1.38; Na <sup>+</sup> , -0.991;<br>Rb <sup>+</sup> , +0.217; Cs <sup>+</sup> , +0.534;<br>NH <sub>4</sub> <sup>+</sup> -0.656; H <sup>+</sup> , -2.42;<br>Mg <sup>2+</sup> , -3.88; Ca <sup>2+</sup> , -2.41;<br>Sr <sup>2+</sup> , -3.61; Ba <sup>2+</sup> , -3.54 | FIM    | 1                           | 0.15;<br>H <sup>+</sup> , 0.1   | i                        | I                                  | 25 °C                                                        | [13]        |
| K <sup>+</sup> 1 (w = 3.0 %),<br>BEHS (w = 66.7 %),<br>PVC (w = 30.0 %),<br>KTpCIPB (x <sub>i</sub> = 22 %)                | $ \begin{array}{l} Li^{+},-4.56, Na^{+},-4.32,\\ Rb^{+},+0.461; Cs^{+},-0.357,\\ NH_{+}^{+},-1.78, H^{+},-3.79;\\ Mg^{2+},-5.36; Ca^{2+},-5.14;\\ Mg^{2+},-5.30; Ba^{2+},-5.35 \end{array} $                                                                                           | FIM    | I                           | 0.15;<br>H <sup>+</sup> , 0.1   | I                        | I                                  | 25 °C                                                        | [13]        |
| <b>K<sup>+</sup>-1</b> (1 mg), oNPOE (100 μL),<br><b>KTpCIPB</b> ( $x_i = 94 \ \%$ ),<br>cellulose triacetate (109 mg)     | $Na^{+}, -2.96 \pm 0.2$                                                                                                                                                                                                                                                                | FIM    | 1                           | 0.10                            | 52±3                     | 10 <sup>-4</sup> -10 <sup>-2</sup> | 25 °C; [<br>$c_{dl} = (4.1 \pm 1.0)$<br>× 10 <sup>-5</sup> M | [20]<br>.0) |

1931

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| onophore | ionophore membrane<br>composition                                                                                                                                                                                                              | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                                                                 | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)               | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                    | remarks                                                                                                                                             | ref.                                                |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-----------------------------------------------|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|          | K+-1 (1 mg), oNPOE (100 μL),<br>KTpCIPB (xj = 94 %),<br>cellulose triacetate (109 mg)                                                                                                                                                          | $Na^{+}, -3.16 \pm 0.1$                                                                                                                                                             | FIM    | I                           | 0.10                                          | 50 ± 1                   | 10 <sup>-4</sup> -10 <sup>-2</sup>        | 25 °C; [20]<br>$c_{dl} = (5, 6 \pm 0.2) \times 10^{-5}$ M;<br>Electrodes were<br>coated with heparin.                                               | [20]<br>2) × 10 <sup>-5</sup> M<br>ere<br>eparin.   |
|          | <b>K<sup>+</sup>-1</b> (1 mg), oNPOE (100 $\mu$ L),<br>KTpCIPB ( $x_i = 94 \%$ ),<br>cellulose triacetate (109 mg),<br>carbonyl hydrolysed<br>in 1M NaOH (324 mg)                                                                              | Na⁺, –3.08 ± 0.1                                                                                                                                                                    | FIM    | 1                           | 0.10                                          | 51 ± 1                   | 10-4-10-2                                 | 25 °C; [20]<br>$c_{\rm ell} = (6.3 \pm 0.4) \times 10^{-5}$ M:<br>Electrodes were<br>coated with heparin.                                           | [20]<br>.4) × 10 <sup>-5</sup> N<br>ere<br>neparin. |
|          | <b>K<sup>+</sup>-1</b> ( $w = 2.7$ %).<br>fluorosilicone rubber ( $w = 96.6$ %),<br>KTpCIPB ( $x_i = 50$ %)                                                                                                                                    | Li <sup>+</sup> , -4.3; Na <sup>+</sup> , -3.8;<br>Ca <sup>2+</sup> , -4.1                                                                                                          | HIM    | I                           | 0.1                                           | 57.33<br>± 1.43          | $9.9 \times 10^{-5}$<br>-10 <sup>-1</sup> | room temp.;<br>$c_{dl} = 10^{-6} M;$<br>ISFET                                                                                                       | [21]                                                |
|          | <b>K</b> +-1 ( $w = 2.5$ %).<br>silicone rubber ( $w = 83.0$ %),<br>crosslinking agent ( $w = 14.5$ %)                                                                                                                                         | $ \begin{array}{c} Li^+, -4.3;  Na^+, -4.0; \\ Rb^+, +0.6;  Cs^+ -0.2; \\ NH4^+, -1.8;  H^+, -4.4; \\ Mg^{2+}, -4.3;  Ca^{2+}, -4.2; \\ Sr^{2+}, -4.2;  Ba^{2+}, -3.8 \end{array} $ | SSM    | 0.1                         | 0.1                                           | 59.5 ± 0.2               | 9 × 10 <sup>-5</sup> -10 <sup>-1</sup>    | 20 °C                                                                                                                                               | [23]                                                |
|          | <b>K+1</b> ( $w = 1.5$ %), <b>KTpCIPB</b> or<br>NaTFPB ( $x_1 = 50$ %),<br>decyl methacrylate ( $w = 22$ %),<br>TDDMACI ( $w = 4.9$ %), 1,6-hexanediyl<br>dimethacrylate ( $w = 29$ %),<br>benzoyl perovide ( $w = 1$ %),<br>DOS ( $w = 39$ %) | Na <sup>+</sup> , -3.88 ± 0.03;<br>Rb <sup>+</sup> , +0.48 ± 0.05;<br>NH <sub>4</sub> <sup>+</sup> , -1.85 ± 0.04<br>yl                                                             | SSM    | 0.01                        | 0.01                                          | 57.1 ± 0.9               | 1                                         | 22 °C; [24]<br>$f_{resp} < 10 s;$<br>$c_{dl} = 10^{-5.95} \pm 0.02 M$                                                                               | [24]<br>± 0.02 M                                    |
|          | <b>K</b> <sup>+</sup> <b>1</b> ( $w = 0.9 \%$ ),<br>oNPOE ( $w = 67.3 \%$ ),<br>PVC ( $w = 31.8 \%$ )                                                                                                                                          | Li <sup>+</sup> , -2.88; Na <sup>+</sup> , -3.02;<br>Mg <sup>2+</sup> , -3.96; Ca <sup>2+</sup> , -3.80                                                                             | WSS    | 0.01                        | 0.01                                          | 59.6                     | I                                         | $25 \pm 0.5 ^{\circ}$ C; [2'<br>$c_{\rm dl} = 8.0 \times 10^{-6}$ M                                                                                 | [25]<br><sup>-6</sup> M                             |
|          | <b>K<sup>+</sup>-1</b> ( $w = 1.5 \%$ ),<br>DOS ( $w = 8.0 \%$ ),<br>aliphatic polyurethane ( $w = 90.1 \%$ ),<br>KTpCIPB ( $x_i = 60 \%$ )                                                                                                    | Na <sup>+</sup> , -3.8; Ca <sup>2+</sup> , -4.6                                                                                                                                     | FIM    | I                           | Na+,<br>0.150;<br>Ca <sup>2+</sup> ,<br>0.100 | <b>56.8</b> ± 0.2        | I                                         | $22.0 \pm 1.0 ^{\circ}\text{C};$<br>$c_{\rm dl} = 10^{-4.7} \text{M}$                                                                               | ; [26]<br>1                                         |
|          | K <sup>+</sup> -1 (w = 1.5 %),<br>DOS (w = 8.0 %),<br>aliphatic polyurethane (w = 90.1 %),<br>KTpCIPB (x <sub>1</sub> = 60 %)                                                                                                                  | Na <sup>+</sup> , -3.8; Ca <sup>2+</sup> , -4.5                                                                                                                                     | FIM    | I                           | Na+,<br>0.150;<br>Ca <sup>2+</sup> ,<br>0.100 | <b>54.6 ± 0.6</b>        | 1                                         | 22.0 $\pm$ 1.0 °C; [2<br>c <sub>dl</sub> = 10 <sup>-4.7</sup> M;<br>f <sub>resp</sub> < 10 s;<br>Electrodes were<br>coated with photo<br>cured poly | ; [26]<br>1;<br>boto                                |

## Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                                                                                                                                         | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                  | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | g slope<br>(mV/<br>decade)            | linear<br>range<br>(M)                                                   | remarks                                                                                                             | ref.                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------|
| <b>K<sup>+1</sup></b> ( $w = 1.5 \%$ ), DOS ( $w = 8.0 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 60 \%$ ),<br>aliphatic polyurethane ( $w = 80.1 \%$ ),<br>block copolymer of<br>poly(ethylene oxide) and poly(propylene oxide) ( $w = 10.0 \%$ ) | Na <sup>+</sup> , -3.5; Ca <sup>2+</sup> , -4.2<br>6)                                                                                | FIM    | I                           | Na+,<br>0.150<br>Ca <sup>2+</sup> ,<br>0.100          | <b>53.2</b> ± 0.6                     | I                                                                        | 22.0 ± 1.0 °C;<br>c <sub>dl</sub> = 10 <sup>-4.4</sup> M                                                            | [26]                    |
| <b>K<sup>+</sup>-1</b> ( $w = 1$ %), DOA ( $w = 66$ %),<br>PVC ( $w = 33$ %)                                                                                                                                                              | Na <sup>+</sup> , -4.28                                                                                                              | SSM    | I                           | I                                                     | 57.2                                  | 10 <sup>-5</sup> -10 <sup>-1</sup>                                       | $c_{\rm dl} = 5.8$<br>× 10 <sup>-7</sup> M                                                                          | [27]                    |
| <b>K<sup>+</sup>-1</b> ( $w = 1$ %),<br>DOA ( $w = 59$ %),<br>PVC ( $w = 20$ %),<br>PVC ( $poly(viny)$ acctate)/<br>poly(vinyl alcohol) copolymer<br>(16:1:3 by weight; $w = 20$ %)                                                       | Na <sup>+</sup> , -4.22                                                                                                              | SSM    | 1                           | I                                                     | 57.3                                  | 1                                                                        | $c_{\rm dl} = 5.2$<br>× 10 <sup>-7</sup> M                                                                          | [27]                    |
| <b>K<sup>+</sup>-1</b> ( $w = 1$ %),<br>DOA ( $w = 66$ %),<br>aliphatic polyurethane ( $w = 26.4$ %),<br>PVC/poly(vinyl acctate)/<br>poly(vinyl alcohol) copolymer<br>(16:1:3 by weight; $w = 6.6$ %)                                     | Na+, -4.21                                                                                                                           | SSM    | 1                           | I                                                     | 57.2                                  | I                                                                        | $c_{\rm dl} = 5.9$<br>× 10 <sup>-7</sup> M                                                                          | [27]                    |
| <b>K<sup>+</sup>-1</b> ( $w = 1$ %), polydimethyl siloxane silanol terminated ( $w = 78$ %), (cyanopropyl) methyl/dimethyl siloxane copolymer (10–12:88–90; $w = 21$ %), KTpCIPB ( $x_i = 76$ %)                                          | Na+, -4.16                                                                                                                           | SSM    | I                           | 1                                                     | 56.5                                  | I                                                                        | $c_{\rm dl} = 1.0$ × 10 <sup>-6</sup> M                                                                             | [27]                    |
| K <sup>+</sup> -1, DOS, PVC-COOH,<br>KTpCIPB<br>(weight ratio not reported)                                                                                                                                                               | Li <sup>+</sup> , -4.4; Na <sup>+</sup> , -3.6;<br>NH <sub>4</sub> <sup>+</sup> , -1.8; Ca <sup>2+</sup> , -4.6                      | FIM    | I                           | I                                                     | 58.3 ± 0.2<br>57.7 ± 0.2 <sup>†</sup> | 58.3 ± 0.2 10 <sup>-5</sup> −10 <sup>−1</sup><br>57.7 ± 0.2 <sup>‡</sup> | $22.5 \pm 0.5 \text{ °C; [31]}$<br>$c_{dl} = 4.0 \times 10^{-6} \text{ M;}$<br>6 < pH < 9;<br>$\tau > 30 \text{ d}$ | [31]<br><sup>5</sup> M; |
| K <sup>+</sup> -1<br>(membrane composition<br>not reported)                                                                                                                                                                               | Na+, <-6;<br>NH4 <sup>+</sup> , -0.845;<br>Ca <sup>2+</sup> , -2.27                                                                  | ł      | I                           | I                                                     | I                                     | ł                                                                        |                                                                                                                     | [32]                    |
| <b>K<sup>+</sup>-1</b> ( $w = 1$ %),<br>fluorosilicone rubber ( $w = 98.7$ %),<br>vrnorob ( $w = 47$ %),                                                                                                                                  | Li <sup>+</sup> , -3.7; Na <sup>+</sup> , -4.2;<br>NH <sub>4</sub> <sup>+</sup> , -1.9; Mg <sup>2+</sup> , -4.7;<br>C-2 <sup>+</sup> | SSM    | 0.01                        | 0.01                                                  | 55.7                                  | I                                                                        | ISFET;<br>25 °C;                                                                                                    | [33]                    |

1933

<sup>+</sup> in 0.14 M Na<sup>+</sup>. <sup>++</sup> after storage over 3 months.

| (Continued)               |  |
|---------------------------|--|
| : Electrodes              |  |
| K <sup>+</sup> -Selective |  |
| 4                         |  |

| ionophore         | ionophore membrane<br>composition                                                                                                 | lgK <sub>K+,B<sup>n+</sup></sub>                                                                                                                       | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade)   | linear<br>range<br>(M)    | remarks                                                      | ref.      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|----------------------------|---------------------------|--------------------------------------------------------------|-----------|
|                   | <b>K<sup>+</sup>1</b> ( <i>w</i> = 1.3 %),<br>fluorosilicone rubber ( <i>w</i> = 98.3 %),<br>KTFPR ( <i>x</i> = 36 %)             | Li <sup>+</sup> , -4.1, -3.5 <sup>++</sup> ;<br>Na <sup>+</sup> , -4.5, -3.2 <sup>++</sup> ;<br>NH <sub>*</sub> <sup>+</sup> -2.4 -1.8 <sup>++</sup> . | SSM    | 0.01                        | 0.01                            | 57.6<br>56.6 <sup>++</sup> | I                         | ISFET; [<br>25 °C;<br>2.1 × 10–7 M                           | [33]<br>M |
|                   |                                                                                                                                   | Mg <sup>2+</sup> , -5.1, -3.5 <sup>++</sup> ;<br>Mg <sup>2+</sup> , -5.1, -3.5 <sup>++</sup> ;<br>Ca <sup>2+</sup> , -4.9, -4.5 <sup>+†</sup>          |        |                             |                                 |                            |                           | cdl = 1 × 10 · 5 × 10-7 M <sup>++</sup> ;                    |           |
|                   | <b>K<sup>+</sup>-1</b> ( $w = 1.4$ %), silicone rubber ( $w = 98.6$ %)                                                            | Na <sup>+</sup> , -3.7; Ca <sup>2+</sup> , -3.7                                                                                                        | FIM    | I                           | 0.1                             | 55.0                       | I                         | 22 ± 2 °C                                                    | [34]      |
|                   | <b>K</b> <sup>+</sup> <b>1</b> ( $w = 1.0$ %),<br><b>KTpCIPB</b> ( $x_1 = 45$ %),<br>silicone rubber ( $w = 98.8$ %)              | Na <sup>+</sup> , -3.6; Ca <sup>2+</sup> , -3.7                                                                                                        | FIM    | I                           | 0.1                             | 56.0                       | I                         | 22 ± 2 °C                                                    | [34]      |
|                   | <b>K</b> <sup>+</sup> 1 ( $w = 1.1$ %), DOS ( $w = 5.0$ %),<br><b>KTpCIPB</b> ( $x_1 = 41$ %),<br>silicone rubber ( $w = 93.7$ %) | Na+, -3.6; Ca <sup>2+</sup> , -3.7                                                                                                                     | FIM    | I                           | 0.1                             | 57.0                       | 1                         | 22 ± 2 °C                                                    | [34]      |
|                   | <b>K</b> <sup>+</sup> 1 ( $w = 1.2$ %).<br><b>KTFPB</b> ( $x_i = 44$ %), silicone rubber ( $w = 98.5$ %)                          | Na+, -3.8; Ca <sup>2+</sup> , -3.9                                                                                                                     | FIM    | 1                           | 0.1                             | 57.4                       | I                         | 22 ± 2 °C                                                    | [34]      |
|                   | <b>K</b> <sup>+</sup> 1 ( $w = 1.0$ %). DOS ( $w = 6.0$ %),<br>KTFPB ( $x_i = 71$ %),<br>silicone rubber ( $w = 92.6$ %)          | Na <sup>+</sup> , -3.9; Ca <sup>2+</sup> , -4.0                                                                                                        | FIM    | I                           | 0.1                             | 57.7                       | I                         | 22 ± 2 °C                                                    | [34]      |
|                   | <b>K<sup>+</sup>-1</b> ( $w = 1.1$ %),<br><b>KTpCIPB</b> ( $x_1 = 41$ %),<br>silicone rubber ( $w = 98.7$ %)                      | Na <sup>+</sup> , -3.7; Ca <sup>2+</sup> , -3.6                                                                                                        | FIM    | ł                           | 0.1                             | 56.5                       | 1                         | 22 ± 2 °C;<br>solid-state<br>sensor                          | [34]      |
|                   | <b>K</b> <sup>+</sup> <b>1</b> ( $w = 1.0 \%$ ),<br><b>KTFPB</b> ( $x_1 = 35 \%$ ),<br>silicone rubber ( $w = 98.8 \%$ )          | Na <sup>+</sup> , -3.8; Ca <sup>2+</sup> , -4.0                                                                                                        | FIM    | I                           | 0.1                             | 58.6                       | ł                         | 22 ± 2 °C;<br>solid-state<br>sensor                          | [34]      |
|                   | <b>K</b> +1 ( $w = 1.0 \%$ ), DOS ( $w = 4.5 \%$ ),<br>silicone rubber ( $w = 94.3 \%$ ),<br>KTFPB ( $x_1 = 35 \%$ )              | Na <sup>+</sup> , -3.7; Ca <sup>2+</sup> , -3.9                                                                                                        | FIM    | 1                           | 0.1                             | 58.2                       | 1                         | 22 ± 2 °C;<br>solid-state<br>sensor                          | [34]      |
| K+-2              | <b>K</b> <sup>+</sup> <b>2</b> ( $w = 3$ %),<br>DBS ( $w = 70$ %),<br>PVC ( $w = 27$ %)                                           | $\begin{array}{l} Li^+,-2.2;Na^+,-1.9;\\ Rb^+,-0.4;Cs^+,-1.3;\\ Mg^{2+},-3.8;Ca^{2+},-3.7;\\ Sr^{2+},-3.1;Ba^{2+},-0.2 \end{array}$                    | SSM    | 0.1                         | 0.1                             | 56                         | 10-4.3<br>-10-1.5         | 25.0 ± 0.1 °C; [17]<br>r.o.o.g.;<br>t <sub>resp</sub> < 30 s | [11] :    |
| K <sup>+</sup> -3 | <b>K</b> <sup>+</sup> -3 ( $w = 5$ %), PVC ( $w = 32$ %), oNPOE ( $w = 63$ %)                                                     | Na <sup>+</sup> , -2.7; Rb <sup>+</sup> , -0.40;<br>Cs <sup>+</sup> , -0.52; NH <sub>4</sub> <sup>+</sup> , -1.5                                       | FIM    | I                           | 0.1, 0.01                       | 53                         | $10^{-3.5}$<br>-10^{-1.5} | 25.0 ± 0.1 °C                                                | [4]       |

<sup>+</sup> in 0.14 M Na<sup>+</sup>. <sup>++</sup> after storage over 3 months.

| N + 7 | ionophore memorane<br>composition                                                                                                                    | lgK <sub>K+,B</sub> n+                                                                                                                                                                                                                                                        | method        | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)                                                                           | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks ref                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|--------------------------------------------------------------------------|
| 1     | <b>K<sup>+</sup>-4</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %).                                                                                         | Li <sup>+</sup> , -3.90; NH <sub>4</sub> <sup>+</sup> , -1.92;<br>M <sup>g<sup>2+</sup></sup> -4.35; Ca <sup>2+</sup> -3.50                                                                                                                                                   | SSM           | 0.1                         | 0.1                                                                                                       | 55.9                     | 10 <sup>-4</sup> -10 <sup>-1</sup> | 20 ± 2 °C; [19]<br>r 0 0 ₽                                               |
|       | PVC $(w = 33\%)$                                                                                                                                     | Na <sup>+</sup> , -2.65                                                                                                                                                                                                                                                       | FIM           | I                           | I                                                                                                         |                          |                                    | 0                                                                        |
|       | <b>K<sup>+</sup>-4</b> ( $w = 0.9$ %), PVC ( $w = 31.8$ %),<br>BBPA ( $w = 67.3$ %)                                                                  | Na+, -3.16                                                                                                                                                                                                                                                                    | WSS           | 0.01                        | 0.01                                                                                                      | 52.0                     | ł                                  | $25 \pm 0.5 ^{\circ}C; [25]$<br>$c_{dl} = 7.6 \times 10^{-6} M$          |
|       | <b>K<sup>+</sup>-4</b> ( $w = 0.9$ %),PVC ( $w = 31.8$ %),<br>DOA ( $w = 67.3$ %)                                                                    | Li <sup>+,</sup> -3.23; Na <sup>+</sup> , -2.72;<br>Mg <sup>2+</sup> , -4.18; Ca <sup>2+</sup> , -4.21                                                                                                                                                                        | WSS           | 0.01                        | 0.01                                                                                                      | 60.0                     | I                                  | $25 \pm 0.5 ^{\circ}C; [25]$<br>$c_{dl} = 7.5 \times 10^{-6} M$          |
|       | <b>K<sup>+</sup>-4</b> ( $w = 0.9$ %),<br>PVC ( $w = 31.8$ %), DOS ( $w = 67.3$ %)                                                                   | Li <sup>+,</sup> -3.25; Na <sup>+</sup> , -2.53;<br>Mg <sup>2+</sup> , -4.08; Ca <sup>2+</sup> , -4.20                                                                                                                                                                        | SSM           | 0.01                        | 0.01                                                                                                      | 60.5                     | I                                  | $25 \pm 0.5 \text{ °C}; [25]$<br>$c_{dl} = 2.5 \times 10^{-6} \text{ M}$ |
|       | <b>K<sup>+</sup>-4</b> ( $w = 0.9$ %), PVC ( $w = 31.8$ %),<br>oNPOE ( $w = 67.3$ %)                                                                 | Li <sup>+</sup> , -3.28; Na <sup>+</sup> , -2.58;<br>Mg <sup>2+</sup> , -4.04; Ca <sup>2+</sup> , -4.00                                                                                                                                                                       | SSM           | 0.01                        | 0.01                                                                                                      | 61.0                     | I                                  | $25 \pm 0.5 ^{\circ}C; [25]$<br>$c_{dl} = 3.2 \times 10^{-6} M$          |
|       | <b>K<sup>+</sup>-4</b> ( $w = 0.9 \%$ ), PVC ( $w \approx 32 \%$ ),<br>bis(2-ethylhexyl) adipate ( $w \approx 67 \%$ ),<br>KTpCIPB ( $x_i = 50 \%$ ) | Na+, -2.67                                                                                                                                                                                                                                                                    | SSM           | 0.01                        | 0.01                                                                                                      | 45.5                     | I                                  | $25 \pm 0.5 ^{\circ}$ C; [25]<br>$c_{dl} = 5.5 \times 10^{-6}$ M         |
|       | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                | Li <sup>+,</sup> -3.16; Na <sup>+</sup> , -3.05;<br>Mg <sup>2+</sup> , -4.09; Ca <sup>2+</sup> , -3.94                                                                                                                                                                        | SSM           | 0.01                        | 0.01                                                                                                      | 57.5                     | 1                                  | $25 \pm 0.5 ^{\circ}$ C; [25]<br>$c_{dl} = 3.5 \times 10^{-6}$ M         |
|       | <b>K<sup>+4</sup></b> ( $w = 0.9$ %), PVC ( $w = 31.6$ %),<br>oNPOE ( $w = 67.0$ %),<br>KTpCIPB ( $x_i = 50$ %)                                      | Li <sup>+</sup> , -3.14; Na <sup>+</sup> , -3.08;<br>Mg <sup>2+</sup> , -3.92; Ca <sup>2+</sup> , -3.88                                                                                                                                                                       | SSM           | 0.01                        | 0.01                                                                                                      | 59.2                     | 1                                  | $25 \pm 0.5 ^{\circ}$ C; [25]<br>$c_{\rm dl} = 7.5 \times 10^{-6}$ M     |
| K+-5  | <b>K<sup>+</sup>-5</b> ( $w = 3.8 \%$ ),<br>oNPOE ( $w = 64.2 \%$ ),<br>PVC ( $w = 32.0 \%$ )                                                        | Na <sup>+</sup> , -3.7; Rb <sup>+</sup> , -0.70;<br>Cs <sup>+</sup> , -2.0; NH <sub>4</sub> <sup>+</sup> ,-1.4                                                                                                                                                                | FIM           |                             | NH <sub>4</sub> <sup>+</sup> , 0.01;<br>Rb <sup>+</sup> , Cs <sup>+</sup> ,<br>0.001; Na <sup>+</sup> , 1 | 1                        | 10 <sup>-4</sup> -10 <sup>-1</sup> | 25.0 ± 0.1 °C; [3,4]<br>t <sub>resp</sub> < 10 s                         |
| K+-6  | <b>K</b> <sup>+</sup> -6 ( $w = 0.3-0.4 \%$ ),<br>DBP ( $w ≈ 81 \%$ ),<br>PVC ( $w ≈ 19 \%$ )                                                        | Li <sup>+</sup> , -5.0; Na <sup>+</sup> , -4.0;<br>Cs <sup>+</sup> , -2.0; NH <sub>4</sub> <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -4.0; Ca <sup>2+</sup> , -2.9;<br>Sr <sup>2+</sup> , -2.9; Ba <sup>2+</sup> , -5.0;<br>Zn <sup>2+</sup> , -5.0; Cu <sup>2+</sup> , -2.5 | SSM           | I                           | I                                                                                                         | 52 ± 1                   | 10 <sup>-4</sup> -1                | $t_{resp} = [5]$<br>30-60 s;<br>$c_{dl} = 2.0 \times 10^{-5} M$          |
| K+-7  | <b>K<sup>+</sup>-7</b> ( $w = 0.4-0.5 \%$ ),<br>DOP ( $w = 77-80 \%$ ),<br>PVC ( $w = 20-23 \%$ )                                                    | $\begin{array}{l} Li^+,-5.0; Na^+,-4.0;\\ Cs^+,-5.0; NH_4^+,-1.9;\\ Mg^{2+},-5.0; Ca^{2+},-5.0;\\ Sr^{2+},-5.0; Ba^{2+},-5.0;\\ Sr^{2+},-5.0; Ba^{2+},-5.0;\\ Zn^{2+},-5.0; Ba^{2+},-5.0;\\ \end{array}$                                                                      | SSM<br>or FIM | I                           | I                                                                                                         | 30 ± 1                   | 10-2-10-1                          | $c_{\rm dl} = 3.2$ [6]<br>× 10 <sup>-6</sup> M                           |

| ionophore | ionophore membrane<br>composition                                                                                                        | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                                                      | method     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                                                   | remarks                                                                             | ref.       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-------------------------------------------------------|--------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|
| K+-8      | <b>K<sup>+</sup>-8</b> ( <i>w</i> = 1 %).<br>BEHS ( <i>w</i> = 66 %),<br>PVC ( <i>w</i> = 33 %)                                          | H <sup>+</sup> , -3.22; Li <sup>+</sup> , -3.40;<br>Na <sup>+</sup> , -3.04; NH <sub>4</sub> <sup>+</sup> , -1.97;<br>Mg <sup>2+</sup> , -2.64; Ca <sup>2+</sup> , -4.12 | SSM        | 0.1                         | 0.1                                                   | 58.48                    | 1                                                                        | r.o.o.g.: [7]<br>$t_{\text{rvsp}} = 43.6 \text{ ms.}^{+}$<br>$38.4 \text{ ms}^{++}$ | [7]<br>*,* |
|           | <b>K<sup>+</sup>-8</b> ( <i>w</i> = 1 %).<br>BEHS ( <i>w</i> = 66 %),<br>PVC-COOH ( <i>w</i> = 33 %)                                     | H <sup>+</sup> , -3.20; Li <sup>+</sup> , -3.54;<br>NH <sub>4</sub> <sup>+</sup> , -2.16; Mg <sup>2+</sup> , -2.76;<br>Ca <sup>2+</sup> , -4.32                          | SSM        | 0.1                         | 0.1                                                   | 58.89                    | I                                                                        | r.o.o.g.: [7]<br>t <sub>resp</sub> = 35.0 ms, <sup>+</sup><br>52.9 ms <sup>++</sup> | [2]        |
|           | <b>K<sup>+</sup>-8</b> ( <i>w</i> = 1 %),<br>BEHS ( <i>w</i> = 66 %), PVC ( <i>w</i> = 33 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 75 %) | H <sup>+</sup> , -3.52; Li <sup>+</sup> , -3.56;<br>Na <sup>+</sup> , -3.16; NH <sub>4</sub> <sup>+</sup> , -2.18;<br>Mg <sup>2+</sup> , -2.76; Ca <sup>2+</sup> , -4.38 | WSS        | 0.1                         | 0.1                                                   | 59.36                    | I                                                                        | r.o.o.g.: [7]<br>t <sub>resp</sub> = 31.1ms, <sup>+</sup><br>28.1ms <sup>++</sup>   | [2]        |
|           | <b>K<sup>+</sup>-8</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                                        | Li <sup>+</sup> , -3.4; Na <sup>+</sup> , -3.0;<br>Cs <sup>+</sup> , -2.2; NH <sub>4</sub> <sup>+</sup> , -2.0;<br>Mg <sup>2+</sup> , -3.8; Ca <sup>2+</sup> , -4.0      | WSS        | 0.1                         | 0.1                                                   | 53.8<br>51.2             | $10^{-4}-10^{-1}$<br>$10^{-5}-10^{-1}$                                   | room temp.; [15]<br><sub>Cdl</sub> = 10 <sup>-4.8</sup> M;<br>FIA                   | [15]<br>I; |
|           | <b>K<sup>+</sup>-8</b> ( <i>w</i> = 2 %),<br>BBPA ( <i>w</i> = 65 %),<br>PVC ( <i>w</i> = 33 %)                                          | Li <sup>+</sup> , -3.6; Na <sup>+</sup> , -3.2;<br>Cs <sup>+</sup> , -2.4; NH <sub>4</sub> <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -4.4; Ca <sup>2+</sup> , -4.4      | WSS        | 0.1                         | 0.1                                                   | 57.5<br>56.9             | 10 <sup>-4</sup> -10 <sup>-1</sup><br>10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [15]<br>c <sub>dl</sub> = 10 <sup>-5.7</sup> M;<br>FIA                  | [15]<br>L; |
|           | <b>K</b> <sup>+</sup> -8 ( $w = 2$ %),<br>oNPOE ( $w \approx 65$ %), PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 70$ %)                       | Li <sup>+</sup> , -3.8; Na <sup>+</sup> , -3.2;<br>Cs <sup>+</sup> , -2.5; NH <sub>4</sub> <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -5.0; Ca <sup>2+</sup> , -4.5      | SSM        | 0.1                         | 0.1                                                   | 57.9<br>56.0             | 10 <sup>-4</sup> -10 <sup>-1</sup><br>10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [15]<br>c <sub>dl</sub> = 10 <sup>-5.3</sup> M;<br>FIA                  | [15]<br>I; |
|           | <b>K<sup>+</sup>-8</b> ( $w = 2$ %),<br>BBPA ( $w \approx 65$ %), PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 70$ %)                          | Li <sup>+</sup> , -3.8; Na <sup>+</sup> , -3.3;<br>Cs <sup>+</sup> , -2.3; NH <sub>4</sub> <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -4.3; Ca <sup>2+</sup> , -4.5      | SSM        | 0.1                         | 0.1                                                   | 58.1<br>55.6             | 10 <sup>-4</sup> -10 <sup>-1</sup><br>10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.;  <br>c <sub>dl</sub> = 10 <sup>-5.8</sup> M;<br>FIA                     | [15]<br>L; |
|           | <b>K<sup>+</sup>-8</b> ( <i>w</i> = 1 %),<br>DOS ( <i>w</i> = 66 %). PVC ( <i>w</i> = 32.6 %),<br>NaTPB ( <i>x</i> <sub>i</sub> = 110 %) | Li <sup>+</sup> , -3.8; Cs <sup>+</sup> , -2.4;<br>NH <sub>4</sub> <sup>+</sup> , -2.1; Ca <sup>2+</sup> , -4.2<br>Na <sup>+</sup> , -3.2                                | SSM<br>FIM | 0.1                         | 0.1                                                   | 58.1                     | 10 <sup>-4</sup> -10 <sup>-1</sup>                                       | 20 ± 2 °C;<br>r.o.o.g.                                                              | [19]       |
|           | <b>K<sup>+</sup>-8</b> ( $w = 1$ %), PVC ( $w = 32.6$ %),<br>dinonyl adipate ( $w = 66$ %),<br>NaTPB ( $x_i = 110$ %)                    | NH4 <sup>+</sup> , -2.2<br>Na <sup>+</sup> , -3.2                                                                                                                        | SSM<br>FIM | 0.1                         | 0.1                                                   | 58.1 ± 0.1               | 58.1 ± 0.1 10 <sup>-4</sup> -10 <sup>-1</sup>                            | 20 ± 2 °C                                                                           | [61]       |
|           | <b>K<sup>+</sup>-8</b> ( $w = 1.4 \%$ ),<br>fluorosilicone rubber ( $w = 98.2 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 40 \%$ )                 | Li <sup>+</sup> , -3.4; Na <sup>+</sup> , -3.1;<br>NH <sub>4</sub> <sup>+</sup> , -1.9; Mg <sup>2+</sup> , -4.2;<br>Ca <sup>2+</sup> , -4.2                              | SSM        | 10 <sup>-2</sup>            | 10 <sup>-2</sup>                                      | 56.8                     | I                                                                        | ISFET; [3<br>25 °C;<br>c <sub>dl</sub> = 1 × 10 <sup>-6</sup> M                     | [33]<br>M  |

1936

## Y. UMEZAWA et al.

| ionophon           | ionophore membrane<br>composition                                                                                        | lgK <sub>K</sub> +,Bn+                                                                                                                                                                                | method     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                 | remarks                                                                                       | ref.                                |                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-------------------------------------------------------|--------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|
|                    | <b>K<sup>+</sup>-8</b> ( $w = 1.5 \%$ ),<br>fluorosilicone rubber ( $w = 97.8 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 73 \%$ ) | Li <sup>+</sup> , -3.8; Na <sup>+</sup> , -3.5;<br>NH4 <sup>+</sup> , -2.2; Mg <sup>2+</sup> , -4.6;<br>Ca <sup>2+</sup> , -4.7                                                                       | SSM        | 10 <sup>-2</sup>            | 10^2                                                  | 56.5                     | 1                                      | <b>ISFET;</b> [3:<br>25 °C;<br>$c_{dl} = 1 \times 10^{-6} M$                                  | [33]<br>6 M                         |                            |
| K+-9               | <b>K<sup>+</sup>-9</b> ( $w = 3$ %),<br>silicone rubber ( $w = 88.2$ %),<br>cross-linking agent ( $w = 8.8$ %)           | Na⁺, ≦-3.3                                                                                                                                                                                            | FIM        | I                           | 0.10                                                  | 55                       | 1                                      | ISFET                                                                                         | [11]                                |                            |
|                    | <b>K<sup>+</sup>-9</b> ( $w = 3$ %), silicone rubber ( $w = 97$ %)                                                       | Na⁺, ≦-3.3                                                                                                                                                                                            | FIM        | I                           | 0.1                                                   | 55                       | l                                      | ISFET                                                                                         | [14]                                |                            |
| K <sup>+</sup> -10 | <b>K<sup>+</sup>-10</b> ( $w = 3$ %).<br>silicone rubber ( $w = 88.2$ %),<br>cross-linking agent ( $w = 8.8$ %)          | Na⁺, ≦-3.1                                                                                                                                                                                            | FIM        | I                           | 0.10                                                  | 56                       | I                                      | ISFET                                                                                         | [12]                                |                            |
|                    | <b>K</b> <sup>+</sup> -10 ( $w = 3$ %). silicone rubber ( $w = 97$ %)                                                    | Na⁺, ≦-3.1                                                                                                                                                                                            | FIM        | 1                           | 0.1                                                   | 56                       | l                                      | ISFET: [14]<br>poly(hydroxyethyl<br>methacrylate) was<br>covalently attached<br>to SiO, gate. | [14]<br>yethyl<br>e) was<br>ttached |                            |
| K+11               | <b>K</b> <sup>+</sup> -11 ( $w = 3.2-3.8 \ \%$ ),<br>oNPOE ( $w \approx 64 \ \%$ ),<br>PVC ( $w \approx 32 \ \%$ )       | Na <sup>+</sup> , –3.4; Rb <sup>+</sup> , –0.52;<br>Cs <sup>+</sup> , –0.70; NH <sub>4</sub> <sup>+</sup> , –1.5                                                                                      | FIM        | I                           | 0.1, 0.01                                             | 55                       | 10 <sup>-4</sup> -10 <sup>-1</sup>     | 25.0 ± 0.1 °C                                                                                 | C [4]                               |                            |
| K+-12              | <b>K</b> +-12 ( $w = 0.4-0.5 \%$ ),<br>DOP ( $w = 77-80 \%$ ),<br>PVC ( $w = 20-23 \%$ )                                 | $ \begin{array}{l} Li^+,-5.00; Cs^+,-1.30;\\ NH_4^-,-3.00; Mg^{2+},-3.40;\\ Ca^{2+},-5.00; Sr^{2+},-5.00;\\ Ba^{2+},-5.00; Zn^{2+},-4.70;\\ Na^+,-2.30; Na^+,-2.30 \end{array} $                      | SSM<br>FIM | 1 1                         | 1 1                                                   | 46 ± 1                   | 1 1                                    |                                                                                               | [9]                                 |                            |
| K+-13              | <b>K</b> +-13 ( $w = 0.4-0.5 \%$ ),<br>DOP ( $w = 77-80 \%$ ),<br>PVC ( $w = 20-23 \%$ )                                 | $ \begin{array}{l} L_{1}^{+},-4.00;\ Cs^{+},-4.00;\\ NH_{4}^{+},-4.00;\ Mg^{2+},-2.30;\\ Ca^{2+},-5.00;\ Sr^{2+},-5.00;\\ Ba^{2+},-5.00;\ Zn^{2+},-5.00\\ Na^{+},-3.60;\ Na^{+},-3.60\\ \end{array} $ | SSM<br>FIM | 1 1                         | 1 1                                                   | 38 ± 1                   |                                        |                                                                                               | [6]                                 |                            |
| K <sup>+</sup> -14 | <b>K</b> <sup>+</sup> -14 ( $w = 0.4-0.5 \%$ ),<br>DOP ( $w = 77-80 \%$ ),<br>PVC ( $w = 20-23 \%$ )                     | $ \begin{array}{l} Li^+,-5.00; Cs^+,-5.00;\\ NH_4^-,-2.20; Mg^{2+},-5.00;\\ Ca^{2+},-5.00; Sr^{2+},-5.00;\\ Ba^{2+},-5.00; Zn^{2+},-5.00\\ Na^+,-3.70\\ \end{array} $                                 | FIM        | I I                         | 1                                                     | 55 ± 1                   | 10 <sup>-1</sup> -10 <sup>-5</sup>     | 1                                                                                             | [6]                                 |                            |
| K+-15              | <b>K</b> +15 ( $w = 0.4-0.5$ %),<br>DOP ( $w = 77-80$ %),<br>PVC ( $w = 20-23$ %)                                        | $ \begin{array}{l} Li^+, -5.00; \ Cs^+, -4.40; \\ NH_4^+, -1.70; \ Mg^{2+}, -5.00; \\ Ca^{2+}, -5.00; \ Sr^{2+}, -4.30; \\ \end{array} $                                                              | SSM<br>0;  | I                           | I                                                     | 38 ± 1                   | 10 <sup>-1.5</sup> -10 <sup>-5.3</sup> |                                                                                               | [6]<br>continue                     | [6]<br>continues on next [ |

continues on next page

| ionophor           | ionophore membrane<br>composition                                                                | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                                                                                                                                          | method    | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.      |
|--------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|---------------------------------|--------------------------|------------------------|-------------------|
|                    |                                                                                                  | Ba <sup>2+</sup> , -5.00; Zn <sup>2+</sup> , -5.00<br>Na <sup>+</sup> , -2.70;                                                                                                                                                                               | FIM       | I                           | ļ                               |                          |                        |                   |
| K+-16              | <b>K</b> <sup>+</sup> <b>16</b> ( $w = 2 \%$ ),<br>oNPOE ( $w = 64 \%$ ),<br>PVC ( $w = 34 \%$ ) | Li <sup>+</sup> , -0.20; Na <sup>+</sup> , -1.40;<br>Rb <sup>+</sup> , -0.20; Cs <sup>+</sup> , -1.20;<br>NH <sub>4</sub> <sup>+</sup> , -0.70; Mg <sup>2+</sup> , -1.40;<br>Ca <sup>2+</sup> , -1.80; Sr <sup>2+</sup> , -1.00;<br>Ba <sup>2+</sup> , -1.60 | SSM<br>); | 0.1                         | 0.1                             | I                        | I                      | 25.0 ± 0.1 °C [8] |
| K+-17              | <b>K</b> <sup>+</sup> <b>17</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)       | $\begin{array}{l} Li^+, -3.1;  Na^+, -2.7; \\ Rb^+, -0.4;  Cs^+, -2.7; \\ NH_4^+, -1.6;  Mg^{2+}, -4.1; \\ Ca^{2+}, -3.4;  Sr^{2+}, -3.0; \\ Ba^{2+}, -3.2 \end{array}$                                                                                      | SSM       | 0.1                         | 0.1                             | 1                        | I                      | 25.0 ± 0.1 °C [8] |
| K <sup>+</sup> -18 | <b>K</b> <sup>+</sup> - <b>18</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)     | $\begin{array}{l} Li^+, -3.2;  Na^+, -2.9; \\ Rb^+, -0.4;  Cs^+, -2.5; \\ NH_4^+, -1.8;  Mg^{24}, -4.2; \\ Ca^{24}, -3.7;  Sr^{2+}, -3.2; \\ Ba^{2+}, -3.4 \end{array}$                                                                                      | SSM       | 0.1                         | 0.1                             | I                        | I                      | 25.0 ± 0.1 °C [8] |
| K+-19              | <b>K</b> <sup>+</sup> <b>.19</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)      | $\begin{array}{l} Li^+, -3.0; Na^+, -2.5; \\ Rb^+, -0.8; Cs^+, -2.3; \\ NH_4^+, -1.6; Mg^{2+}, -3.5; \\ Ca^{2+}, -3.4; Sr^{2+}, -3.0; \\ Ba^{2+}, -3.4 \end{array}$                                                                                          | SSM       | 0.1                         | 0.1                             | I                        | I                      | 25.0±0.1 °C [8]   |
| K+-20              | <b>K</b> +-20 ( $w = 2\%$ ),<br>oNPOE ( $w = 64\%$ ),<br>PVC ( $w = 34\%$ )                      | $\begin{array}{l} Li^+,-3.3;Na^+,-2.95;\\ Rb^+,-0.7;Cs^+,-2.4;\\ NH_4^+,-1.7;Mg^{2+},-4.1;\\ Ca^{2+},-3.8;Sr^{2+},-3.1;\\ Ba^{2+},-3.9\end{array}$                                                                                                           | SSM       | 0.1                         | 0.1                             | I                        | I                      | 25.0±0.1 °C [8]   |
| K+-21              | <b>K</b> <sup>+</sup> -21 ( $w = 2\%$ ),<br>oNPOE ( $w = 64\%$ ),<br>PVC ( $w = 34\%$ )          | $\begin{array}{l} Li^{+},-3.3,Na^{+},-2.9;\\ Rb^{+},-0.5;Cs^{+},-2.9;\\ NH_{4}^{+},-1.7;Mg^{24},-4.3;\\ Ca^{24},-3.6;Sr^{24},-3.2;\\ Ba^{24},-3.5\end{array}$                                                                                                | SSM       | 0.1                         | 0.1                             | I                        | I                      | 25.0 ± 0.1 °C [8] |
| K+-22              | <b>K<sup>+</sup>-22</b> $(w = 2 \%)$ ,<br>oNPOE $(w = 64 \%)$ ,<br>PVC $(w = 34 \%)$             | Li <sup>+</sup> , -3.2; Na <sup>+</sup> , -2.9;<br>Rb <sup>+</sup> , -0.7; Cs <sup>+</sup> , -2.5;<br>NH <sub>4</sub> <sup>+</sup> , -1.8; Mg <sup>2+</sup> , -4.1;                                                                                          | SSM       | 0.1                         | 0.1                             | I                        | I                      | 25.0±0.1 °C [8]   |
|                    |                                                                                                  |                                                                                                                                                                                                                                                              |           |                             |                                 |                          |                        |                   |

| I able 4: I<br>ionophore | Lable 4: KSelective Electrodes (Continued)<br>ionophore membrane<br>composition         | lgK <sub>K+,B</sub> n+                                                                                                                                                                                                                                          | method | primary interferin<br>ion conc. ion conc. | interfering<br>ion conc. | slope<br>(mV/ | linear<br>range | remarks r                       | ref.                          |
|--------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|--------------------------|---------------|-----------------|---------------------------------|-------------------------------|
|                          |                                                                                         | Ca <sup>2+</sup> , -3.7; Sr <sup>2+</sup> , -3.1;<br>Ba <sup>2+</sup> , -3.8                                                                                                                                                                                    |        | (W)                                       | (W)                      | decade)       | (W)             |                                 |                               |
| K+-23                    | <b>K</b> <sup>+</sup> -23 ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)    | $\begin{array}{l} Li^+, +0.3; Na^+, -1.1;\\ Rb^+, -0.2; Cs^+, -1.0;\\ NH_4^+, -0.6; Mg^{2+}, -0.9;\\ Ca^{2+}, -1.8; Sr^{2+}, -0.6;\\ Ba^{2+}, -1.5\end{array}$                                                                                                  | SSM    | 0.1                                       | 0.1                      | I             | 1               | 25.0 ± 0.1 °C [8]               | [8]                           |
| K+-24                    | <b>K</b> <sup>+</sup> -24 ( $w = 2\%$ ),<br>oNPOE ( $w = 64\%$ ),<br>PVC ( $w = 34\%$ ) | $\begin{array}{l} Li^+,-2.9;Na^+,-2.7;\\ Rb^+,-1.0;Cs^+,-2.4;\\ NH_4^+,-1.7;Mg^{2+},-3.9;\\ Ca^{2+},-3.6;Sr^{2+},-3.1;\\ Ba^{2+},-3.3\end{array}$                                                                                                               | SSM    | 0.1                                       | 0.1                      | I             | I               | 25.0 ± 0.1 °C [8]               | [8]                           |
| K+-25                    | <b>K</b> +-25 ( $w = 2\%$ ),<br>oNPOE ( $w = 64\%$ ),<br>PVC ( $w = 34\%$ )             | $\begin{array}{l} Li^+, -2.4;  Na^+, -2.5;\\ Rb^+, -1.1;  Cs^+, -2.2;\\ NH_4^+, -1.4;  Mg^{2+}, -3.4;\\ Ca^{2+}, -3.2;  Sr^{2+}, -2.7;\\ Ba^{2+}, -2.9\end{array}$                                                                                              | SSM    | 0.1                                       | 0.1                      | I             | 1               | 25.0±0.1 °C [8]                 | [8]                           |
| K <sup>+</sup> -26       | <b>K</b> +- <b>26</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)        | $\begin{array}{l} Li^+, -0.5;  Na^+, -1.6;\\ Rb^+, -0.2;  Cs^+, -1.4;\\ NH_4^+, -1.0;  Mg^{2+}, -1.2;\\ Ca^{2+}, -2.5;  Sr^{2+}, -1.9;\\ Ba^{2+}, -1.8\end{array}$                                                                                              | SSM    | 0.1                                       | 0.1                      | I             | 1               | 25.0 ± 0.1 °C [8]               | [8]                           |
| K+-27                    | <b>K</b> +-27 ( $w = 2\%$ ),<br>oNPOE ( $w = 64\%$ ),<br>PVC ( $w = 34\%$ )             | Li <sup>+</sup> , -2.9; Na <sup>+</sup> , -2.6;<br>Rb <sup>+</sup> , -0.5; Cs <sup>+</sup> , -2.2;<br>NH <sub>4</sub> <sup>+</sup> , -1.6; M <sub>8</sub> <sup>2+</sup> , -4.0;<br>Ca <sup>2+</sup> , -3.5; Sr <sup>2+</sup> , -3.3;<br>Ba <sup>2+</sup> , -3.3 | SSM    | 0.1                                       | 0.1                      | I             | 1               | 25.0 ± 0.1 °C [8]               | [8]                           |
| K <sup>+</sup> -28       | <b>K</b> +- <b>28</b> ( $w = 2\%$ ),<br>oNPOE ( $w = 64\%$ ),<br>PVC ( $w = 34\%$ )     | Li <sup>+</sup> , -3.4; Na <sup>+</sup> , -2.9;<br>Rb <sup>+</sup> , -0.8; Cs <sup>+</sup> , -2.7;<br>NH <sub>4</sub> <sup>+</sup> , -1.7; Mg <sup>2+</sup> , -4.3;<br>Ca <sup>2+</sup> , -3.4; Sr <sup>2+</sup> , -3.4;<br>Ba <sup>2+</sup> , -3.3             | SSM    | 0.1                                       | 0.1                      | I             | I               | 25.0 ± 0.1 °C [8]               | [8]                           |
| K+-29                    | <b>K</b> <sup>+</sup> -29 ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)    | Li <sup>+</sup> , -1.3; Na <sup>+</sup> , -1.9;<br>Rb <sup>+</sup> , -0.9; Cs <sup>+</sup> , -2.0;<br>NH <sub>4</sub> <sup>+</sup> , -1.3; Mg <sup>2+</sup> , -2.6;                                                                                             | SSM    | 0.1                                       | 0.1                      | I             | I               | 25.0 ± 0.1 °C [8]<br><i>con</i> | [8]<br>continues on next page |

1939

|                    | ionophore memorane<br>composition                                                                           | IgAK+,Bn+                                                                                                                                                                                   | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                  | remarks ret.                                                                      |
|--------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|
|                    |                                                                                                             | Ca <sup>2+</sup> , -2.7; Sr <sup>2+</sup> , -2.1;<br>Ba <sup>2+</sup> , -2.4                                                                                                                |        |                             |                                                       |                          |                                         |                                                                                   |
| K+-30              | <b>K</b> <sup>+</sup> <b>.30</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)                 | $\begin{array}{l} Li^+, -3.4;  Na^+, -3.0;\\ Rb^+, -0.9;  Cs^+, -2.7;\\ NH_4^+, -1.9;  Mg^{24}, -4.3;\\ Ca^{2+}, -3.8;  Sr^{2+}, -3.2;\\ Ba^{2+}, -3.4\end{array}$                          | SSM    | 0.1                         | 0.1                                                   | I                        | I                                       | 25.0±0.1 °C [8]                                                                   |
|                    | <b>K</b> <sup>+</sup> <b>.30</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC (POLANVIL S-70) ( $w = 34$ %) | $\begin{array}{l} Li^+, -3.4;  Na^+, -3.0;\\ Rb^+, -0.9;  Cs^+, -2.7;\\ NH_4^+, -1.9;  Mg^{24}, -4.3;\\ Ca^{2+}, -3.8;  Sr^{2+}, -3.2;\\ Ba^{2+}, -3.4\end{array}$                          | SSM    | 0.1                         | 0.1                                                   | 56                       | 10 <sup>-4.4</sup><br>-10 <sup>-1</sup> | 25.0±0.1 °C [8]                                                                   |
|                    | <b>K+.30</b> ( <i>w</i> = 2 %),<br>oNPOE ( <i>w</i> = 64 %),<br>PVC (HOSTALIT PVC) ( <i>w</i> = 34 %)       | $\begin{array}{l} Li^+, -3.5; Na^+, -3.3;\\ Rb^+, -0.9; Cs^+, -2.8;\\ NH_4^+, -2.0; Mg^{2+}, -4.3;\\ Ca^{2+}, -3.7; Sr^{2+}, -3.1;\\ Ba^{2+}, -3.3\\ Na^+, -3.3\\ Na^+, -3.3\\ \end{array}$ | SSM    | 0.1                         | 0.1                                                   | 1 58                     |                                         | 25.0 [8]<br>$\pm 0.1  ^{\circ}\text{C};$<br>$c_{\text{dl}} = 10^{-4.8} \text{ M}$ |
| K+-31              | <b>K<sup>+-31</sup></b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)                          | $ \begin{array}{l} Li^+,-2.2;Na^+,-2.5;\\ Rb^+,-0.6;Cs^+,-1.7;\\ NH_4^+,-1.6;Mg^{2+},-3.0;\\ Ca^{2+},-2.9;Sr^{2+},-2.4;\\ Ba^{2+},-2.6 \end{array} $                                        | SSM    | 0.1                         | 0.1                                                   | I                        | I                                       | 25.0±0.1 °C [8]                                                                   |
| K+-32              | <b>K</b> <sup>+</sup> <b>.32</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)                 | $\begin{array}{l} Li^{+},-3.0;Na^{+},-2.6;\\ Rb^{+},-0.3;Cs^{+},-2.6;\\ NH_{4}^{+},-1.5;Mg^{2+},-4.3;\\ Ca^{2+},-3.7;Sr^{2+},-3.2;\\ Ba^{2+},-3.3\end{array}$                               | SSM    | 0.1                         | 0.1                                                   | I                        | 1                                       | 25.0±0.1 °C [8]                                                                   |
| K+-33              | <b>K</b> <sup>+</sup> <b>.33</b> ( $w = 2$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 34$ %)                 | $\begin{array}{l} Li^+, -3.2;  Na^+, -2.8;\\ Rb^+, -0.9;  Cs^+, -2.5;\\ NH_4^+, -1.7;  Mg^{2+}, -4.3;\\ Ca^{2+}, -3.7;  Sr^{2+}, -3.2;\\ Ba^{2+}, -3.2 \end{array}$                         | SSM    | 0.1                         | 0.1                                                   | 1                        | 1                                       | 25.0±0.1 °C [8]                                                                   |
| K <sup>+</sup> -34 | <b>K<sup>+</sup>-34</b> ( $w = 0.3-0.5$ %),<br>DBP ( $w = 77-80$ %),                                        | Li <sup>+</sup> , -5.0; Na <sup>+</sup> , -2.6;<br>Cs <sup>+</sup> , -1.0; NH <sub>4</sub> <sup>+</sup> -2.3;                                                                               | SSM    | I                           | I                                                     | $44 \pm 1$               | $10^{-4}$ -1                            | $t_{\rm resp} = [5]$<br>30-60 s;                                                  |

Y. UMEZAWA et al.

| ionophor           | ionophore membrane<br>composition                                                                                                                   | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks ref.                                                                                                  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                    | PVC ( $w = 20-23  \%$ )                                                                                                                             | Mg <sup>2+</sup> , -3.7; Ca <sup>2+</sup> , -3.0;<br>Sr <sup>2+</sup> , -2.6; Ba <sup>2+</sup> , -5.0;<br>Cu <sup>2+</sup> , -1.0; Zn <sup>2+</sup> , -2.7                                                                                                                     |        |                             |                                 |                          |                                    | 5.5 < pH < 10.5;<br>$c_{\text{dl}} = 5.6 \times 10^{-5} \text{ M}$                                            |
| K <sup>+</sup> -35 | <b>K</b> + <b>.35</b> ( $w = 0.3-0.5$ %),<br>DOP ( $w = 77-80$ %),<br>PVC ( $w = 20-23$ %)                                                          | $\begin{array}{l} Li^+, -5.0;  Na^+, -3.3;\\ Cs^+, -1.6;  NH_4^+, -1.5;\\ Mg^{2+}, -2.6;  Ca^{2+}, -3.0;\\ Sr^{2+}, -1.6;  Ba^{2+}, -5.0;\\ Cu^{2+}, -0.70;  Zn^{2+}, -5.0;\end{array}$                                                                                        | SSM    | I                           | 1                               | 43 ± 1                   | 10 <sup>-4</sup> -1                | $t_{\text{resp}} = [5]$<br>30-60 s;<br>5.5 < pH < 10.5;<br>$c_{\text{dl}} = 7.9 \times 10^{-5}$ M             |
| K <sup>+</sup> -36 | <b>K</b> + <b>.36</b> ( $w = 0.3-0.5$ %),<br>DBP ( $w = 77-80$ %),<br>PVC ( $w = 20-23$ %)                                                          | $\begin{array}{l} Li^+,-5.0;Na^+,-3.1;\\ Cs^+,-1.6;NH_4^+,-1.7;\\ Mg^{2+},-3.4;Ca^{2+},-4.0;\\ Sr^{2+},-2.4;Cu^{2+},-1.5;\\ Zn^{2+},-2.4\end{array}$                                                                                                                           | SSM    | I                           | I                               | 47 ± 1                   | 10 <sup>-4</sup> -1                | $t_{\text{resp}} = [5]$<br>30-60 s;<br>5 < pH < 10.5;<br>$c_{\text{dl}} = 5.0 \times 10^{-5}$ M               |
| K+-37              | <b>K</b> <sup>+</sup> .37 ( $w = 1.64$ %),<br>diethyl phthalate ( $w = 65.04$ %),<br>PVC ( $w = 32.52$ %),<br>NaTPB ( $x_1 = 50$ %)                 | Li <sup>+</sup> , -1.13; Na <sup>+</sup> , -1.63;<br>Mg <sup>2+</sup> , -2.26; Ca <sup>2+</sup> , -2.72                                                                                                                                                                        | FIM    | I                           | I                               | 53.5                     | $10^{-4}$ - $10^{-1}$              | $25 \pm 1 ^{\circ}\text{C};$ [9]<br>$c_{\text{dl}} = 10^{-4.45} \text{M}$                                     |
| K <sup>+</sup> -38 | <b>K</b> <sup>+</sup> - <b>38</b> ( $w = 1.64 \%$ ),<br>diethyl phthalate ( $w = 65.04 \%$ ),<br>PVC ( $w = 32.52 \%$ ),<br>NaTPB ( $x_i = 50 \%$ ) | $ \begin{array}{l} Li^+, -1.77;  Na^+, -1.96; \\ Cs^+, -2.10;  NH_4^+, -1.47; \\ Mg^{2+}, -2.96;  Ca^{2+}, -2.86; \\ Sr^{2+}, -2.64;  Ba^{2+}, -2.69; \\ Mn^{2+}, -2.80;  Co^{2+}, -2.88; \\ Ni^{2+}, -2.92;  Cu^{2+}, -2.82; \\ Cd^{2+}, -1.45;  Al^{3+}, -2.39 \end{array} $ | FIM    | I                           | I                               | 58.0                     | 10 <sup>-4</sup> -10 <sup>-1</sup> | $25 \pm 1 \circ C;$ [9]<br>$c_{d1} = 10^{-4.60} M;$<br>$t_{90} = 2 \min;$<br>$\tau = 45 d;$<br>5.5 < pH < 7.5 |
|                    | <b>K</b> <sup>+</sup> . <b>38</b> ( $w = 1.64$ %),<br>PVC ( $w = 32.52$ %),<br>DBP ( $w = 65.04$ %),<br>NaTPB ( $x_1 = 50$ %)                       | Li <sup>+</sup> ,-l.27; Na <sup>+</sup> ,-l.79;<br>Mg <sup>2+</sup> ,-2.28; Ca <sup>2+</sup> ,-2.72                                                                                                                                                                            | FIM    | I                           | I                               | I                        | 1                                  | [6]                                                                                                           |
|                    | <b>K<sup>+</sup>-38</b> ( $w = 1.64 \%$ ),<br>PVC ( $w = 32.52 \%$ ),<br>NaTPB ( $x_1 = 50 \%$ ),<br>acetophenone ( $w = 65.04 \%$ )                | Li <sup>+</sup> , -0.29; Na <sup>+</sup> , -0.12;<br>Mg <sup>2+</sup> , -0.63; Ca <sup>2+</sup> , -0.43;                                                                                                                                                                       | FIM    | I                           | I                               | I                        | I                                  | [6]                                                                                                           |
|                    | <b>K<sup>+</sup>-38</b> ( $w = 1.64$ %),<br>oNPOE ( $w = 65.04$ %),<br>PVC ( $w = 32.52$ %), NaTPB ( $x_i = 50$ %)                                  | $\begin{array}{c} Li^{+},-0.52;Na^{+},-0.46;\\ Mg^{2+},-0.85;Ca^{2+},-0.64\\ \% \end{array}$                                                                                                                                                                                   | FIM    | I                           | I                               | I                        | I                                  | [9]<br>continues on next page                                                                                 |

1941

| (Continued)               |
|---------------------------|
| Electrodes                |
| K <sup>+</sup> -Selective |
| Table 4:                  |

| ionophor           | ionophore membrane<br>composition                                                                                                                | lgK <sub>K+,B<sup>n+</sup></sub>                                                                                                                                                                                                                                                                  | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks ref.                                                                                                                                      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | <b>K<sup>+</sup>-38</b> ( $w = 1.64 \%$ ),<br>PVC ( $w = 32.52 \%$ ),<br>nitrobenzene ( $w = 65.04 \%$ ),<br>NaTPB ( $x_1 = 50 \%$ )             | Li <sup>+</sup> , -0.53; Na <sup>+</sup> , -0.15;<br>Mg <sup>2+</sup> , -0.52; Ca <sup>2+</sup> , -0.43                                                                                                                                                                                           | FIM    | I                           | I                               | I                        | I                                  | [6]                                                                                                                                               |
| K+-39              | <b>K<sup>+</sup>-39</b> ( <i>w</i> = 1.64 %),<br>diethyl phthalate ( <i>w</i> = 65.04 %),<br>PVC ( <i>w</i> = 32.52 %),<br>NaTPB ( $x_i = 50$ %) | Li <sup>+</sup> , -1.00; Na <sup>+</sup> , -1.67;<br>Mg <sup>2+</sup> , -2.13; Ca <sup>2+</sup> , -2.27                                                                                                                                                                                           | FIM    | I                           | I                               | 53.0                     | $10^{-4}$ – $10^{-1}$              | $25 \pm 1 \circ C;$ [9]<br>$c_{dl} = 10^{-4.3} M$                                                                                                 |
| K <sup>+</sup> -40 | <b>K<sup>+</sup>-40</b> ( $w = 1.64 \%$ ),<br>diethyl phthalate ( $w = 65.04 \%$ ),<br>PVC ( $w = 32.52 \%$ ),<br>NaTPB ( $x_i = 50 \%$ )        | Li <sup>+</sup> , -1.11; Na <sup>+</sup> , -1.60;<br>Mg <sup>2+</sup> , -2.00; Ca <sup>2+</sup> , -2.05                                                                                                                                                                                           | FIM    | I                           | I                               | 51.5                     | $10^{-4}$ - $10^{-1}$              | $25 \pm 1 ^{\circ}\text{C};$ [9]<br>$c_{\text{dl}} = 10^{-4.26} \text{M}$                                                                         |
| K+41               | <b>K</b> <sup>+</sup> <b>41</b> ( $w = 2.7 \%$ ),<br>DBP ( $w = 64 \%$ ),<br>PVC ( $w = 32 \%$ ),<br>KTpCIPB ( $x_i = 60 \%$ )                   | $\begin{array}{l} Li^+, -1.95; Na^+, -2.35; \\ Rb^+, -2.20; Cs^+, -2.25; \\ NH_4^+, -2.05; Mg^{2+}, -2.90; \\ Ca^{2+}, -3.05; Sr^{2+}, -3.20; \\ Ba^{2+}, -3.30; Mn^{2+}, -2.55; \\ Co^{2+}, -2.70; Ni^{2+}, -3.00; \\ Cu^{2+}, -2.75; Cd^{2+}, -2.45; \\ Al^3+, -3.45 \end{array}$               | WSS ;  | 1                           | 1                               | I.                       | 10 <sup>-5</sup> -10 <sup>-1</sup> | $25 \pm 1  ^{\circ}$ C; [10]<br>r.o.o.g.;<br>7 > 60  d;<br>$t_{resp} < 20  s$                                                                     |
| K+-42              | <b>K<sup>+</sup>-42</b> $(w = 2.7 \%)$ ,<br>DBP $(w = 64 \%)$ ,<br>PVC $(w = 32 \%)$ ,<br>KTpCIPB $(x_i = 81 \%)$                                | $ \begin{array}{l} L_1^+, -1.81;  Na^+, -2.25; \\ Rb^+, -2.10;  Cs^+, -2.20; \\ NH_4^+, -1.91;  Mg^{2+}, -2.80; \\ Ca^{2+}, -3.00;  Sr^{2+}, -3.11 \\ Ba^{2+}, -3.20;  Mn^{2+}, -2.45; \\ Co^{2+}, -2.60;  Ni^{2+}, -2.90; \\ Cu^{2+}, -2.70;  Cd^{2+}, -2.32; \\ Al^{3+}, -3.57 \\ \end{array} $ | WSS ;  | I.                          | 1                               | T                        | 10 <sup>-5</sup> -10 <sup>-1</sup> | $25 \pm 1^{\circ}$ C; [10]<br>r.o.o.g;<br>7 > 60 d;<br>$t_{resp} < 20 s$                                                                          |
| K+-43              | <b>K<sup>+</sup>-43</b> ( $w = 2.7$ %),<br>DBP ( $w = 64$ %),<br>PVC ( $w = 32$ %),<br>KTpCIPB ( $x_1 = 68$ %)                                   | $\begin{array}{l} Li^+,-2.05;Na^+,-2.40;\\ Rb^+,-2.32;Cs^+,-2.33;\\ NH_4^+,-2.17;Mg^{2+},-3.00;\\ Ca^{2+},-3.15;Sir^{2+},-3.40;\\ Ba^{2+},-3.50;Mn^{2+},-2.70;\\ Co^{2+},-2.84;Ni^{2+},-2.10;\\ Cu^{2+},-2.85;Cd^{2+},-2.60;\\ Al^{3+},-3.59\end{array}$                                          | WSS ;  | 1                           | I                               | 1                        | 10-2-10-1                          | $25 \pm 1 ^{\circ}$ C; [10]<br>r.o.o.g.;<br>$7 > 60 ^{\circ}$<br>3 < pH < 11;<br>$t_{resp} < 20 ^{\circ}$<br>$c_{dl} = 4 \times 10^{-6} ^{\circ}$ |

Y. UMEZAWA et al.

| ionophc            | ionophore membrane<br>composition                                                                                        | lgK <sub>K</sub> +,B <sup>n+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | method   | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             |     | remarks                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
| K+-44              | <b>K</b> <sup>+</sup> -44 ( $w = 2.7 \%$ ),<br>DBP ( $w = 64 \%$ ),<br>PVC ( $w = 32 \%$ ),<br>KTpCIPB ( $x_i = 73 \%$ ) | Li <sup>+</sup> , $-2.10$ ; Na <sup>+</sup> , $-2.50$ ;<br>Rb <sup>+</sup> , $-2.32$ ; Cs <sup>+</sup> , $-2.40$ ;<br>NH <sub>4</sub> <sup>+</sup> , $-2.19$ ; Mg <sup>2+</sup> , $-3.10$ ;<br>Ca <sup>2+</sup> , $-3.19$ ; Sr <sup>2+</sup> , $-3.50$ ;<br>Ba <sup>2+</sup> , $-3.68$ ; Mh <sup>2+</sup> , $-2.80$ ;<br>Ca <sup>2+</sup> , $-3.00$ ; Ni <sup>2+</sup> , $-2.81$ ;<br>Cu <sup>2+</sup> , $-2.90$ ; Cd <sup>2+</sup> , $-2.70$ ;<br>A1 <sup>3+</sup> , $-2.90$ ; Cd <sup>2+</sup> , $-2.70$ ; | WSS :0 : | 1                           | 1                                                     | 90                       | 10 <sup>-5</sup> -10 <sup>-1</sup> | 0-1 | $0^{-1}$ 25 ± 1 °C; [10]<br>r.o.o.g.;<br>$\tau > 60 d;$<br>$c_{dl} = 4 \times 10^{-6} M;$<br>$t_{resp} < 20 s$                 |
| K+-45              | <b>K<sup>+</sup>-45</b> ( $w = 10 \%$ ),<br>DOP ( $w = 65 \%$ ),<br>PVC ( $w = 25 \%$ )                                  | Li <sup>+</sup> , -1.5; Na <sup>+</sup> , -0.4;<br>Cs <sup>+</sup> , -0.2; Ca <sup>2+</sup> , -3.8;<br>Sr <sup>2+</sup> , -2.2; Ba <sup>2+</sup> , -2.9;<br>Pb <sup>2+</sup> , -1.7                                                                                                                                                                                                                                                                                                                          | FIM      | I                           | 10 <sup>-3</sup>                                      | 56.6                     | >10 <sup>-4.7</sup>                |     | Cu CWE                                                                                                                         |
| K <sup>+</sup> -46 | <b>K<sup>+</sup>-46</b> ( $w = 10 \%$ ),<br>DOP ( $w = 65 \%$ ),<br>PVC ( $w = 25 \%$ )                                  | Li <sup>+</sup> , -0.5; Na <sup>+</sup> , -0.4;<br>Cs <sup>+</sup> , -0.2; Ca <sup>2+</sup> , -1.8;<br>Sr <sup>2+</sup> , -1.0; Ba <sup>2+</sup> , -1.3;<br>Pb <sup>2+</sup> , -1.3                                                                                                                                                                                                                                                                                                                          | FIM      | I                           | 10 <sup>-3</sup>                                      | 56.1                     | >10 <sup>-4.7</sup>                |     | Cu CWE                                                                                                                         |
| K+-47              | <b>K<sup>+</sup>-47</b> ( $w = 3$ %),<br>DBS ( $w = 70$ %),<br>PVC ( $w = 27$ %)                                         | $\begin{array}{l} Li^+,-2.4;Na^+,-1.8;\\ Rb^+,-0.3;Cs^+,-0.8;\\ Mg^{2+},-3.9;Ca^{2+},-3.8;\\ Sr^{2+},-3.8;Ba^{2+},-3.6\end{array}$                                                                                                                                                                                                                                                                                                                                                                           | SSM      | 0.1                         | 0.1                                                   | 59                       | $10^{-5}-10^{-1}$                  | 7   | <sup>-1</sup> $25 \pm 0.5 ^{\circ}$ C;<br>r.o.o.g.;<br>$t_{\text{resp}} < 30 ^{\circ}$ s                                       |
| K+-48              | $\mathbf{K}^{+}$ -48 (w = 3 %),<br>DBS (w = 70 %),<br>PVC (w = 27 %)                                                     | $\begin{array}{l} Li^+, -1.7;  Na^+, -1.5; \\ Rb^+, -0.1;  Cs^+, -1.0; \\ Mg^{2+}, -4.6;  Ca^{2+}, -4.4; \\ Sr^{2+}, -4.4;  Ba^{2+}, -4.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                       | SSM      | 0.1                         | 0.1                                                   | 58                       | 10 <sup>-5</sup> -10 <sup>-1</sup> | -   | $\begin{array}{ll} -1 & 25 \pm 0.5  ^{\circ}\mathrm{C};\\ \mathrm{r.o.o.g.};\\ t_{\mathrm{resp}} < 30  \mathrm{s} \end{array}$ |
| K+-49              | <b>K</b> +.49 ( $w = 3$ %),<br>DBS ( $w = 70$ %),<br>PVC ( $w = 27$ %)                                                   | $\begin{array}{l} Li^+,-1.7;Na^+,-0.5;\\ Rb,-0.4;Cs^+,-0.8;\\ Mg^{2+},-3.2;Ca^{2+},-3.0;\\ Sr^{2+},-2.4;Ba^{2+},-1.6\end{array}$                                                                                                                                                                                                                                                                                                                                                                             | SSM      | 0.1                         | 0.1                                                   | 58                       | 10 <sup>-5</sup> -10 <sup>-1</sup> | ÷   | $\begin{array}{ll} -1 & 25 \pm 0.5 \ ^{\circ}\text{C};\\ \text{r.o.o.g.};\\ t_{\text{resp}} < 30 \ \text{s} \end{array}$       |
| K <sup>+</sup> -50 | <b>K<sup>+</sup>-50</b> ( $w = 2$ %),<br>oNPOE ( $w = 3.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 22$ %)          | $\begin{array}{l} Li^+, -2.0;  Na^+, -0.9; \\ Cs^+, -1.0;  NH_4^+, -0.5; \\ Mg^2^+, -2.8;  Ca^{2+}, -1.5; \\ Sr^{2+}, -1.8;  Ba^{2+}, -0.2; \\ Mn^{2+}, -2.0;  Co^{2+}, -0.2; \\ Ni^{2+}, -1.5;  Cu^{2+}, -0.2; \\ Ni^{2+}, -1.5;  Cu^{2+}, -0.2; \end{array}$                                                                                                                                                                                                                                               | MSM      | 10-3                        | 0.1                                                   | 51-56                    | 10 <sup>-4</sup> -10 <sup>-1</sup> | -   | L r.o.o.g.                                                                                                                     |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

continues on next page

|                    | ionopnore memorane<br>composition                               | lgK <sub>K</sub> +,B <sup>n+</sup>                                                                                                                         | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | lincar<br>range<br>(M) | remarks  | ref. |
|--------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------|----------|------|
|                    |                                                                 | $Pb^{2+}$ , -0.1; $Ag^{+}$ , +2.8; $Hg^{2+}$ , +0.1                                                                                                        |        |                             |                                 |                          |                        |          |      |
| K+-51              | <b>K<sup>+</sup>-51</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %), | Li <sup>+</sup> , -1.1; Na <sup>+</sup> , -0.4;<br>Cs <sup>+</sup> , -0.4; NH <sub>4</sub> <sup>+</sup> , -0.8;                                            | MSM    | $10^{-3}$                   | 0.1                             | 51-56                    | $10^{-4} - 10^{-1}$    | r.o.o.g. | [18] |
|                    | PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 23$ %)                   | $Mg^{2+}$ , -2.5; $Ca^{2+}$ , -0.2; $Sr^{2+}$ , -0.0; $Ba^{2+}$ , +0.2;                                                                                    |        |                             |                                 |                          |                        |          |      |
|                    |                                                                 | Mn <sup>2+</sup> , -1.3; Co <sup>2+</sup> , -1.6;<br>Ni <sup>2+</sup> , -1.3; Cu <sup>2+</sup> , +0.8;                                                     |        |                             |                                 |                          |                        |          |      |
|                    |                                                                 | $Zn^{2+}$ , -2.0, $Cd^{2+}$ , +1.0,<br>Pb <sup>2+</sup> , +1.1, Ag <sup>+</sup> , +4.3;<br>Hg <sup>2+</sup> , +4.5                                         |        |                             |                                 |                          |                        |          |      |
| K <sup>+</sup> -52 | $\mathbf{K^{+-52}}$ ( $w = 2\%$ ),                              | Li <sup>+</sup> , -1.8; Na <sup>+</sup> , -1.1;                                                                                                            | MSM    | $10^{-3}$                   | 0.1                             | 51-56                    | $10^{-4} - 10^{-1}$    | r.o.o.g. | [18] |
|                    | ONPOE $(w = 63.5 \%)$ ,<br>DVC $(\dots - 24 \%)$                | $Cs^{+}$ , +0.3; NH <sub>4</sub> <sup>+</sup> , -0.4; M <sub>5</sub> <sup>-2+</sup> 2.0; C <sub>5</sub> <sup>2+</sup> 1.6;                                 |        |                             |                                 |                          |                        |          |      |
|                    | FVC(w = 34%),<br>KTpCIPB ( $x_1 = 24\%$ )                       | Mg <sup></sup> , -2.5; Ca <sup></sup> , -1.0;<br>Sr <sup>2+</sup> , -2.2; Ba <sup>2+</sup> , -2.2;                                                         |        |                             |                                 |                          |                        |          |      |
|                    |                                                                 | Mn <sup>2+</sup> , -2.7; Co <sup>2+</sup> , -2.6;<br>Ni <sup>2+</sup> , -1.3; Cu <sup>2+</sup> , -0.9;                                                     |        |                             |                                 |                          |                        |          |      |
|                    |                                                                 | $Zn^{2+}$ , -2.9; $Cd^{2+}$ , -0.1;<br>$Pb^{2+}$ , -0.7; $Ag^{+}$ , +1.1;<br>$H\sigma^{2+}$ , +2.7                                                         |        |                             |                                 |                          |                        |          |      |
| K+-53              | $K^{+}-53 (w = 2 \%),$                                          | Li <sup>+</sup> , -1.7; Na <sup>+</sup> , -2.1;                                                                                                            | MSM    | $10^{-3}$                   | 0.1                             | 51-56                    | $10^{-4}$ - $10^{-1}$  | r.o.o.g. | [18] |
|                    | oNPOE $(w = 63.5 \%)$ ,                                         | $Cs^+$ , $-0.2$ ; $NH_4^+$ , $-0.4$ ;                                                                                                                      |        |                             |                                 |                          |                        |          |      |
|                    | PVC ( $w = 34 \%$ ),<br>KTpCIPB ( $x_i = 30 \%$ )               | Mg <sup>2+</sup> , -1.6; Ca <sup>2+</sup> , -2.6;<br>Sr <sup>2+</sup> , -2.2; Ba <sup>2+</sup> , -1.0;<br>Ni <sup>2+</sup> , -1.7; Cu <sup>2+</sup> , -3.3 |        |                             |                                 |                          |                        |          |      |
| K <sup>+</sup> -54 | <b>K<sup>+</sup>-54</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %), | Li <sup>+</sup> , -2.0; Na <sup>+</sup> , -1.4;<br>Cs <sup>+</sup> , +0.3; NH <sub>A</sub> <sup>+</sup> , -0.5;                                            | MSM    | $10^{-3}$                   | 0.1                             | 51-56                    | $10^{-4}$ - $10^{-1}$  | r.o.o.g. | [18] |
|                    | PVC (w = 34 %),                                                 | $Mg^{2+}, -1.5; Ca^{2+}, -2.4;$                                                                                                                            |        |                             |                                 |                          |                        |          |      |
|                    | $\mathbf{V}$ I DULTB ( $\vec{X}_1 = 32\%$ )                     | Ni <sup>2+</sup> , -2.5; Ba <sup>2+</sup> , -0.5;<br>Ni <sup>2+</sup> , -1.6; Cu <sup>2+</sup> , -3.7                                                      |        |                             |                                 |                          |                        |          |      |
| K+-55              | <b>K<sup>+-55</sup></b> $(w = 2\%)$ ,<br>oNPOF $(w - 63.5\%)$   | Li <sup>+</sup> , -2.2; Na <sup>+</sup> , -1.4;<br>Cs <sup>+</sup> _0 3: NH <sup>+</sup> _0 5:                                                             | MSM    | $10^{-3}$                   | 0.1                             | 51–56                    | $10^{-4} - 10^{-1}$    | r.o.o.g. | [18] |
|                    | PVC(w = 34%),                                                   | $Mg^{2+}, -2.9; Ca^{2+}, -1.7;$                                                                                                                            |        |                             |                                 |                          |                        |          |      |
|                    | <b>K</b> I <b>p</b> CIPB ( $x_i = 44\%$ )                       | Sr <sup>±1</sup> , -1.0; Ba <sup>±1</sup> , +0.5;<br>Mn <sup>2+</sup> , -1.7; Co <sup>2+</sup> , -2.7;                                                     |        |                             |                                 |                          |                        |          |      |

| ionophore          | ionophore membrane<br>composition                                                                                         | lgK <sub>K+,Bn+</sub>                                                                                                                                                                                                                                                                                           | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks  | ref.                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------------------|----------|--------------------------------|
|                    |                                                                                                                           | $\begin{array}{l} Zn^{2+},-I.8;Cd^{2+},+0.6;\\ Pb^{2+},+I.1;Ag^{+},+0.3;\\ Hg^{2+},+4.8\end{array}$                                                                                                                                                                                                             |        |                             |                                 |                          |                                    |          |                                |
| K <sup>+</sup> -56 | <b>K</b> +56 ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 50$ %)                     | $\begin{array}{l} Li^+,-1.9; Na^+,-1.0;\\ Cs^+,+0.6; NH_4^+,-0.4;\\ Mg^{2+},-2.8; Ca^{2+},-0.8;\\ Sr^{2+},-1.3; Ba^{2+},+0.9;\\ Mn^{2+},-0.6; Co^{2+},-2.1;\\ Ni^{2+},-1.7; Cu^{2+},0.0;\\ Zn^{2+},-0.8; Cd^{2+},+0.6;\\ Pb^{2+},+1.1; Ag^+,+2.1;\\ Hg^{2+},+4.1\end{array}$                                    | MSM    | 10 <sup>-3</sup>            | 1.0                             | 51-56                    | 10 <sup>-4</sup> -10 <sup>-1</sup> | r.o.o.g. | [8]                            |
| K+-57              | <b>K</b> <sup>+</sup> <b>.57</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 44$ %) | $\begin{array}{l} Li^+, -1.9;  Na^+, -1.3; \\ Cs^+, +0.9;  NH_4^+, -0.1; \\ Mg^{2+}, -2.6;  Ca^{2+}, -1.7; \\ Sr^{2+}, -1.5;  Ba^{2+}, -1.3; \\ Mn^{2+}, -1.5;  Co^{2+}, -1.3; \\ Nn^{2+}, -1.9;  Cu^{2+}, -0.8; \\ Ni^{2+}, -2.8;  Cd^{2+}, -0.8; \\ Pb^{2+}, -0.4;  Ag^+, +4.6; \\ Hg^{2+}, +4.6 \end{array}$ | MSM    | 10 <sup>-3</sup>            | 0.1                             | 51-56                    | 10 <sup>-4</sup> -10 <sup>-1</sup> | I.0.0.g. | [18]                           |
| K <sup>+</sup> -58 | <b>K<sup>+</sup>-58</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_1 = 17$ %)          | $\begin{array}{l} Li^{+},-3.8;Na,-0.5;\\ Cs^{+},+1.3;NH_{4}^{+},-0.4;\\ Mg^{2+},-2.9;Ca^{2+},-3.5;\\ Sr^{2+},-2.8;Ba^{2+},-2.3;\\ Ni^{2+},-1.1;Cu^{2+},-1.2\end{array}$                                                                                                                                         | MSM    | 10 <sup>-3</sup>            | 0.1                             | 51–56                    | 10 <sup>-4</sup> -10 <sup>-1</sup> | 1.0.0.g. | [18]                           |
| K+-59              | <b>K</b> <sup>+</sup> <b>.59</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 16$ %) | $\begin{array}{l} Li^{+},-2.2;Na^{+},-0.4;\\ Cs^{+},+0.4;NH_{4}^{+},-0.3;\\ Mg^{2+},-3.5;Ca^{2+},-1.1;\\ Sr^{2+},-0.7;Ba^{2+},+0.2;\\ Ni^{2+},-3.1;Cu^{2+},-1.2 \end{array}$                                                                                                                                    | MSM    | 10 <sup>-3</sup>            | 0.1                             | 51–56                    | 10 <sup>-4</sup> -10 <sup>-1</sup> | f.0.0.g. | [18]                           |
| K+-60              | <b>K</b> <sup>+</sup> <b>.60</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 19$ %) | $\begin{array}{l} Li^{+},-1.7;Na^{+},-0.9;\\ Cs^{+},+1.4;NH_{4}^{+},+0.2;\\ Mg^{2+},-1.6;Ca^{2+},-1.4;\\ Sr^{2+},-0.6;Ba^{2+},+0.7;\\ Ni^{2+},-1.5;Cu^{2+},-1.6\end{array}$                                                                                                                                     | MSM    | 10 <sup>-3</sup>            | 0.1                             | 51–56                    | 10 <sup>-4</sup> -10 <sup>-1</sup> | 1.0.0.g. | [18]<br>continues on next page |

Potentiometric selectivity coefficients of ion-selective electrodes

| tonophor | ionophore membrane<br>composition                                                                                                                              | lgK <sub>K</sub> +, <sub>B</sub> n+                                                                                                                                                                                                     | method     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)               | remarks                | ref. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-------------------------------------------------------|--------------------------|--------------------------------------|------------------------|------|
| K+-61    | <b>K<sup>+</sup>-61</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 24$ %)                                               | $\begin{array}{c} \text{Li}^+,-1.6;\text{Na}^+,-0.9;\\ \text{Cs}^+,+0.3;\text{NH}_4^+,-0.2;\\ \text{Mg}^{2+},-0.3;\text{Ca}^{2+},-1.8;\\ \text{Sr}^{2+},-1.4;\text{Ba}^{2+},-0.4;\\ \text{Ni}^{2+},-1.9;\text{Cu}^{2+},-1.9\end{array}$ | MSM        | 10-3                        | 0.1                                                   | 51-56                    | 10 <sup>-4</sup> -10 <sup>-1</sup>   | r.o.o.g.               | [18] |
| K+-62    | <b>K<sup>+</sup>-62</b> ( $w = 2$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %),<br>KTpCIPB ( $x_i = 21$ %)                                               | $ \begin{array}{l} Li^+,-2.2;Na^+,-0.8;\\ Cs^+,+0.2;NH_4^+,-0.1;\\ Mg^{2+},-0.9;Ca^{2+},-1.1;\\ Sr^{2+},-1.0;Ba^{2+},-0.4;\\ Ni^{2+},-2.4;Cu^{2+},-1.2 \end{array} $                                                                    | MSM        | 10 <sup>-3</sup>            | 0.1                                                   | 51-56                    | 10 <sup>-4</sup> -10 <sup>-1</sup>   | r.o.o.g.               | [18] |
| K+-63    | <b>K<sup>+</sup>-63</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                                                             | Li <sup>+</sup> , -4.0; NH <sub>4</sub> <sup>+</sup> , -1.8;<br>Mg <sup>2+</sup> , -4.4; Ca <sup>2+</sup> , -3.6<br>Na <sup>+</sup> , -3.0                                                                                              | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | 56.1                     | $10^{-4}$ – $10^{-1}$                | 20 ± 2 °C;<br>r.o.o.g. | [19] |
| K+-64    | <b>K<sup>+</sup>-64</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                                                             | $\begin{array}{l} Li^+, -1.8;  NH_4^+, -1.4; \\ Mg^{2+}, -3.5;  Ca^{2+}, -3.2 \\ Na^+, -1.8 \end{array}$                                                                                                                                | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | 41.8                     | 10 <sup>-4</sup> -10 <sup>-1</sup>   | 20 ± 2 °C;<br>r.o.o.g. | [19] |
| K+-65    | <b>K<sup>+-65</sup></b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                                                             | $\begin{array}{l} Li^+,-1.8;NH_4^+,-1.7;\\ Mg^{2+},-3.9;Ca^{2+},-4.0\\ Na^+,-2.5 \end{array}$                                                                                                                                           | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | 54.8                     | $10^{-4}$ - $10^{-1}$                | 20±2 °C;<br>r.o.o.g.   | [19] |
| K+-66    | <b>K<sup>+</sup>-66</b> ( $w = 2\%$ ),<br>oNPOE ( $w = 65\%$ ),<br>PVC ( $w = 33\%$ )                                                                          | $Cs^+$ , -2.3; $NH_4^+$ , -2.1; $Mg^{2+}$ , -2.8; $Ca^{2+}$ , -4.3 $Na^+$ , -3.1                                                                                                                                                        | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | 55.4                     | $10^{-4}$ - $10^{-1}$                | 20±2 °C;<br>r.o.o.g.   | [19] |
| K+-67    | <b>K<sup>++</sup>67</b> ( $w = 1$ %),<br>DOS ( $w = 66$ %),<br>PVC ( $w = 32.6$ %),<br>NaTPB ( $w = 0.4$ %)                                                    | Li <sup>+</sup> , -3.5; Cs <sup>+</sup> , -2.1;<br>NH <sub>4</sub> <sup>+</sup> , -1.9; Ca <sup>2+</sup> , -4.5<br>Na <sup>+</sup> , -2.8                                                                                               | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | 56.0                     | 10 <sup>-4</sup> -10 <sup>-1</sup>   | 20±2 °C;<br>r.o.o.g.   | [61] |
|          | <b>K<sup>+</sup>-67</b> ( $w = 1$ %), PVC ( $w = 32.6$ %),<br>dinonyl adipate ( $w = 66$ %),<br>N37PB ( $w = 0.4$ %),                                          | NH <sub>4</sub> <sup>+</sup> , –1.9<br>Na <sup>+</sup> , –2.9                                                                                                                                                                           | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | $56.0 \pm 0.7$           | 7 10 <sup>-4</sup> -10 <sup>-1</sup> | $20 \pm 2$ °C          | [19] |
| K+-68    | <b>K<sup>4</sup>-68</b> ( $w = 1$ %),<br><b>K<sup>4</sup>-68</b> ( $w = 1$ %),<br>dinonyl adipate ( $w = 66$ %),<br>PVC ( $w = 32.6$ %), NaTPB ( $x_i = 55$ %) | NH4 <sup>+</sup> , -2.2<br>Na <sup>+</sup> , -3.2                                                                                                                                                                                       | SSM<br>FIM | 0.1                         | $0.1 \\ 0.14$                                         | <i>5</i> 7.6 ± 0.        | $57.6 \pm 0.3$ $10^{-4} - 10^{-1}$   | 20 ± 2 °C              | [19] |
| K+-69    | <b>K<sup>+-69</sup></b> ( $w = 1$ %), PVC ( $w = 32.6$ %),<br>dinonyl adipate ( $w = 66$ %),<br>NaTPB ( $x_i = 120$ %)                                         | NH <sub>4</sub> <sup>+</sup> , -2.2<br>Na <sup>+</sup> , -3.3                                                                                                                                                                           | SSM<br>FIM | 0.1                         | 0.1<br>0.14                                           | 57.9 ± 0.                | $57.9 \pm 0.5$ $10^{-4} - 10^{-1}$   | 20 ± 2 °C              | [19] |

## Y. UMEZAWA et al.

| hore                 |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |                             |                                 |                          |                                    |                        |      |
|----------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------|--------------------------|------------------------------------|------------------------|------|
|                      | membrane<br>composition                                                                                              | lgK <sub>K</sub> +,Bn+                                                                                                                                                                                                                                                                                                                           | method                                                                                         | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                | ref. |
| K+-70 I              | <b>K<sup>+</sup>-70</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                   | Li <sup>+</sup> , -2.6; NH <sub>4</sub> <sup>+</sup> , -1.8;<br>Mg <sup>2+</sup> , -3.3; Ca <sup>2+</sup> , -3.6<br>Na <sup>+</sup> , -2.7                                                                                                                                                                                                       | SSM<br>FIM                                                                                     | 0.1                         | 0.1<br>0.14                     | 49.9                     | $10^{-4}$ - $10^{-1}$              | 20 ± 2 °C;<br>r.o.o.g. | [19] |
| K <sup>+</sup> -71 I | <b>K<sup>+</sup>-71</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                   | NH <sub>4</sub> <sup>+</sup> , -1.4; Mg <sup>2+</sup> , -3.1;<br>Ca <sup>2+</sup> , -2.7<br>Na <sup>+</sup> , -2.2                                                                                                                                                                                                                               | SSM<br>FIM                                                                                     | 0.1                         | 0.1<br>0.14                     | 42.3                     | $10^{-4}$ – $10^{-1}$              | 20 ± 2 °C;<br>r.o.o.g. | [61] |
| K <sup>+</sup> -72 I | <b>K<sup>+</sup>-72</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                   | NH <sub>4</sub> <sup>+</sup> , -1.5; Mg <sup>2+</sup> , -3.4;<br>Ca <sup>2+</sup> , -3.3<br>Na <sup>+</sup> , -2.2                                                                                                                                                                                                                               | SSM<br>FIM                                                                                     | 0.1                         | 0.1<br>0.14                     | 40.4                     | $10^{-4}$ – $10^{-1}$              | 20 ± 2 °C;<br>r.o.o.g. | [19] |
| K+-73 I<br>I<br>F    | K <sup>+</sup> -73 (w = 1 %),<br>DOS (w = 66 %),<br>PVC (w = 32.6 %),<br>NaTPB (xi = 130 %)                          | Li <sup>+</sup> , -3.5; Cs <sup>+</sup> , -2.1;<br>NH <sub>4</sub> <sup>+</sup> , -1.9; Ca <sup>2+</sup> , -4.6<br>Na <sup>+</sup> , -3.7                                                                                                                                                                                                        | SSM<br>FIM                                                                                     | 0.1                         | 0.1<br>0.14                     | 58.0±3                   | 10 <sup>-4</sup> -10 <sup>-1</sup> | 20 ± 2 °C;<br>r.o.o.g. | [19] |
| K+-74 ]              | K <sup>+</sup> -74 ( $w = 1$ %),<br>DOS ( $w = 66$ %), PVC ( $w = 32.6$ %),<br>NaTPB ( $x_i = 100$ %)                | Li <sup>+</sup> , -3.2; Cs <sup>+</sup> , -1.7;<br>NH <sub>4</sub> <sup>+</sup> , -1.8; Ca <sup>2+</sup> , -3.7<br>Na <sup>+</sup> , -2.3                                                                                                                                                                                                        | SSM<br>FIM                                                                                     | 0.1                         | 0.1<br>0.14                     | $55.2 \pm 0.8$           | $10^{-4}$ – $10^{-1}$              | 20 ± 2 °C;<br>r.o.o.g. | [61] |
| K+-75                | $K^+-75$ (w = 1.4 %),<br>oNPOE (w = 65.2 %),<br>KTpCIPB (x <sub>1</sub> = 50 %),<br>PVC (w = 32.8 %)                 | Li <sup>+</sup> , -0.28; Na <sup>+</sup> , -0.55;<br>Rb <sup>+</sup> , +0.20; Cs <sup>+</sup> , +0.88;<br>Mg <sup>2+</sup> , -1.2; Ca <sup>2+</sup> , +0.15;<br>Sr <sup>2+</sup> , +0.45<br>Li <sup>+</sup> , -0.35; Na <sup>+</sup> , -0.62;<br>Rb <sup>+</sup> , +0.15; Cs <sup>+</sup> , +0.92;                                               | $\begin{array}{c} \text{SSM} & 0\\ \text{SSM} & -\\ (E_{\text{A}} = E_{\text{B}}) \end{array}$ | 0.1<br>B) - 0.1             | 0.1 0.1                         | I                        | I                                  | FIA;<br>Ag CWE         | [22] |
|                      | <b>K<sup>+</sup>-75</b> ( $w = 1.4$ %),<br>oNPPE ( $w = 65.2$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>PVC ( $w = 32.8$ %) | $\begin{array}{l} Mg^{2+}, -1.2; \ Ca^{2+}, +0.20;\\ Sr^{2+}, +0.60\\ Li^{+}, -1.4; \ Na^{+}, -1.7;\\ Rb^{+}, +0.20; \ Cs^{+}, +0.82;\\ Mg^{2+}, -2.8; \ Ca^{2+}, +0.46;\\ Sr^{2+}, +1.2\\ Li^{+}, -1.4; \ Na^{+}, -1.7;\\ Rb^{+}, +0.20; \ Cs^{+}, +0.72;\\ Mg^{2+}, -2.5; \ Ca^{2+}, +0.46;\\ Sr^{2+}, +0.97;\\ Sr^{2+}, +0.97;\\ \end{array}$ | $SSM = 0$ $SSM$ $(E_{A} = E_{B})$                                                              | 0.1<br>B)                   | 0.1                             | 1                        | I                                  | FIA;<br>Ag CWE         | [22] |

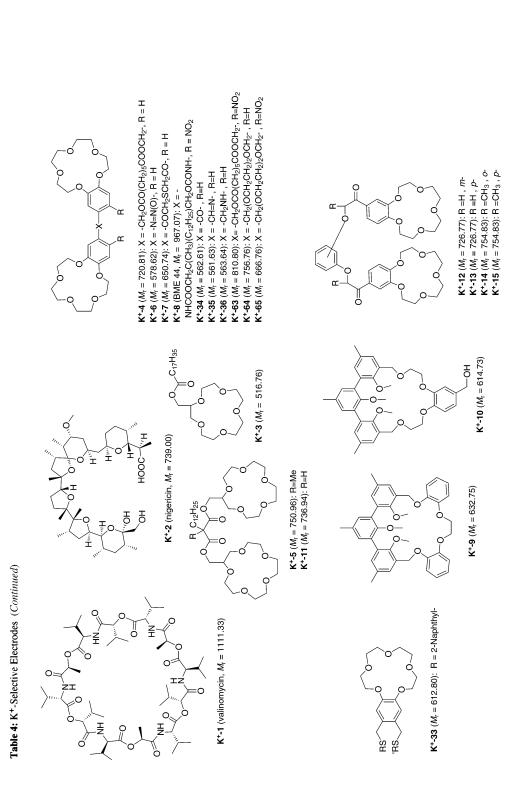
continues on next page

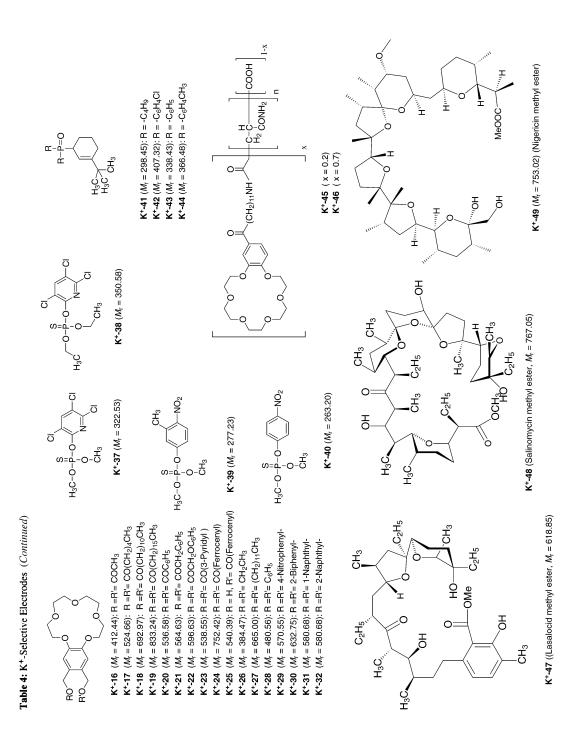
© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| ophore             | ionophore membrane<br>composition                                                                     | lgK <sub>K</sub> +,Bn+                                                                                                        | method                          | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref                           | Ĺ.    |
|--------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|---------------------------------------|-------|
|                    | <b>K</b> +75 ( $w = 1.5 \%$ ),<br>oNPOE ( $w = 65 \%$ ),<br>DV/C ( $w = 33 \%$ )                      | Li <sup>+</sup> , -2.3; Na <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -2.6; Ca <sup>2+</sup> , -2.6;<br>c <sup>*2+</sup> _1 0 | $SSM$ $(E_{\rm A} = E_{\rm B})$ | 0.1                         | I                                                     | I                        | I                      | Ag CWE;<br>0.14 M NaCl<br>backmound:  | [28]  |
|                    | $KTpCIPB(x_i = 21\%)$                                                                                 | $Na^+, -2.5$                                                                                                                  | FIM                             | I                           | 0.140                                                 |                          |                        | FIA                                   |       |
| K <sup>+</sup> -76 | <b>K</b> <sup>+</sup> -76 ( $w = 1.5 \%$ ),<br>oNPOE ( $w = 65 \%$ ),<br>PVC ( $w = 33 \%$ ),         | $\begin{array}{l} Li^+,-2.2;Na^+,-2.1;\\ Mg^{2+},-2.2;Ca^{2+},-1.9;\\ Sr^{2+},-0.82 \end{array}$                              | $SSM - (E_A = E_B)$             | - (8                        | 0.1                                                   | I                        | I                      | Ag CWE;<br>0.14 M NaCI<br>background; | [28]  |
|                    | KTpCIPB ( $x_i = 27\%$ )                                                                              | Na <sup>+</sup> , -2.5                                                                                                        | FIM                             | I                           | 0.140                                                 |                          |                        | FIA                                   |       |
| K+-77              | <b>K</b> <sup>+</sup> -77 ( $w = 1.5 \%$ ),<br>oNPOE ( $w = 65 \%$ ),<br>PVC ( $w = 33 \%$ ),         | $\begin{array}{l} Li^+,-2.0;Na^+,-1.9;\\ Mg^{2+},-1.9;Ca^{2+},-1.2;\\ Sr^{2+},-0.42 \end{array}$                              | $SSM - (E_A = E_B)$             | - (8                        | 0.1                                                   | I                        | I                      | Ag CWE;<br>0.14 M NaCI<br>background; | [28]  |
|                    | KTpCIPB ( $x_i = 24 \ \%$ )                                                                           | Na <sup>+</sup> , -2.5                                                                                                        | FIM                             | I                           | 0.140                                                 |                          |                        | FIA                                   |       |
| K+-78              | <b>K</b> <sup>+</sup> -78 ( $w = 1.5 \%$ ),<br>oNPOE ( $w = 65 \%$ ),<br>PVC ( $w = 33 \%$ ),         | $\begin{array}{l} Li^+,-1.9;Na^+,-1.7;\\ Mg^{2+},-1.7;Ca^{2+},-1.1;\\ Sr^{2+},-0.41 \end{array}$                              | $SSM - (E_A = E_B)$             | - (8                        | 0.1                                                   | I                        | 1                      | Ag CWE;<br>0.14 M NaCI<br>background; | [28]  |
|                    | KTpCIPB ( $x_i = 27\%$ )                                                                              | Na <sup>+</sup> , -2.0                                                                                                        | FIM                             | I                           | 0.140                                                 |                          |                        | FIA                                   |       |
| K+-79              | <b>K</b> +-79 ( $w = 1.5 \%$ ),<br>oNPOE ( $w = 65 \%$ ),<br>PVC ( $w = 33 \%$ ),                     | $\begin{array}{l} Li^+,+0.1;Na^+,-0.49;\\ Mg^{2+},-1.0;Ca^{2+},-0.52;\\ Sr^{2+},+0.41\end{array}$                             | $SSM - (E_A = E_B)$             | - @                         | 0.1                                                   | I                        | I                      | Ag CWE;<br>0.14 M NaCl<br>background; | [28]  |
|                    | KTpCIPB ( $x_i = 34 \%$ )                                                                             | Na <sup>+</sup> , -1.0                                                                                                        | FIM                             | I                           | 0.140                                                 |                          |                        | FIA                                   |       |
| K <sup>+</sup> -80 | <b>K</b> <sup>+</sup> - <b>80</b> ( $w = 1.5 \%$ ),<br>oNPOE ( $w = 65 \%$ ),<br>PVC ( $w = 33 \%$ ), | $\begin{array}{l} Li^+,-1.0;Na^+,-0.89;\\ Mg^{2+},-1.4;Ca^{2+},-1.0;\\ Sr^{2+},+0.079 \end{array}$                            | $SSM - (E_A = E_B)$             | - (2                        | 0.1                                                   | I                        | I                      | Ag CWE;<br>0.14 M NaCI<br>background; | [28]  |
|                    | KTpCIPB ( $x_i = 31\%$ )                                                                              | Na <sup>+</sup> , -1.3                                                                                                        | FIM                             | I                           | 0.140                                                 |                          |                        | FIA                                   |       |
| K+-81              | <b>K<sup>+</sup>-81</b> ( $w \approx 1$ %),<br>DOS ( $w = 61-66$ %),<br>PVC ( $w = 33-38$ %)          | Na <sup>+</sup> , -1.90                                                                                                       | FIM                             | Ι                           | 0.1                                                   | 57.7                     | I                      |                                       | [29]  |
|                    |                                                                                                       | %), Na <sup>+</sup> , –2.15                                                                                                   | FIM                             | Ι                           | 0.1                                                   | 54.3                     | I                      |                                       | [29]  |
| K <sup>+</sup> -82 | <b>K<sup>+</sup>-82</b> ( $w \approx 1$ %),<br>PVC ( $w = 33-38$ %),<br>DOS ( $w = 61-66$ %)          | Na <sup>+</sup> , –2.66                                                                                                       | FIM                             | I                           | 0.1                                                   | 50.0                     | I                      |                                       | [29]  |
|                    | V + 60 ( 1 02) V TDD ( > 100 02) No+ 2 05                                                             |                                                                                                                               |                                 |                             |                                                       |                          |                        |                                       | .0.01 |

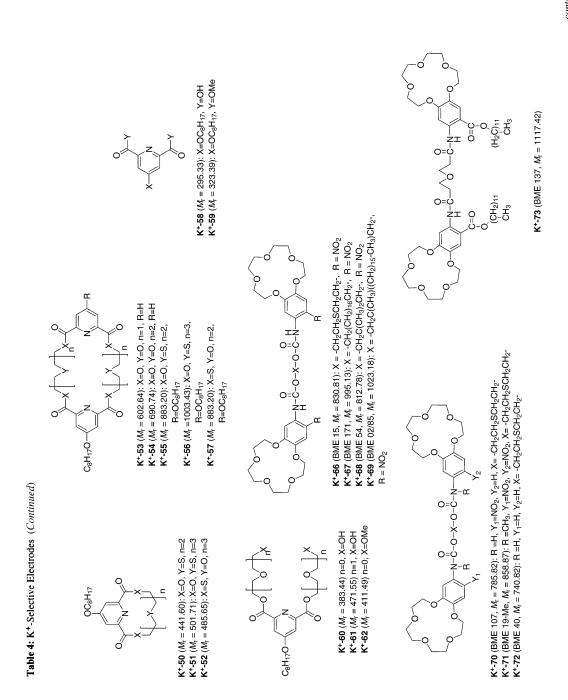
1948

## Y. UMEZAWA et al.


| ionophor | ionophore membrane<br>composition                                                                                                          | lgK <sub>K⁺,B</sub> n+                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks  | ref.                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|----------|------------------------|
|          | DOS ( $w = 61-66$ %),<br>PVC ( $w = 33-38$ %)                                                                                              |                                                                                                                                                                                    |        |                             |                                                       |                          |                        |          |                        |
| K+-83    | <b>K</b> + <b>.83</b> ( $w \approx 1$ %),<br>PVC ( $w = 3338$ %),<br>DOS ( $w = 61-66$ %)                                                  | Na <sup>+</sup> , -2.32                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 54.2                     | I                      |          | [29]                   |
|          | <b>K</b> <sup>+</sup> <b>.83</b> ( $w \ge 1$ %),<br>DOS ( $w = 61-66$ %),<br>KTPB ( $x_i < 100$ %),<br>PVC ( $w = 33-38$ %)                | Na <sup>+</sup> , -2.19                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 50.0                     | I                      |          | [29]                   |
|          | <b>K</b> <sup>+</sup> <b>83</b> ( $w \approx 1$ %),<br>PVC ( $w = 33-38$ %),<br>DOS ( $w = 61-66$ %),<br>KTpCIPB ( $x_1 < 100$ %)          | Na <sup>+</sup> , -1.76                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 52.5                     | I                      |          | [29]                   |
| K+-84    | <b>K</b> <sup>+</sup> <b>.84</b> ( $w \approx 1$ %),<br>PVC ( $w = 33-38$ %),<br>KTpCIPB or KTPB ( $x_i < 100$ %),<br>DOS ( $w = 61-66$ %) | Na <sup>+</sup> , -2.25                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 53.6                     | I                      |          | [29]                   |
| K+-85    | <b>K<sup>+</sup>-85</b> ( $w \approx 1$ %),<br>PVC ( $w = 33-38$ %),<br>DOS ( $w = 61-66$ %),<br>KTpCIPB or KTPB ( $x_i < 100$ %)          | Na <sup>+</sup> , -2.25                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 48.7                     | I                      |          | [29]                   |
| K+-86    | <b>K</b> + <b>87</b> ( $w \approx 1$ %),<br>DOS ( $w = 61-66$ %),<br>PVC ( $w = 33-38$ %),<br>KTPCIPB ( $x_i = 100$ %)                     | Na <sup>+</sup> , -2.16                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 52.8                     | I                      |          | [29]                   |
| K+-87    | <b>K<sup>+</sup>-87</b> ( $w \approx 1$ %),<br>DOS ( $w = 61-66$ %),<br>PVC ( $w = 33-38$ %)                                               | Na <sup>+</sup> , -1.23                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 51.5                     | I                      |          | [29]                   |
| K+-88    | <b>K</b> + <b>.88</b> ( $w \approx 1$ %),<br>DOS ( $w = 61-66$ %),<br>PVC ( $w = 33-38$ %)                                                 | Na <sup>+</sup> , -1.40                                                                                                                                                            | FIM    | I                           | 0.1                                                   | 52.5                     | I                      |          | [29]                   |
| K+-89    | <b>K</b> <sup>+</sup> . <b>89</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ )                                     | Li <sup>+</sup> , -2.9; Na <sup>+</sup> , -3.5;<br>Rb <sup>+</sup> , -0.7; Cs <sup>+</sup> , -2.2;<br>NH4 <sup>+</sup> , -1.8; Mg <sup>2+</sup> , -4.0;<br>Ca <sup>2+</sup> , -3.6 | MSM    | 1                           | I                                                     | I                        | I                      | 1.0.0.g. | [30]                   |
| K+-90    | <b>K</b> <sup>+</sup> <b>.90</b> ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %).                                                                   | Li <sup>+</sup> , -2.4; Na <sup>+</sup> , -2.5;<br>Rb <sup>+</sup> , +1.2; Cs <sup>+</sup> , +0.8;                                                                                 | MSM    | I                           | I                                                     | I                        | I                      | r.o.o.g. | [30]                   |
|          |                                                                                                                                            |                                                                                                                                                                                    |        |                             |                                                       |                          |                        |          | continues on next page |


|       | a mambrona                                                                                   | 1~V                                                                                                                                                                                            | mathod |                  | interformer.     | 01000                    | lincor       | and a started | 300  |
|-------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------------------|--------------------------|--------------|---------------|------|
|       | composition                                                                                  | tgvK+,Bu+                                                                                                                                                                                      | nomali | ion conc.<br>(M) | ion conc.<br>(M) | stope<br>(mV/<br>decade) | range<br>(M) | ICIIIALKS     | 161. |
|       | PVC ( $w = 30.3 \%$ )                                                                        | $NH_4^+, -1.0; Mg^{2+}, -3.6; Ca^{2+}, -3.2$                                                                                                                                                   |        |                  |                  |                          |              |               |      |
| I6-+X | <b>K<sup>+</sup>-91</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ ) | $\begin{array}{l} Li^+, -3.0;  Na^+, -3.5;\\ Rb^+, -0.9;  Cs^+, -2.1;\\ NH_4^+, -1.9;  Mg^{2^+}, -3.6;\\ Ca^{2^+}, -3.5\end{array}$                                                            | MSM    | I                | 1                | I                        | 1            | 1.0.0.g.      | [30] |
| K+-92 | <b>K<sup>+</sup>-92</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ ) | Li <sup>+</sup> , -2.4; Na <sup>+</sup> , -2.5;<br>Rb <sup>+</sup> , +1.3; Cs <sup>+</sup> , +1.5;<br>NH4 <sup>+</sup> , -1.0; Mg <sup>2+</sup> , -3.8;<br>Ca <sup>2+</sup> , -3.5             | MSM    | I                | I                | I                        | 1            | I.0.0.g.      | [30] |
| К+-93 | <b>K<sup>+</sup>-93</b> ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)       | Li <sup>+</sup> , -2.5; Na <sup>+</sup> , -2.2;<br>Rb <sup>+</sup> , +1.0; Cs <sup>+</sup> , +2.3;<br>NH4 <sup>+</sup> , -1.0; Mg <sup>2+</sup> , -3.4;<br>Ca <sup>2+</sup> , -3.3             | MSM    | I                | I                | 1                        | 1            | 1.0.0.g.      | [30] |
| K+-94 | <b>K<sup>+</sup>-94</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ ) | Li <sup>+</sup> , -3.0; Na <sup>+</sup> , -3.6;<br>Rb <sup>+</sup> , -1.0; Cs <sup>+</sup> , -1.9;<br>NH4 <sup>+</sup> , -2.0; Mg <sup>2+</sup> , -3.8;<br>Ca <sup>2+</sup> , -3.8             | MSM    | I                | I                | I                        | 1            | 1.0.0.g.      | [30] |
| K+-95 | <b>K<sup>+</sup>-95</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ ) | Li <sup>+</sup> , -2.7; Na <sup>+</sup> , -3.6;<br>Rb <sup>+</sup> , -0.9; Cs <sup>+</sup> , -2.2;<br>NH4 <sup>+</sup> , -1.8; Mg <sup>2+</sup> , -3.9;<br>Ca <sup>2+</sup> , -3.6             | MSM    | I                | I                | I                        | 1            | 1.0.0.g.      | [30] |
| 96-+X | <b>K<sup>+</sup>-96</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ ) | $\begin{array}{l} Li^+,-2.8;Na^+,-3.7;\\ Rb^+,-1.0;Cs^+,-2.2;\\ NH_4^+,-1.8;Mg^{2+},-3.9;\\ Ca^{2+},-3.6\end{array}$                                                                           | MSM    | I                | 1                | I                        | I            | r.o.o.g.      | [30] |
| K+-97 | <b>K</b> <sup>+</sup> -97 ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)     | $\begin{array}{l} Li^+,-2.4;Na^+,-2.5;\\ Rb^+,+1.3;Cs^+,+0.9;\\ NH_4^+,-1.0;Mg^{2+},-3.8;\\ Ca^{2+},-3.5\end{array}$                                                                           | MSM    | I                | 1                | 1                        | I            | r.o.o.g.      | [30] |
| 86-+X | <b>K<sup>+</sup>-98</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ ) | Li <sup>+</sup> , -2.8; Na <sup>+</sup> , -3.5;<br>Rb <sup>+</sup> , -0.8; Cs <sup>+</sup> , -2.2;<br>NH <sub>4</sub> <sup>+</sup> , -1.8; Mg <sup>2+</sup> , -3.8;<br>Ca <sup>2+</sup> , -3.6 | MSM    | I                | 1                | 1                        | I            | r.o.o.g.      | [30] |
| K+-99 | $\mathbf{K}^{+}$ -99 ( $w = 6.7 \%$ ),                                                       | Li <sup>+</sup> , -2.5; Na <sup>+</sup> , -2.5;                                                                                                                                                | MSM    | I                | I                | I                        | I            | r.o.o.g.      | [30] |

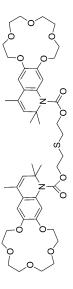
|                     | composition                                                                                        | IBAK+,Bn+                                                                                                                                                                          | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks               | reı. |
|---------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------|------|
|                     | oNPOE ( <i>w</i> = 63 %),<br>PVC ( <i>w</i> = 30.3 %)                                              | Rb <sup>+</sup> , +1.2; Cs <sup>+</sup> , +1.4;<br>NH4 <sup>+</sup> , -1.1; Mg <sup>2+</sup> , -3.5;<br>Ca <sup>2+</sup> , -3.1                                                    |        |                             |                                                       |                          |                        |                       |      |
| K+-100              | <b>K</b> <sup>+</sup> <b>-100</b> ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)   | $\begin{array}{l} Li^+,-2.2;Na^+,-3.5;\\ Rb^+,-0.8;Cs^+,-2.0;\\ NH_4^+,-1.9;Mg^{2+},-3.3;\\ Ca^{2+},-3.2\end{array}$                                                               | MSM    | I                           | I                                                     | I                        | 1                      | г.о.о. <del>g</del> . | [30] |
| K+-101              | <b>K</b> <sup>+</sup> -101 ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)          | $\begin{array}{l} Li^+,-2.4;Na^+,-2.7;\\ Rb^+,-0.8;Cs^+,-1.4;\\ NH_4^+,-1.7;Mg^{2+},-3.5;\\ Ca^{2+},-2.7\end{array}$                                                               | MSM    | I                           | 1                                                     | I                        | 1                      | r.o.o.g.              | [30] |
| K+-102              | <b>K</b> <sup>+</sup> - <b>102</b> ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)  | $\begin{array}{l} Li^+,-2.2;Na^+,-2.6;\\ Rb^+,+0.8;Cs^+,+0.8;\\ NH4^+,-1.2;Mg^{2+},-4.0;\\ Ca^{2+},-4.1\end{array}$                                                                | MSM    | 1                           | I                                                     | I                        | I                      | 1.0.0.g.              | [30] |
| K+-103              | <b>K</b> <sup>+</sup> -103 ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)          | $\begin{array}{l} Li^+,-2.3;Na^+,-3.0;\\ Rb^+,-1.2;Cs^+,-1.7;\\ NH4^+,-1.9;Mg^{2+},-3.4;\\ Ca^{2+},-2.7\end{array}$                                                                | MSM    | 1                           | 1                                                     | I                        | 1                      | r.o.o.g.              | [30] |
| K <sup>+</sup> -104 | <b>K</b> <sup>+</sup> -104 ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)          | $\begin{array}{l} Li^+,-2.4;Na^+,-2.2;\\ Rb^+,+0.5;Cs^+,+1.1;\\ NH4^+,-1.4;Mg^{2+},-4.0;\\ Ca^{2+},-3.8\end{array}$                                                                | MSM    | I                           | I                                                     | I                        | I                      | г.о.о. <del>g</del> . | [30] |
| K <sup>+</sup> -105 | <b>K</b> <sup>+</sup> - <b>105</b> ( $w = 6.7$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 30.3$ %)  | $\begin{array}{l} Li^+,-2.6;Na^+,-3.1;\\ Rb^+,-1.1;Cs^+,-2.0;\\ NH_4^+,-1.9;Mg^{2+},-3.6;\\ Ca^{2+},-2.7\end{array}$                                                               | MSM    | 1                           | 1                                                     | I                        | I                      | г.о.о.g.              | [30] |
| K+-106              | <b>K</b> <sup>+</sup> -106 ( $w = 6.7\%$ ),<br>oNPOE ( $w = 63\%$ ),<br>PVC ( $w = 30.3\%$ )       | $\begin{array}{l} Li^+,-2.2;Na^+,-3.3;\\ Rb^+,-0.9;Cs^+,-2.2;\\ NH_4^+,-2.0;Mg^{2+},-3.3;\\ Ca^{2+},-3.4\end{array}$                                                               | MSM    | 1                           | 1                                                     | I                        | I                      | r.o.o.g.              | [30] |
| K <sup>+</sup> -107 | <b>K</b> <sup>+</sup> <b>107</b> ( $w = 6.7\%$ ),<br>oNPDE ( $w = 63\%$ ),<br>PVC ( $w = 30.3\%$ ) | Li <sup>+</sup> , -2.1; Na <sup>+</sup> , -2.6;<br>Rb <sup>+</sup> , +1.0; Cs <sup>+</sup> , +0.5;<br>NH4 <sup>+</sup> , -1.3; Mg <sup>2+</sup> , -3.6;<br>Ca <sup>2+</sup> , -3.6 | MSM    | I                           | I                                                     | I                        | I                      | r.o.o.g.              | [30] |


1951

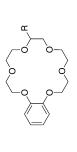
| Table 4:                                                    | <b>Fable 4:</b> K <sup>+</sup> -Selective Electrodes (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                   |          |      |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|------|
| ionophor                                                    | ionophore membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lgK <sub>K+,Bn+</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | method                                                                                                                                                                                                                                                                                                                   | primary interferin<br>ion conc. ion conc.<br>(M) (M)                                                                                                                                                                                                                                                    | interfering<br>ion conc.<br>(M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | slope<br>(mV/<br>decade)                                                                                      | linear<br>range<br>(M)                            | remarks  | ref. |
| K+-108                                                      | <b>K</b> +-108 ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63 \%$ ),<br>PVC ( $w = 30.3 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Li <sup>+</sup> , -2.2; Na <sup>+</sup> , -2.1;<br>Rb <sup>+</sup> , +0.8; Cs <sup>+</sup> , +1.3;<br>NH4 <sup>+</sup> , -1.3; Mg <sup>2+</sup> , -3.7;<br>Ca <sup>2+</sup> , -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MSM                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                             | 1                                                 | r.o.o.g. | [30] |
| K+-109                                                      | <b>K</b> <sup>+</sup> - <b>109</b> ( $w = 6.7\%$ ),<br>oNPOE ( $w = 63\%$ ),<br>PVC ( $w = 30.3\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} Li^+,-2.9;Na^+,-2.1;\\ Rb^+,+0.7;Cs^+,+1.3;\\ NH_4^+,-1.1;Mg^{2+},-3.5;\\ Ca^{2+},-3.9\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSM                                                                                                                                                                                                                                                                                                                      | I                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                             | I                                                 | 1.0.0.g. | [30] |
| <ul> <li>C. C. C</li></ul> | <ul> <li>P.C. Hauser, D.W.L. Chiang, G.A. Wright, Anal. Chim. Acta, 302, 241–248 (1995).</li> <li>R.E. Farrell, A.D. Scott, Soit, Soc. Am. J., 51, 594–598 (1987).</li> <li>R. Kimura, A. Tshnou, J. Shon, J. Chem. Soc. Perkin, 492–493 (1983).</li> <li>K. Kimura, A. Tshnou, J. Shon, J. Chem. Soc. Perkin, Trans, S. 447–50 (1984).</li> <li>H. An, Y. Wu, Z. Zhang, R.M. Izatt, J.S. Bradshaw, J. Inclusion Phenom. Mol. Recognit. Chem., 11, 303–311 (1991).</li> <li>H. An, Y. Wu, Z. Zhang, R.M. Izatt, J.S. Bradshaw, J. Inclusion Phenom. Mol. Recognit. Chem., 11, 303–311 (1991).</li> <li>J. Jensy, K. Fohh, E. Lindher, E. Pungor, Microdem, J. J. And Chem., 10, 109–118 (1992).</li> <li>J. J. Wailewski, J.F. Binma, J. McLuckin Phenom. Mol. Recognit. Chem., 11, 303–311 (1991).</li> <li>M.B. Salch, F. Taha, G.S. Aof, <i>Electronativist, 77 (Chem., 346</i>, 919–923 (1992).</li> <li>M.B. Salch, F. Taha, G.S. Aof, <i>Electronativist, 77 (Chem., 346</i>, 919–923 (1992).</li> <li>M.B. Salch, F. Taha, G.S. Aof, <i>Electronativist, 77 (Chem., 346</i>, 919–923 (1993).</li> <li>M.B. Salch, F. Taha, G.S. Aof, <i>Electronativist, 77 (Chem., 346</i>, 919–923 (1994).</li> <li>M.B. Salch, F. Taha, G.S. Aof, <i>Electronativist, 77 (Chem., 346</i>, 114 (1922).</li> <li>B.M.Buchebister, K. Hema, MM. Schindler, Fresenius J. Anal. Chem., 37, 141–144 (1993).</li> <li>B.M.Buchebister, K. Torkia, H. Anug, M. Masuzeu, H. Inoue, T. Shirai, Anal. Chem., 37, 141–1721 (1988).</li> <li>B. Mata, P.D. van deval, D.N. Reinhoudt, Anti. Chem., 39, 1447–1448 (1983).</li> <li>B. M.Back, T.J. Cardvell, R.W. Cattraft, Anat. Chem., 441 (1922).</li> <li>B. M.Buchebister, K. Torkia, H. Anug, M. Honschi, Anat. J. Chem., 441 (1923).</li> <li>B. M.Buchebister, K. Hema, M.M. Schindler, T. Kasu, Atta (1991).</li> <li>B. Mata, P.D. van deval, D.N. Reinhoudt, Anti. Chem., 441 (1992).</li> <li>B. Mata, P.D. van deval, D.N. Masuzee, H. Inoue, T. Shirai, Anal. Chem., 441 (1992).</li> <li>B. M. Masuze, T. Mana, M. Masuzee, H. Hone, T. Shirai, Anal. Chem., 441 (1992).</li> <li>G. Cross, J.R. Allen, R. W</li></ul> | <ul> <li>ang. G.A. Wright, Anal. Clim. Acta. <b>302</b>, 241–248 (1995).</li> <li>Soill Sci. Soc. Am. J. <b>51</b>, 594–598 (1987).</li> <li>H. Tamura, T. Shono, J. Chem. Commun., 492–493 (1983).</li> <li>H. Tamura, T. Shono, J. Chem. Soc. Perkin Trans. 2, 447–450 (1984).</li> <li>H. Tamura, T. Shono, J. Chem. Soc. Perkin Trans. 2, 447–450 (1984).</li> <li>R.M. Latt, J.S. Bradshaw, J. Inclusion Phenom. Mol. Recognit. Chem., <b>11</b>, 303–311 (1991).</li> <li>R.M. Rut, Latt, J.S. Bradshaw, J. Inclusion Phenom. Mol. Recognit. Chem., <b>15</b>, 317–327 (1993).</li> <li>Iner. E. Pungor, Microchem. J. <b>45</b>, 532–541 (1992).</li> <li>A. J. Inclusion Phenom. Mol. Recognit. Chem., <b>10</b>, 109–118 (1991).</li> <li>A. S. Freesundysis, <i>7</i>, 770–773 (1992).</li> <li>A. J. Inclusion Phenom. Mol. Recognit. Chem., <b>10</b>, 109–118 (1991).</li> <li>A. Sch Freesundysis, <i>7</i>, 770–773 (1992).</li> <li>Pasinska, A.V.D. Berg. P. Bergveld, E.J.R. Sudholter, D. N. Reinhoudt, Anal. Chim. Acta, <b>231</b>, 41–52 (1990).</li> <li>A. M. Schindler, I.G. Samindler, J. Gram., <b>347</b>, 141–144 (1992).</li> <li>Mal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>Wal, D.N. Reinhoudt, Sens. Actuators B. <b>8</b>, 141–144 (1992).</li> <li>W</li></ul> | 248 (1995).<br>193 (1983).<br><i>ns. 2,</i> 447–<br><i>i. Mol. Recc.</i><br><i>therom. Mo.</i><br>200, 109–11<br>10, 109–11<br>10, 1092).<br>10, 1092).<br><i>1</i> , Anal. Chem.,<br><i>1</i> , Anal. Chem.,<br><i>1</i> , Anal. Chem.,<br><i>1</i> , Anal. Chem.,<br><i>1</i> , 201, 201, 201, 201, 201, 201, 201, 201 | 450 (1984)<br><i>Sgnit: Chem</i><br><i>I. Recognit:</i><br>18 (1991).<br>18 (1991).<br>29, 1447–1<br>29, 1447–1<br>29, 1447–1<br>29, 1447–1<br>29, 1447–1<br>29, 1447–1<br>20, 1990.<br><i>Mikrochim</i><br>88.<br>Mikrochim<br>88.<br><i>Mikrochim</i><br>88.<br><i>Mikrochim</i><br>81.<br>2–897 (198 | <ul> <li>i., 11, 303–3</li> <li>Chem., 15,</li> <li>Chem., 15,</li> <li>i., Anal. Ch.</li> <li>448 (1983).</li> <li>448 (1983).</li> <li>448 (1983).</li> <li>i.1185–1207</li> <l< td=""><td>11 (1991).<br/>317–327 (1<br/>317–327 (1<br/>68 (1990).<br/>68 (1985).<br/>-38 (1985).<br/>33 (1995).<br/>33 (1995).</td><td>993).<br/><b>31</b>, 41–52 (1990).<br/>672 (1991).</td><td></td><td></td></l<></ul> | 11 (1991).<br>317–327 (1<br>317–327 (1<br>68 (1990).<br>68 (1985).<br>-38 (1985).<br>33 (1995).<br>33 (1995). | 993).<br><b>31</b> , 41–52 (1990).<br>672 (1991). |          |      |



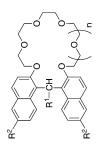



Y. UMEZAWA et al.



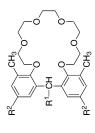

1955

continues on next page






 $K^{+}-74$  (BME 139,  $M_{\rm f} = 901.08$ )




 $K^{+}$ -80 ( $M_{\rm f}$  = 488.57): R = CH<sub>2</sub>O(CH<sub>2</sub>CH<sub>2</sub>O)<sub>3</sub>CH<sub>3</sub>  $K^{+}-79$  ( $M_r = 444.52$ ):  $R = CH_2O(CH_2CH_2O)_2CH_3$ K<sup>+</sup>-78 (M<sub>f</sub> = 400.47): R = CH<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>  $K^{+}-77$  ( $M_r = 356.41$ ):  $R = CH_2OCH_3$  $K^{+}-76$  ( $M_r = 342.39$ ):  $R = CH_2OH$ K<sup>+</sup>-75 (M<sub>r</sub> = 312.36): R = H



K<sup>+</sup>-83 ( $M_{f} = 781.00$ ): R<sup>1</sup> = 3-OCH<sub>3</sub>-4-OCH<sub>3</sub>-5-OCH<sub>3</sub>-C<sub>6</sub>H<sub>3</sub>, R<sup>2</sup>= C(CH<sub>3</sub>)<sub>3</sub> , n =1  $K^{+}-85 (M_{f} = 825.05)$ :  $R^{1} = 3-OCH_{3}-4-OCH_{3}-5-OCH_{3}-G_{6}H_{3}$ ,  $R^{2} = C(CH_{3})_{3}$ , n = 2K<sup>+</sup>-82 ( $M_r = 718.97$ ):  $R^1 = 2$ -CH<sub>3</sub>-5-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,  $R^2 = C(CH_3)_3$ , n =1 **K<sup>+</sup>-84** ( $M_r = 803.86$ ):  $R^1 = 2$ -Cl-6-Cl-C<sub>6</sub>H<sub>4</sub>,  $R^2 = C(CH_3)_3$ , n =2 **K<sup>+</sup>-81** (*M*<sub>r</sub> = 502.61): R<sup>1</sup> = H. R<sup>2</sup>= H. n =1

 $K^+$ -86 ( $M_r = 759.81$ ):  $R^1 = 2$ -CI-6-CI- $C_6H_4$ ,  $R^2 = C(CH_3)_3$ , n =1



R=H ШH

**K<sup>+</sup>-87** (*M*<sub>r</sub> = 584.75): R<sup>1</sup> = Naphthyl, R<sup>2</sup>= CH<sub>3</sub> **K<sup>+</sup>-88** ( $M_r = 506.64$ ):  $R^1 = Phenyl, R^2 = H$ 

**K<sup>+</sup>-97** ( $M_r = 748.95$ ):  $n_1 = 2$ ,  $n_2 = 1$ ,  $X = CH(O-n - C_8H_{17})CH_2CH_2$ 

**K<sup>+</sup>-96** (*M*<sub>r</sub> = 817.11): n<sub>1</sub> = n<sub>2</sub> = 1, X= CH(O-*n* -C<sub>16</sub>H<sub>33</sub>)CH<sub>2</sub>CH<sub>2</sub> ,

ШШ

**K<sup>+</sup>-102** ( $M_r = 676.76$ ):  $n_1 = 1$ ,  $n_2 = 2$ ,  $X = CO(CH_2)_3CO$ , R=HK<sup>+</sup>-104 (M<sub>r</sub> = 833.02): n<sub>1</sub> = n<sub>2</sub> = 2, X= CO(CH<sub>2</sub>)<sub>11</sub>CO , R=H **K<sup>+</sup>-101** ( $M_r = 632.70$ ):  $n_1 = n_2 = 1$ ,  $X = CO(CH_2)_3CO$ , R=H**K<sup>+</sup>-103** ( $M_r = 720.81$ ):  $n_1 = n_2 = 2$ ,  $X = CO(CH_2)_3CO$ , R=H **K<sup>+</sup>-99** ( $M_r = 648.79$ ):  $n_1 = 2$ ,  $n_2 = 1$ ,  $X = (CH_2)_3$ ,  $R = C_2 H_5$ **K<sup>+</sup>-100** ( $M_r = 688.90$ ):  $n_1 = n_2 = 1$ ,  $X = (CH_2)_3$ ,  $R = C_8 H_{17}$ **K<sup>+</sup>-107** (*M*<sub>r</sub> = 648.79): n<sub>1</sub> = 1 , n<sub>2</sub> = 2, X= (CH<sub>2</sub>)<sub>5</sub> , R=H **K<sup>+</sup>-98** (*M*<sub>r</sub> = 604.74): n<sub>1</sub> = n<sub>2</sub> = 1, X= (CH<sub>2</sub>)<sub>3</sub> , R=C<sub>2</sub>H<sub>5</sub> K<sup>+-109</sup> ( $M_r = 805.06$ ):  $n_1 = n_2 = 2$ ,  $X = (CH_2)_{13}$ , R=H **K<sup>+</sup>-106** ( $M_r = 716.95$ ):  $n_1 = n_2 = 1$ , **X**= (CH<sub>2</sub>)<sub>13</sub>, R=H **K<sup>+</sup>-105** ( $M_{\rm f}$  = 604.74):  $n_1 = n_2 = 1$ , X = (CH<sub>2</sub>)<sub>5</sub>, R=H **K<sup>+</sup>-108** ( $M_{\rm f}$  = 692.84):  $n_1 = n_2 = 2$ , X= (CH<sub>2</sub>)<sub>5</sub>, R=H Ш Н Н

**K<sup>+</sup>-90** ( $M_{f} = 636.74$ ):  $n_{1} = 2$ ,  $n_{2} = 1$ , X= CH(OH)CH<sub>2</sub>CH<sub>2</sub>, R=H

K<sup>+</sup>-89 (M<sub>r</sub> = 592.68): n<sub>1</sub> = n<sub>2</sub> = 1, X= CH(OH)CH<sub>2</sub>CH<sub>2</sub>, R=H

å

K<sup>+</sup>-94 (M<sub>r</sub> = 704.90): n<sub>1</sub> = n<sub>2</sub> = 1, X= CH(O-*n* -C<sub>8</sub>H<sub>17</sub>)CH<sub>2</sub>CH<sub>2</sub> , **K<sup>+</sup>-95** (M<sub>r</sub> =761.00): n<sub>1</sub> = n<sub>2</sub> = 1, X= CH(O-*n* -C<sub>12</sub>H<sub>25</sub>)CH<sub>2</sub>CH<sub>2</sub> ,

**K<sup>+</sup>-92** ( $M_r = 620.74$ ):  $n_1 = 2$ ,  $n_2 = 1$ ,  $X = (CH_2)_3$ , R=H

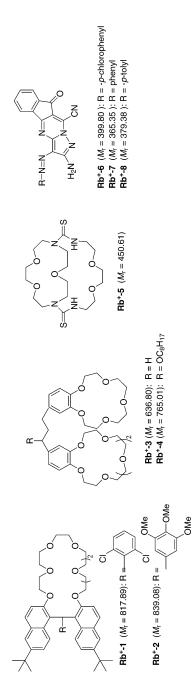
**K<sup>+</sup>-93** ( $M_r = 664.79$ ):  $n_1 = n_2 = 2$ ,  $X = (CH_2)_3$ , R=H **K<sup>+</sup>-91** (*M*<sub>r</sub> = 576.68): n<sub>1</sub> = n<sub>2</sub> = 1, X= (CH<sub>2</sub>)<sub>3</sub> , R=H

| ionophore | e membrane<br>composition                                                                               | lgKRb+,Bn+ method                                                                                                                                                                                                                                              |          | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                | remarks                                                                                                               | ref.                                     |
|-----------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|--------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Rb+-1     | <b>Rb+-1</b> ( $w \approx 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33-34$ %)                     | Na <sup>+</sup> , -2.20 FIM                                                                                                                                                                                                                                    | ı<br>    | 0.1                                                   | 45.6                     | $10^{-4}$<br>-10^{-1}                 | 0.1 M NaCl<br>background                                                                                              | Ξ                                        |
|           | <b>Rb+-1</b> ( $w \approx 1$ %),<br>DOS ( $w = 65-66$ %),<br>PVC ( $w = 33-34$ %)                       | Na <sup>+</sup> , –2.52 FIM                                                                                                                                                                                                                                    | ı<br>    | 0.1                                                   | 48.6                     | 10 <sup>-4</sup><br>-10 <sup>-1</sup> | 0.1 M NaCl<br>background                                                                                              | [1]                                      |
| Rb+-2     | <b>Rb+-2</b> ( $w \approx 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33-34$ %)                     | Na <sup>+</sup> , –2.05 FIM                                                                                                                                                                                                                                    | ı<br>    | 0.1                                                   | 42.0                     | $10^{-4}$ $-10^{-1}$                  | 0.1 M NaCl<br>background                                                                                              | [1]                                      |
|           | <b>Rb+-2</b> ( $w \approx 1$ %),<br>DOS ( $w = 65-66$ %),<br>PVC ( $w = 33-34$ %)                       | Na <sup>+</sup> , –2.20 FIM                                                                                                                                                                                                                                    | ı<br>    | 0.1                                                   | 50.0                     | $10^{-4}$ $-10^{-1}$                  | 0.1 M NaCl<br>background                                                                                              | Ξ                                        |
| Rb+-3     | <b>Rb+.3</b> ( $w = 6.7$ %),<br>PVC ( $w = 30.3$ %),<br>oNPOE ( $w = 63.0$ %)                           | K <sup>+</sup> , –1.3 FIM                                                                                                                                                                                                                                      | I        | I                                                     | I                        | I                                     |                                                                                                                       | [2]                                      |
| Rb+-4     | <b>Rb+.4</b> ( $w = 6.7$ %),<br>oNPOE ( $w = 63.0$ %),<br>PVC ( $w = 30.3$ %)                           | K <sup>+</sup> , –1.3 FIM                                                                                                                                                                                                                                      | 1        | I                                                     | I                        | I                                     |                                                                                                                       | [2]                                      |
| Rb+-5     | <b>Rb+-5</b> ( $w = 2.5$ %),<br>DDP ( $w = 64.5$ %),<br>PVC ( $w = 33$ %)                               | Li <sup>+</sup> , +1.23; Na <sup>+</sup> , +0.51; K <sup>+</sup> , +0.33; SSM<br>Cs <sup>+</sup> , +0.13; NH <sub>4</sub> <sup>+</sup> , +0.85;<br>Mg <sup>2+</sup> , +0.20; Ca <sup>2+</sup> , +2.05;<br>Sr <sup>2+</sup> , +0.26; Ba <sup>2+</sup> , -0.22   | ۲<br>۲   | I                                                     | 40                       | I                                     | $t_{\text{resp}} = 2-5 \text{ s;}$ [3]<br>$\tau = 45-60 \text{ d;}$<br>$c_{\text{dl}} = 5.0 \times 10^{-3} \text{ M}$ | <sup>-3</sup> M                          |
|           | <b>Rb+-5</b> ( $w = 3.0 \%$ ),<br>DDP ( $w = 65.0 \%$ ),<br>PVC ( $w = 32 \%$ )                         | Li <sup>+</sup> , -1.92; Na <sup>+</sup> , -1.51; K <sup>+</sup> , -0.46; SSM<br>Cs <sup>+</sup> , -0.59; NH <sub>4</sub> <sup>+</sup> , -1.13;<br>Mg <sup>2+</sup> , -2.92; Ca <sup>2+</sup> , -3.15;<br>Sr <sup>2+</sup> , -3.22; Ba <sup>2+</sup> , -3.10   | ۱<br>۲   | I                                                     | 47                       | I                                     | $t_{\text{resp}} = 2-5 \text{ s;}$ [3]<br>$\tau = 45-60 \text{ d;}$<br>$c_{\text{dl}} = 1.3 \times 10^{-4} \text{ M}$ | [3] 4<br>M                               |
|           | <b>Rb+5</b> ( $w = 4.5 \%$ ),<br>DDP ( $w = 63.5 \%$ ),<br>PVC ( $w = 32 \%$ )                          | Li <sup>+</sup> , -1.00; Na <sup>+</sup> , -1.25; K <sup>+</sup> , -0.50; SSM<br>Cs <sup>+</sup> , -0.73; NH <sub>4</sub> <sup>+</sup> , -1.30;<br>Mg <sup>2+</sup> , -2.40; Ca <sup>2+</sup> , -2.64;<br>Sr <sup>2+</sup> , -3.52; Ba <sup>2+</sup> , -3.70 - | ı ı<br>V | I                                                     | 48                       | 10 <sup>-3</sup><br>-10 <sup>-1</sup> | $t_{\text{resp}} = 2-5s;$ [3]<br>$\tau = 45-60 \text{ d};$<br>$c_{\text{dl}} = 1.5 \times 10^{-4} \text{ M}$          | [] [] [] [] [] [] [] [] [] [] [] [] [] [ |
|           | <b>Rb+-5</b> ( $w = 2.5$ %),<br>DDP ( $w = 63.9$ %),<br>KTPB ( $x_1 = 30.1$ %),<br>DV/C ( $x_1 - 23$ %) | Li <sup>+</sup> , -1.48; Na <sup>+</sup> , -1.17; K <sup>+</sup> , -0.28; SSM<br>Cs <sup>+</sup> , -0.20; NH <sub>4</sub> <sup>+</sup> , -0.73;<br>Mg <sup>2+</sup> , -2.33; Ca <sup>2+</sup> , -1.71;<br>Ca <sup>2+</sup> , -2.33; Ca <sup>2+</sup> , -1.71;  | -<br>F   | I                                                     | 46                       | I                                     | $t_{\text{resp}} = 2-5 \text{ s};$ [3]<br>$\tau = 45-60 \text{ d};$<br>$c_{\text{dl}} = 1.0 \times 10^{-5} \text{ M}$ | [3]                                      |

continues on next page

| (Continued)                       |  |
|-----------------------------------|--|
| Table 5: Rb+-Selective Electrodes |  |

|       | composition                                                                   |                                                                                                                                                                                                                                            | IIIellion |      | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                         | Iel.             |
|-------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------------------------------|------------------|
|       | <b>Rb+5</b> ( $w = 4.5 \%$ ),<br>DDP ( $w = 62.6 \%$ )                        | Li+, -1.77; Na+, -1.30; K+, -0.08;<br>Cs+ _0 30; NH, + _1 02;                                                                                                                                                                              | SSM       | I    | I                                                     | 43                       | I                      | $t_{\text{resp}} = 2-5 \text{ s};$<br>$\tau = 45-60 \text{ d}.$ | [3]              |
|       | KTPB $(x_1 = 52.5\%)$ ,<br>KTPB $(x_1 = 16.7\%)$ ,<br>PVC $(w = 32\%)$        | $Mg^{2+}$ , -2.43; $Ca^{2+}$ , -2.40; $Sr^{2+}$ , -0.84; $Ba^{2+}$ , -1.55                                                                                                                                                                 |           |      |                                                       |                          |                        | $c_{\rm dl} = 2.0 \times 10^{-5} \rm M$                         | -5 M             |
|       | <b>Rb+-5</b> ( $w = 6.5$ %),                                                  | Li <sup>+</sup> , -3.00; Na <sup>+</sup> , -2.30; K <sup>+</sup> , -1.70;                                                                                                                                                                  | SSM       | I    | I                                                     | 43                       | I                      | $t_{\rm resp} = 2-5$ s;                                         | 3                |
|       | DDP ( $w = 61.9 \%$ ),                                                        | Cs <sup>+</sup> , -1.30; NH <sub>4</sub> <sup>+</sup> , -2.22;                                                                                                                                                                             |           |      |                                                       |                          |                        | $\tau = 45-60 \text{ d};$                                       |                  |
|       | KTPB $(x_i = 11.6 \%)$ ,<br>PVC $(w = 31 \%)$                                 | Mg <sup>2+</sup> , -3.70; Ca <sup>2+</sup> , -3.52;<br>Sr <sup>2+</sup> , -3.40; Ba <sup>2+</sup> , -3.52                                                                                                                                  |           |      |                                                       |                          |                        | $c_{\rm dl} = 2.0 \times 10^{-5} {\rm M}$                       | -5 M             |
|       | <b>Rb</b> <sup>+</sup> -5 ( $w = 4.5 \%$ ),                                   | Li <sup>+</sup> , -1.89; Na <sup>+</sup> , -1.46; K <sup>+</sup> , -0.35;                                                                                                                                                                  | SSM       | I    | Ι                                                     | 47                       | $10^{-3}$              | $t_{\rm resp} = 2-5$ s;                                         | [3]              |
|       | DDP $(w = 63.2\%)$ ,                                                          | Cs <sup>+</sup> , -0.41; NH <sub>4</sub> <sup>+</sup> , -0.92;                                                                                                                                                                             |           |      |                                                       |                          | $10^{-1}$              | $\tau = 45-60 \text{ d};$                                       |                  |
|       | KTPB $(x_i = 8.3 \%)$ ,<br>PVC $(w = 32 \%)$                                  | Mg <sup>2+</sup> , -2.89; Ca <sup>2+</sup> , -3.00;<br>Sr <sup>2+</sup> , -3.10; Ba <sup>2+</sup> , -3.05                                                                                                                                  |           |      |                                                       |                          |                        | $c_{\rm dl} = 1.2 \times 10^{-4} \mathrm{M}$                    | ${}^{4}_{M}$     |
|       | <b>Rb+-5</b> ( $w = 4.5 \%$ ),                                                | Li+, -1.89; Na+, -0.50; K+, -0.74;                                                                                                                                                                                                         | SSM       | I    | I                                                     | 40                       | I                      | $t_{\rm resp} = 2-5$ s;                                         | [3]              |
|       | DDP ( $w = 61.2\%$ ),                                                         | Cs <sup>+</sup> , +0.06; NH <sub>4</sub> <sup>+</sup> , -0.86;                                                                                                                                                                             |           |      |                                                       |                          |                        | $\tau = 45-60 \text{ d};$                                       |                  |
|       | KTPB $(x_i = 64.2 \%)$ ,<br>PVC $(w = 32 \%)$                                 | $Mg^{2+}$ , -1.52; $Ca^{2+}$ , -1.96; $Sr^{2+}$ , -1.60; $Ba^{2+}$ , -1.66                                                                                                                                                                 |           |      |                                                       |                          |                        | $c_{\rm dl} = 3.0 \times 10^{-3} \rm M$                         | -3 M             |
|       | <b>Rb+-5</b> ( $w = 6.5 \%$ ),                                                | Li <sup>+</sup> , -2.30; Na <sup>+</sup> , -2.22; K <sup>+</sup> , -1.82;                                                                                                                                                                  | SSM       | I    | I                                                     | 46                       | $10^{-4}$              | $t_{resp} = 2-5 s;$                                             | [3]              |
|       | oNPOE ( $w = 61.9 \%$ ),                                                      | Cs <sup>+</sup> , -1.92; NH <sub>4</sub> <sup>+</sup> , -2.22;                                                                                                                                                                             |           |      |                                                       |                          | $10^{-1}$              | $\tau = 45-60 \text{ d};$                                       |                  |
|       | KTPB $(x_i = 11.6 \%)$ ,<br>PVC $(w = 31 \%)$                                 | $Mg^{2+}$ , -2.57; $Ca^{2+}$ , -2.49; $Sr^{2+}$ , -2.40; $Ba^{2+}$ , -2.09                                                                                                                                                                 |           |      |                                                       |                          |                        | $c_{\rm dl} = 1.0 \times 10^{-5} \rm M$                         | -5 M             |
|       | <b>Rb+-5</b> $(w = 4.5 \%)$ ,                                                 | Li <sup>+</sup> , -2.30; Na <sup>+</sup> , -1.20; K <sup>+</sup> , -0.39;                                                                                                                                                                  | SSM       | I    | I                                                     | 42                       | I                      | $t_{\rm resp} = 2-5  {\rm s};$                                  | [3]              |
|       | oNPOE ( $w = 62.9 \ \%$ ),                                                    | $Cs^+, -1.00; NH_4^+, -0.78;$                                                                                                                                                                                                              |           |      |                                                       |                          |                        | $\tau = 45-60 \text{ d};$                                       |                  |
|       | KTPB $(x_i = 16.7 \%)$ ,<br>PVC $(w = 32 \%)$                                 | $Mg^{2+}$ , -2.74; $Ca^{2+}$ , -2.92; $Sr^{2+}$ , -2.59; $Ba^{2+}$ , -2.48                                                                                                                                                                 |           |      |                                                       |                          |                        | $c_{\rm dl} = 1.2 \times 10^{-5} \mathrm{M}$                    | -5 M             |
| Rb+-6 | <b>Rb+-6</b> ( $w = 1$ %),                                                    | Li <sup>+</sup> , -2.7; Na <sup>+</sup> , -2.4; K <sup>+</sup> , -1.6;                                                                                                                                                                     | SSM       | 0.01 | 0.01                                                  | 59                       | $10^{-4}$              | 25 ± 1 °C;                                                      | [4]              |
|       | oNPOE ( $w = 65.5 \%$ ),<br>KTpCIPB ( $x_1 = 50 \%$ ),<br>PVC ( $w = 33 \%$ ) | $\begin{array}{l} Cs^+,-2.0;\ NH_4^+,-1.9;\ Mg^{2+},-3.3;\\ Ca^{2+},-3.2;\ Sr^{2+},-3.1;\ Ba^{2+},-2.7;\\ Mn^{2+},-3.1;\ Co^{2+},-3.0;\ Ni^+,-3.2;\\ Cu^{2+},-2.9;\ Cd^{2+},-2.8;\\ Al^{3+},-3.3;\ La^{3+},-3.2;\ Ce^{3+},-3.2\end{array}$ | ••        |      |                                                       |                          | -10-1                  | c <sub>dl</sub> = 1.1 × 10 <sup>-5</sup> M;<br>3 < pH < 10      | <sup>-5</sup> M; |
|       | $\mathbf{Rb^{+-6}}(w = 1 \ \%),$                                              | K+, -0.3                                                                                                                                                                                                                                   | SSM       | 0.01 | 0.01                                                  | 40                       | $10^{-3}$              | 25 ± 1 °C;                                                      | 4                |
|       | ONPOE $(w = 0.0.5\%)$ ,<br>PVC $(w = 33\%)$                                   |                                                                                                                                                                                                                                            |           |      |                                                       |                          | -101-                  | $M_{1} = 0.1 \times C.0 = IP_{2}$                               | Z                |
|       | <b>Rb+-6</b> $(w = 1 \%)$ ,                                                   | K <sup>+</sup> , -0.7                                                                                                                                                                                                                      | SSM       | 0.01 | 0.01                                                  | 53                       | $10^{-4}$              | 25 ± 1 °C;                                                      | [4]              |


Y. UMEZAWA et al.

|       | oNPOE ( $w = 65.5 \%$ ),<br>NaTFPB ( $x_i = 50 \%$ ), PVC ( $w = 33 \%$ )                                               |                                                                           |     |      |      |      | -10-1                | $c_{\rm dl} = 7.0 \times 10^{-5} \rm M$                                            | -5 M |
|-------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----|------|------|------|----------------------|------------------------------------------------------------------------------------|------|
|       | <b>Rb+-6</b> ( $w = 1$ %),<br>oNPOE ( $w = 65.5$ %),<br>NaTPB ( $x = 50$ %), PVC ( $w = 33$ %)                          | K <sup>+</sup> , -1.0                                                     | SSM | 0.01 | 0.01 | 56   | $10^{-4}$ $-10^{-1}$ | $25 \pm 1 ^{\circ}\text{C};$ [4]<br>$c_{\text{dl}} = 4.0 \times 10^{-5} \text{ M}$ | -5 M |
|       | <b>Rb+6</b> (w = 1%), PVC (w = 33%),<br>TEHP (w = 65.5%),<br>KTpCIPB ( $x_1 = 50$ %)                                    | $K^+$ , +0.6; $Cs^+$ , +0.8; $Mg^{2+}$ , -1.1                             | SSM | 0.01 | 0.01 | 26   | I                    | 25 ± 1 °C                                                                          | [4]  |
|       | <b>Rb+-6</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>1-chloronaphthalene ( $w = 65.5$ %),<br><b>KTpCIPB</b> ( $x_1 = 50$ %) | K+, -0.1; Cs+, -0.2;<br>Mg <sup>2+</sup> , -1.7                           | SSM | 0.01 | 0.01 | 28   | I                    | 25 ± 1 °C                                                                          | [4]  |
|       | <b>Rb+-6</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>diphenyl ether ( $w = 65.5$ %),<br><b>KTpCIPB</b> ( $x_1 = 50$ %)      | K+, -0.3; Cs+, -0.6;<br>Mg <sup>2+</sup> , -1.7                           | SSM | 0.01 | 0.01 | 35   | I                    | 25 ± 1 °C                                                                          | [4]  |
|       | <b>Rb+-6</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>DBP ( $w = 65.5$ %),<br>KTpCIPB ( $x_1 = 50$ %)                        | K+, -0.4; Cs+, -0.9;<br>Mg <sup>2+</sup> , -2.5                           | SSM | 0.01 | 0.01 | 40   | I                    | 25 ± 1 °C                                                                          | [4]  |
|       | <b>Rb+-6</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>diburyl adipate ( $w = 65.5$ %),<br>KTpCIPB ( $x_1 = 50$ %)            | K+, -0.4; Cs+, -1.1;<br>Mg <sup>2+</sup> , -2.2                           | SSM | 0.01 | 0.01 | 55   | I                    | 25 ± 1 °C                                                                          | [4]  |
|       | <b>Rb+-6</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>BEHS ( $w = 65.5$ %),<br>KTpCIPB ( $x_1 = 50$ %)                       | K+, -0.6; Cs+, -1.2;<br>Mg <sup>2+</sup> , -2.5                           | SSM | 0.01 | 0.01 | 56   | I                    | 25 ± 1 °C                                                                          | [4]  |
|       | <b>Rb+6</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>DOP ( $w = 65.5$ %),<br>KTpCIPB ( $x_1 = 50$ %)                         | K+, -0.7; Cs+, -1.3;<br>Mg <sup>2+</sup> , -2.7                           | SSM | 0.01 | 0.01 | 56   | I                    | 25 ± 1 °C                                                                          | [4]  |
| Rb+-7 | <b>Rb+-7</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>oNPOE ( $w = 65.5$ %),<br>KTpCIPB ( $x_1 = 50$ %)                      | K <sup>+</sup> , -1.1; Cs <sup>+</sup> , -1.9;<br>Mg <sup>2+</sup> , -3.0 | SSM | 0.01 | 0.01 | 56   | $10^{-4}$ $-10^{-1}$ | $25 \pm 1 \text{ °C};$ [4]<br>$c_{dl} = 2.5 \times 10^{-5} \text{ M}$              | -5 M |
| Rb+-8 | <b>Rb+-8</b> ( $w = 1$ %), PVC ( $w = 33$ %),<br>oNPOE ( $w = 65.5$ %),<br>KTpCIPB ( $x_A = 50$ %)                      | K <sup>+</sup> , -0.9; Cs <sup>+</sup> , -1.6;<br>Mg <sup>2+</sup> , -2.8 | SSM | 0.01 | 0.01 | 52.5 | $10^{-4}$ $-10^{-1}$ | $25 \pm 1 \text{ °C};$ [4]<br>$c_{\rm dl} = 3.2 \times 10^{-5} \text{ M}$          | -5 M |

Potentiometric selectivity coefficients of ion-selective electrodes

continues on next page

Table 5: Rb<sup>+</sup>-Selective Electrodes (Continued)



| ן able o: כ | I able 0: CS <sup>1</sup> -Selective Electrodes                                                                                                                      |                                                                                                                                                                                            |             |                             |                                                       |                          |                        |                                               |                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------------|-------------------------------|
| ionophore   | membrane<br>composition                                                                                                                                              | lgKCs+,Bn+                                                                                                                                                                                 | method      | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                       | ref.                          |
| Cs+.1       | <b>Cs+1</b> ( $w = 3.2-3.8$ %),<br>oNPOE ( $w \approx 64$ %), PVC ( $w \approx 32$ %)                                                                                | Na+, -3.0; K+, -1.0; Rb+, -1.0;<br>NH4 <sup>+</sup> , -2.0                                                                                                                                 | FIM         | I                           | I                                                     | 51                       | $10^{-3}$ $-10^{-1}$   | 25 ± 0.1°C;<br>CWE                            | [1]                           |
| Cs+-2       | <b>Cs+2</b> ( $w = 1, 4$ %),<br>oNPOE ( $w \approx 65$ %),<br>KTpCIPB ( $x_i = 50$ %),                                                                               | Li+, -2.60; Na+, -2.23; K+, -0.77;<br>Rb+, -0.51; Mg <sup>2+</sup> , -3.03;<br>Ca <sup>2+</sup> , -2.80; Sr <sup>2+</sup> , -2.22                                                          | SSM         | 0.1                         | 0.1                                                   | I                        | I                      | CWE                                           | [2]                           |
|             | PVC ( $w \approx 33$ %)                                                                                                                                              | Li+, -2.80; Na+, -2.41; K+, -0.72;<br>Rb+, -0.52; Ca <sup>2+</sup> , -3.05;<br>Sr <sup>2+</sup> , -2.18                                                                                    | $SSM = E_B$ | - @                         | 0.1                                                   |                          |                        | 14 mM NaCl<br>background                      |                               |
|             | Cs+-2 ( $w = 1.4 \%$ ),<br>o-nitrophenyl pentyl ether ( $w \approx 65 \%$ ),<br>KTpCIPB ( $x_i = 50 \%$ ),                                                           | Li <sup>+</sup> , <-3.70; Na <sup>+</sup> , -2.70; K <sup>+</sup> , -0.46; SSM<br>Rb <sup>+</sup> , 0.00; Mg <sup>2+</sup> , -3.70;<br>Ca <sup>2+</sup> , -3.66; Sr <sup>2+</sup> , <-3.70 | SSM         | 0.1                         | 0.1                                                   | I                        | I                      | CWE;                                          | [2]                           |
|             | PVC ( $w \approx 33 \ \%$ )                                                                                                                                          | Li+, -3.37; Na+, -2.60; K+, -0.46;<br>Rb+, 0.00; Ca <sup>2+</sup> , <-3.70;<br>Sr <sup>2+</sup> , -3.48                                                                                    | SSM = EB    | - 🙃                         | 0.1                                                   |                          |                        | 14 mM NaCl<br>background                      |                               |
| Cs+-3       | <b>Cs<sup>+</sup>.3</b> ( $w = 1.5$ %),<br>oNPOE ( $w = 65$ %),<br>KTpCIPB ( $x_i = 22$ %),<br>PVC ( $w = 33$ %)                                                     | Li+, -2.4; Na+, -2.0; K+, -0.9;<br>Rb+, -0.5; H+, +0.7;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -2.9;<br>Sr <sup>2+</sup> , -2.1                                                    | SSM         | 0.1                         | 0.1;<br>H+, 0.1,<br>0.002                             | 51                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]                           |
|             | <b>Cs<sup>+</sup>-3</b> ( $w = 1.48$ %),<br>oNPOE ( $w = 64.35$ %),<br>KTpCIPB ( $x_1 = 22$ %),<br>TOPO ( $w = 0.99$ %),<br>PVC ( $w = 32.67$ %)                     | $ \begin{array}{l} Li^+,-0.0;\; Na^+,-0.5;\; K^+,-0.5;\; \\ Rb^+,-0.5;\; H^+,+1.6;\; \\ Mg^{2+},-0.1;\; Ca^{2+},+0.5;\; \\ Sr^{2+},-0.1\; \\ Sr^{2+},-0.1\; \end{array} $                  | SSM         | 0.1                         | 0.1;<br>H <sup>+</sup> , 0.1,<br>0.002                | 29                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]                           |
|             | <b>Cs<sup>+-3</sup></b> ( $w = 1.5$ %).<br>o-nitrophenyl pentyl ether ( $w = 65$ %),<br>KTpCIPB ( $x_i = 21.7$ %),<br>PVC ( $w = 33$ %)                              | Li+, -0.6; Na+, -0.6; K+, -0.5;<br>Rb+, -0.4; H+, +1.8;<br>Mg <sup>2+</sup> , -0.9; Ca <sup>2+</sup> , -0.8;<br>Sr <sup>2+</sup> , -0.8                                                    | SSM         | 0.1                         | 0.1;<br>H+, 0.1,<br>0.002                             | 23                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]                           |
|             | <b>Cs<sup>+-3</sup></b> ( $w = 1.48$ %),<br>PVC ( $w = 32.67$ %),<br>KTPCIPB ( $x_i = 22$ %),<br>TOPO ( $w = 0.99$ %),<br>o-nitrophenyl pentyl ether ( $w = 64.3$ %) | Li+, -0.2; Na+, -0.1; K+, -0.3;<br>Rb+, -0.1; H+, +6.5;<br>Mg <sup>2+</sup> , +0.4; Ca <sup>2+</sup> , +0.6;<br>Sr <sup>2+</sup> , +0.2                                                    | SSM         | 0.1                         | 0.1;<br>H <sup>+</sup> , 0.1,<br>0.002                | 25                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]                           |
|             | <b>Cs<sup>+</sup>-3</b> ( $w = 1.44$ %),<br>oNPOE ( $w = 62.44$ %),<br>KTpCIPB ( $x_1 = 200$ %),<br>PVC ( $w = 31.70$ %)                                             | $\begin{array}{l} Li^+,-3.0;  Na^+,-2.5;  K^+,-1.3; \\ Rb^+,-0.6;  H^+,-3.3; \\ Mg^{2+},-3.1;  Ca^{2+},-2.8; \\ Sr^{2+},-2.7 \end{array}$                                                  | SSM         | 0.1                         | 0.1;<br>H <sup>+</sup> , 0.1,<br>0.002                | 55                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]<br>continues on next page |

Table 6: Cs<sup>+</sup>-Selective Electrodes

| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 6: Cs <sup>+</sup> -Selective Electrodes |  |

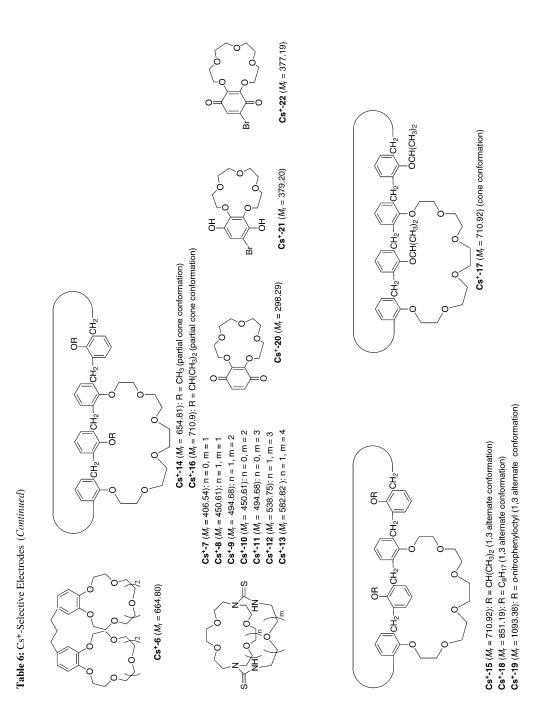
| ionophore | membrane<br>composition                                                                                                                                | lgKCs+,Bn+                                                                                                                                                                                                                    | method     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                       | ref. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------------|------|
|           | <b>Cs+3</b> ( $w = 1.43 \%$ ),<br>oNPOE ( $w = 61.84 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 200 \%$ ),<br>TOPO ( $w = 0.95 \%$ ),<br>PVC ( $w = 31.40 \%$ ) | $\begin{array}{l} Li^+,-3.0; Na^+,-2.6; K^+,-1.3;\\ Rb^+,-0.6; H^+,-2.5;\\ Mg^{2+},-3.1; Ca^{2+},-2.9;\\ Sr^{2+},-2.9\end{array}$                                                                                             | SSM        | 0.1                         | 0.1;<br>H+, 0.1,<br>0.002                             | 55                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]  |
|           | <b>Cs<sup>+-3</sup></b> $(w = 1.51 \%)$ ,<br>oNPOE $(w = 65.32 \%)$ ,<br>PVC $(w = 33.17 \%)$                                                          | Li <sup>+</sup> , -0.3; Na <sup>+</sup> , -0.5; K <sup>+</sup> , -0.3;<br>Rb <sup>+</sup> , -0.2; H <sup>+</sup> , +1.2;<br>Mg <sup>2+</sup> , -0.2; Ca <sup>2+</sup> , -0.7;<br>Sr <sup>2+</sup> , -0.1                      | SSM        | 0.1                         | 0.1;<br>H+, 0.1,<br>0.002                             | 6.6                      | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]  |
|           | <b>Cs+.3</b> ( $w = 1.49$ %),<br>oNPOE ( $w = 64.68$ %),<br>TOPO ( $w = 0.99$ %),<br>PVC ( $w = 32.84$ %)                                              | $\begin{array}{l} Li^+, -0.5; Na^+, -0.5; K^+, -0.5; \\ Rb^+, -0.1; Mg^{2+}, -0.1; \\ Ca^{2+}, +0.5; Sr^{2+}, +0.2 \end{array}$                                                                                               | SSM        | 0.1                         | 0.1                                                   | 32                       | I                      | CWE;<br>14 mM NaCl<br>background;<br>r.o.o.g. | [3]  |
| Cs+-4     | <b>Cs<sup>+-4</sup></b> ( $w = 0.4 \%$ ),<br>oNPOE ( $w = 66.4 \%$ ),<br>PVC ( $w = 33.2 \%$ )                                                         | $\begin{array}{l} Li^+,-3.29;Na^+,-2.13;K^+,-0.66;\\ Rb^+,-1.24;Mg^{2+},-2.80;\\ Ca^{2+},-3.56\\ H^+,-1.95\\ NH_4^+,-1.87\\ \end{array}$                                                                                      | SSM<br>FIM | 0.1                         | 0.1<br>0.01<br>0.1                                    | 54.0                     | I                      |                                               | [4]  |
|           | <b>Cs+-4</b> ( $w \approx 0.4$ %),<br>oNPOE ( $w \approx 66.3$ %),<br>KTpCIPB ( $x_1 = 62$ %),<br>PVC ( $w \approx 33.2$ %)                            | Li <sup>+</sup> , -3.25; Na <sup>+</sup> , -2.05; K <sup>+</sup> , -0.79;<br>Rb <sup>+</sup> , -0.99; Mg <sup>2+</sup> , -3.02;<br>Ca <sup>2+</sup> , -3.52<br>H <sup>+</sup> , -3.04<br>NH <sup>+</sup> 2.04                 | SSM<br>FIM | 0.1                         | 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01                | 55.7                     | I                      |                                               | [4]  |
| Cs+-5     | <b>Cs<sup>+</sup>-5</b> ( $w = 0.4$ %),<br>oNPOE ( $w = 66.4$ %),<br>PVC ( $w = 33.2$ %)                                                               | Li <sup>+</sup> , -4.20; Na <sup>+</sup> , -3.87; K <sup>+</sup> , -2.68;<br>Rb <sup>+</sup> , -1.85; Mg <sup>2+</sup> , -4.04;<br>Ca <sup>2+</sup> , -3.39<br>H <sup>+</sup> , -3.71<br>NH <sub>4</sub> <sup>+</sup> , -2.83 | SSM<br>FIM | 0.1                         | 0.0<br>0.01<br>0.01                                   | 51.3                     | 1                      |                                               | [4]  |
|           | <b>Cs+5</b> ( $w \approx 0.4$ %),<br>oNPOE ( $w \approx 66.4$ %),<br>KTpCIPB ( $x_i = 10$ %),<br>PVC ( $w \approx 33.2$ %)                             | $\begin{array}{l} Li^+,-4.45;Na^+,-3.73;K^+,-2.53;\\ Rb^+,-1.52;Mg^{2+},-3.92;\\ Ca^{2+},-3.97\\ H^+,-2.70\\ NH_4^+,-2.75\end{array}$                                                                                         | SSM<br>FIM | 0.1                         | 0.1<br>0.01<br>0.1                                    | 55.3                     | 1                      |                                               | [4]  |
|           | Cs+5 ( $w \approx 0.4$ %),<br>oNPOE ( $w \approx 66.4$ %),<br>KTpCIPB ( $x_1 = 25$ %),                                                                 | Li <sup>+</sup> , -3.92; Na <sup>+</sup> , -3.57; K <sup>+</sup> , -2.49;<br>Rb <sup>+</sup> , -1.78; Mg <sup>2+</sup> , -3.85;<br>Ca <sup>2+</sup> , -3.44                                                                   | SSM        | 0.1                         | 0.1                                                   | 54.0                     | I                      |                                               | [4]  |

| ionophor | ionophore membrane<br>composition                                                                                                                  | lgKCs+,Bn+                                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear remarks<br>range<br>(M) | s ref.                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|--------------------------------|----------------------------------------------------------------------|
|          | PVC ( $w \approx 33.2 \ \%$ )                                                                                                                      | H+, -3.02<br>NH4 <sup>+</sup> , -2.40                                                                                                                                                  | FIM    | 1 1                         | 0.01<br>0.1                                           |                          |                                |                                                                      |
| Cs+-6    | <b>Cs+6</b> ( $w = 6.7 \%$ ),<br>oNPOE ( $w = 63.0 \%$ ),<br>PVC ( $w = 30.3 \%$ )                                                                 | K+, -2.3                                                                                                                                                                               | MSM    | I                           | I                                                     | 1                        | I                              | [5]                                                                  |
| Cs+-7    | <b>Cs<sup>4</sup>-7</b> ( $w = 4.5 \%$ ),<br>DDP ( $w = 63.2 \%$ ),<br><b>KTPCIPB</b> ( $x_1 = 5.8 \%$ ),<br>PVC ( $w = 32.0 \%$ )                 | $\begin{array}{l} Li^+, -1.42;  Na^+, -0.78;  K^+, +0.04;   SSM \\ Rb^+, +0.28;  NH_4^+, -0.66; \\ Mg^{2+}, -2.27;  Ca^{2+}, -2.21; \\ Sr^{2+}, -2.09;  Ba^{2+}, -2.40 \end{array}$    | SSM    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [9]                                                                  |
| Cs+-8    | <b>Cs<sup>+</sup>-8</b> ( $w = 4.5 \%$ ),<br>DDP ( $w = 63.2 \%$ ),<br><b>KTpCIPB</b> ( $x_1 = 6.4 \%$ ),<br>PVC ( $w = 32.0 \%$ )                 | $ \begin{array}{l} Li^+,-2.22;Na^+,-0.33;K^+,-0.39;\\ Rb^+,+0.17;NH_4^+,-0.91;\\ Mg^{2+},-2.46;Ca^{2+},-0.91;\\ Sr^{2+},-0.95;Ba^{2+},-1.52 \end{array} $                              | SSM    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [6]                                                                  |
| Cs+-9    | <b>Cs<sup>+</sup>-9</b> ( <i>w</i> = 4.5 %),<br>DDP ( <i>w</i> = 63.2 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 7.0 %),<br>PVC ( <i>w</i> = 32.0 %) | $ \begin{array}{l} Li+,-2.40; Na^+,-1.38; K^+,-0.26;\\ Rb^+,+0.26; NH_4,-1.02;\\ Mg^{2+},-2.92; Ca^{2+},-3.04;\\ Sr^{2+},-2.92; Ba^{2+},-2.77 \end{array} $                            | SSM    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [9]                                                                  |
| Cs+-10   | $Cs^{+}-10 (w = 4.5 \%),$<br>DDP (w = 63.2 \%),<br>KTpCIPB (x <sub>1</sub> = 6.4 %),<br>PVC (w = 32.0 \%)                                          | $\begin{array}{l} Li+,-2.15;Na^+,-2.40;K^+,-0.97;\\ Rb^+,+0.43;NH_4^+,-1.11;\\ Mg^{2+},-4;Ca^{2+},-3.04;\\ Sr^{2+},-5;Ba^{2+},-5\end{array}$                                           | MSS    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [6]                                                                  |
| Cs+-11   | <b>Cs<sup>+</sup>-11</b> ( $w = 4.5 \%$ ),<br>DDP ( $w = 63.2 \%$ ),<br>KTpCIPB ( $x_1 = 7.0 \%$ ),<br>PVC ( $w = 32.0 \%$ )                       | $ \begin{array}{l} Li^+,-2.15;Na^+,-1.17;K^+,-0.33;\\ Rb^+,+0.10;NH_4^+,-0.98;\\ Mg^{2+},-3.04;Ca^{2+},-3.15;\\ Sr^{2+},-3.52;Ba^{2+},-3.10 \end{array} $                              | SSM    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [9]                                                                  |
| Cs+-12   | $Cs^{+}-12 (w = 4.5 \%),$<br>DDP (w = 63.2 \%),<br>KTpCIPB (x <sub>1</sub> = 6.4 %),<br>PVC (w = 32.0 %)                                           | $ \begin{array}{l} Li+,-1.55;Na^+,-0.86;K^+,+0.16;\\ Rb^+,+0.05;NH_4^+,-0.60;\\ Mg^{2+},-2.29;Ca^{2+},-2.49;\\ Sr^{2+},-2.36;Ba^{2+},-2.06 \end{array} $                               | SSM    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [9]                                                                  |
| Cs+-13   | $Cs^{+}-13 (w = 4.5 \%),$<br>DDP (w = 63.2 \%),<br>KTpCIPB (x <sub>1</sub> = 7.0 %),<br>PVC (w = 32.0 %)                                           | $ \begin{array}{l} Li+,-1.80; Na^+,-0.98; K^+,-0.04;\\ Rb^+,-0.01; NH_4^+,-0.65;\\ Mg^{2+},-1.82; Ca^{2+},-2.21;\\ Sr^{2+},-1.91; Ba^{2+},-2.04 \end{array} $                          | SSM    | 0.1                         | 0.1                                                   | 52–58                    | 10-4-10-1                      | [9]                                                                  |
| Cs+-14   | Cs+-14 ( $w = 0.5 \%$ ),<br>oNPOE ( $w = 67.1 \%$ ),<br>KTpCIPB ( $x_i = 36 \%$ ),<br>PVC ( $w = 32.2 \%$ )                                        | $\begin{array}{l} Li^+, -3.54;  Na^+, -3.10;  K^+, -2.05; \\ Rb^+, -0.91;  NH4^+, -1.96; \\ Mg^{2+}, -5.4;  Ca^{2+}, -5.2;  Sr^{2+}, -5.2; \\ Ba^{2+}, -5.0 \\ H^+, -3.86 \end{array}$ | FIM    | 1                           | 0.1                                                   | 60.9                     | - c <sub>dl</sub> = 10         | c <sub>dl</sub> = 10 <sup>-6.0</sup> M [7]<br>continues on next page |
|          |                                                                                                                                                    |                                                                                                                                                                                        |        |                             | 1                                                     |                          |                                |                                                                      |



| (Continued)                                    |  |
|------------------------------------------------|--|
| Table 6: Cs <sup>+</sup> -Selective Electrodes |  |

|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7111161                                               | primary intertering                                   | STODE                                                                      |                                                       | I CILIAI No                                           | <u></u>                                               |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| composition                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion conc.<br>(M)                                      | ion conc.<br>(M)                                      | (mV/<br>decade)                                                            | range<br>(M)                                          |                                                       |                                                       |
| <b>Cs+.14</b> ( $w = 0.5$ %),<br><b>DBS</b> ( $w = 67.1$ %),<br><b>KTPCIPB</b> ( $x_1 = 36$ %),<br><b>PVC</b> ( $w = 32.2$ %) | $ \begin{array}{l} Li^+, -3.51;  Na^+, -2.95;  K^+, -2.06; \\ Rb^+, -0.90;  NH_4^+, -1.91; \\ Mg^{2+}, -5.1;  Ca^{2+}, -5.43; \\ Sr^{2+}, -5.37;  Ba^{2+}, -5.42; \\ H^+, -3.35 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                     | 0.1                                                   | 61.1                                                                       | 1                                                     | $c_{\rm dl} = 10^{-6.1} \mathrm{M}$ [7]               | [L] W                                                 |
| Cs+15 ( $w = 0.5 \%$ ),<br>oNPOE ( $w = 67.1 \%$ ),<br>KTPCIPB ( $x_1 = 38.8 \%$ ),<br>PVC ( $w = 32.2 \%$ )                  | $\begin{array}{l} Li^+,-4.81;Na^+,-4.46;K^+,-2.18;\\ Rb^+,-0.89;NH_4^+,-1.98;\\ Mg^{2+},-5.5;Ca^{2+},-5.4;\\ Sr^{2+},-5.3;Ba^{2+},-5.2\\ H^+,-4.32\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                     | 0.1                                                   | 58.2                                                                       | I                                                     | $c_{\rm dl} = 10^{-6.3}$ ]                            | [L] V                                                 |
| <b>Cs+-15</b> ( $w = 0.5$ %),<br>DBS ( $w = 67.1$ %),<br>KTPCIPB ( $x_1 = 38.8$ %),<br>PVC ( $w = 32.2$ %)                    | Li <sup>+</sup> , -5.03; Na <sup>+</sup> , -4.36; K <sup>+</sup> , -2.14;<br>Rb <sup>+</sup> , -0.81; NH <sub>4</sub> <sup>+</sup> , -1.86;<br>Mg <sup>2+</sup> , -5.32; Ca <sup>2+</sup> , -5.56;<br>Sr <sup>2+</sup> , -5.5; Ba <sup>2+</sup> , -5.1<br>H <sup>+</sup> , -4.32                                                                                                                                                                                                                                                                                                                                                                                                         | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                     | 0.1                                                   | 58.2                                                                       | I                                                     | c <sub>dl</sub> =<br>10-6.33 M                        | [2]                                                   |
| <b>Cs<sup>4</sup>-15</b> ( $w = 1$ %),<br>BEHS ( $w = 65.5$ %),<br>KTFPB ( $x_1 = 50$ %),<br>PVC ( $w = 33$ %)                | Na <sup>+</sup> , -3.3<br>K+, -2.0<br>NH <sub>4</sub> +, -1.9<br>Ca <sup>2+</sup> , -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                     | 0.1                                                   | $57 \pm 2^{+}$<br>$40 \pm 2^{++}$<br>$39 \pm 2^{+++}$<br>$57 \pm 2^{++++}$ | I                                                     | ISFET;<br>pH = 4                                      | [8]                                                   |
| <b>Cs+-16</b> ( $w = 0.5 \%$ ),<br>oNPOE ( $w = 67.1 \%$ ),<br>KTpCIPB ( $x_1 = 38.8 \%$ ),<br>PVC ( $w = 32.2 \%$ )          | $\begin{array}{l} Li^+,-3.81; Na^+,-2.47; K^+,-0.74;\\ Rb^+,-0.15; NH_4^+,-0.82;\\ Mg^{2+},-5.0; Ca^{2+},-4.8;\\ Sr^{2+},-4.7; Ba^{2+},-4.6\\ H^+,-2.88\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                     | 0.1                                                   | 58.2                                                                       | I                                                     | $c_{\rm dl} = 10^{-5.4}$ ]                            | [L] W                                                 |
| <b>Cs+-16</b> ( $w = 0.5$ %),<br>DBS ( $w = 67.1$ %),<br>KTPCIPB ( $x_1 = 38.8$ %),<br>PVC ( $w = 32.2$ %)                    | $ \begin{array}{l} Li^+,-2.98;Na^+,-2.09;K^+,-0.71;\\ Rb^+,-0.1;NH_4^+,-0.76;\\ Mg^{2+},-4.60;Ca^{2+},-4.6;\\ Sr^{2+},-4.7;Ba^{2+},-4.5\\ H^+,-2.28\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                     | 0.1                                                   | 60                                                                         | I                                                     | $c_{\rm dl} = 10^{-5.3}$ ]                            | [L] W                                                 |
| <b>Cs+-17</b> ( $w = 0.5$ %),<br>oNPOE ( $w = 67.1$ %),<br>KTPCIPB ( $x_1 = 38.8$ %),<br>PVC ( $w = 32.2$ %)                  | $ \begin{array}{l} Li^+,-2.22;Na^+,-1.43;K^+,-0.60;\\ Rb^+,-0.33;NH_4^+,-1.01;\\ Mg^{2+},-3.92;Ca^{2+},-3.5;\\ Sr^{2+},-3.5;Ba^{2+},-3.28\\ H^+,-1.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                     | 0.1                                                   | 54                                                                         | I                                                     | c <sub>dl</sub> =<br>10-4.48 M                        | [7]                                                   |
| † in 0.1 M Na+.<br>1† in 0.1 M K+.<br>111 in 0.1 M NH <sub>4</sub> +.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                                            |                                                       |                                                       |                                                       |
|                                                                                                                               | S <sup>4</sup> -15 ( $w = 0.5$ %<br>NPOE ( $w = 67.1$<br>CTPCIPB ( $x_1 = 38$<br>VC ( $w = 32.2$ %<br>S <sup>4</sup> -15 ( $w = 0.5$ %<br>DBS ( $w = 67.1$ %<br>S <sup>4</sup> -15 ( $w = 32.2$ %<br>VC ( $w = 32.2$ %<br>S <sup>4</sup> -15 ( $w = 1$ %)<br>S <sup>4</sup> -15 ( $w = 0.5$ %<br>OPOE ( $w = 67.1$ %<br>NPOE ( $w = 67.1$ %<br>NPOE ( $w = 67.1$ %<br>S <sup>4</sup> -16 ( $w = 0.5$ %<br>OPC ( $w = 32.2$ %)<br>VC ( $w = 32.2$ %<br>NPOE ( $w = 67.1$ %<br>S <sup>4</sup> -17 ( $w = 0.5$ %<br>OPC ( $w = 32.2$ %)<br>NPOE ( $w = 67.1$ %<br>S <sup>4</sup> -17 ( $w = 0.5$ %<br>OPC ( $w = 32.2$ %)<br>VC ( $w = 32.2$ %)<br>VC ( $w = 32.2$ %)<br>VC ( $w = 32.2$ %) | S+-15 ( $w = 0.5 \%$ ),<br>NPOE ( $w = 67.1 \%$ ),<br>CTpCIPB ( $x_1 = 38.8 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>BS ( $w = 67.1 \%$ ),<br>BS ( $w = 67.1 \%$ ),<br>DBS ( $w = 67.1 \%$ ),<br>CTpCIPB ( $x_1 = 38.8 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>S+-15 ( $w = 1.\%$ ),<br>BEIRS ( $w = 67.1 \%$ ),<br>VC ( $w = 33.5 \%$ ),<br>NPOE ( $w = 67.1 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>MPOE ( $w = 67.1 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>MPOE ( $w = 67.1 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>MPOE ( $w = 67.1 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>NPOE ( $w = 67.1 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>MPOE ( $w = 67.1 \%$ ),<br>VC ( $w = 32.2 \%$ )<br>VC ( $w = 32.2 \%$ ),<br>VC ( | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                      | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ |


| composition                                                                                                                                   | ışA.Cs <sup>+</sup> ,Bu <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion conc<br>(M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | primary intertering<br>ion conc. ion conc.<br>(M) (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stope<br>(mV/<br>decade)                                                                       | range<br>(M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I VIIIdi No                                           | 101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Cs<sup>+</sup>-17</b> ( $w = 0.5 \%$ ),<br>DBS ( $w = 37.1 \%$ ),<br>KTpCIPB ( $x_1 = 38.8 \%$ ),<br>PVC ( $w = 32.2 \%$ )                 | $\begin{array}{l} Li^+,-1.38;Na^+,-1.3;K^+,-0.5;\\ Rb^+,-0.17;NH_4^+,-0.66;\\ Mg^{2+},-3.8;Ca^{2+},-3.4;\\ Sr^{2+},-3.5;Ba^{2+},-3.3\\ H^+,-1.0\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $c_{\rm dl} = 10^{-4.6} {\rm M}$ [7]                  | [7] M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Cs+18</b> ( <i>w</i> = 1 %),<br>BEHS ( <i>w</i> = 65.5 %),<br>KTFPB ( <i>x</i> <sub>1</sub> = 50 %),<br>PVC ( <i>w</i> = 33 %)             | Na <sup>+</sup> , -3.0<br>K <sup>+</sup> , -1.9<br>NH <sub>4</sub> <sup>+</sup> , -1.9<br>Ca <sup>2+</sup> , -3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $57 \pm 2^{+}$<br>$40 \pm 2^{++}$<br>$37 \pm 2^{+++}$<br>$60 \pm 2^{++++}$                     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISFET;<br>pH = 4                                      | [8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Cs<sup>+</sup>-18</b> ( $w = 1$ %),<br>oNPOE ( $w = 65.5$ %),<br>KTFPB ( $x_i = 50$ %),<br>PVC ( $w = 33$ %)                               | Na <sup>+</sup> , -3.3<br>K+, -1.9<br>NH <sub>4</sub> +, -1.9<br>Ca <sup>2+</sup> , -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59 ± 2†<br>40 ± 2††<br>39 ± 2†††<br>58 ± 2††††                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISFET;<br>pH = 4                                      | [8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Cs<sup>+</sup>-19</b> ( <i>w</i> = 1 %),<br>BEHS ( <i>w</i> = 65.5 %),<br>KTFPB ( <i>x</i> <sub>1</sub> = 50 %),<br>PVC ( <i>w</i> = 33 %) | Na <sup>+</sup> , -3.3<br>K <sup>+</sup> , -1.9<br>NH <sub>4</sub> <sup>+</sup> , -1.9<br>Ca <sup>2+</sup> , -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59 ± 2†<br>40 ± 2††<br>39 ± 2†††<br>58 ± 2††††                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISFET;<br>pH = 4                                      | [8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Cs<sup>+</sup>-19</b> ( $w = 1$ %),<br>oNPOE ( $w = 65.5$ %),<br>KTFPB ( $x_i = 50$ %),<br>PVC ( $w = 33$ %)                               | Na <sup>+</sup> , -3.3<br>K+, -2.1<br>NH <sub>4</sub> +, -2.1<br>Ca <sup>2+</sup> , -3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56 ± 2 <sup>†</sup><br>41 ± 2 <sup>††</sup><br>42 ± 2 <sup>†††</sup><br>56 ± 2 <sup>††††</sup> | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ISFET;<br>pH = 4                                      | [8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Cs<sup>+</sup>-20</b> ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>KTFPB ( $x_i = 16.4 \%$ ),<br>PVC ( $w = 33.33 \%$ )              | $ \begin{array}{l} Li^+, -3.00;  Na^+, -2.38;  K^+, -0.99; \\ Rb^+, -0.47;  NH4^+, -1.40; \\ H^+, -2.06;  Be^{2+}, -3.62; \\ Mg^{2+}, -4.03;  Ca^{2+}, -3.44; \\ Sr^{2+}, -3.10;  Ba^{2+}, -2.88; \\ Cr^{2+}, -2.59;  Ni2^+, -2.47; \\ Cu^{2+}, -2.29;  Ni2^+, -2.47; \\ Cu^{2+}, -2.12;  Pb^{2+}, -2.11; \\ Hg^{2+}, -0.94 \\ Ag^+, +0.94 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.9                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>cdi =</sup><br>10 <sup>−4.3</sup> M;<br>25 °C    | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Cs+-21</b> $(w = 0.66 \%)$ ,<br>oNPOE $(w = 65.84 \%)$ ,<br>KTFPB $(x_1 = 20.8 \%)$ ,<br>PVC $(w = 33.33 \%)$                              | Li <sup>+</sup> , -1.44; Na <sup>+</sup> , -0.65; K <sup>+</sup> , +0.04;<br>Rb <sup>+</sup> , -0.10; NH <sub>4</sub> <sup>+</sup> , -1.79;<br>H <sup>+</sup> , -0.45; Be <sup>2+</sup> , -1.73;<br>Mg <sup>2+</sup> , -2.37; Ca <sup>2+</sup> , -2.21;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.6                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c <sub>dl</sub> =<br>10 <sup>-4.4</sup> M; 2;         | [9] 5°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| at.<br>?+<br>NH4+.<br>I Ca2+.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | continues on nev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                               | PVC ( $w = 32.2$ %)<br>Cs+-18 Cs+-18 ( $w = 1$ %),<br>BEHS ( $w = 65.5$ %),<br>KTFPB ( $x_1 = 50$ %),<br>PVC ( $w = 33$ %)<br>Cs+-19 ( $w = 1$ %),<br>oNPOE ( $w = 65.5$ %),<br>KTFPB ( $x_1 = 50$ %),<br>PVC ( $w = 33$ %)<br>Cs+-19 ( $w = 1$ %),<br>DVC ( $w = 33$ %)<br>Cs+-19 ( $w = 1$ %),<br>PVC ( $w = 33$ %)<br>Cs+-20 Cs+-21 ( $w = 65.5$ %),<br>KTFPB ( $x_1 = 50$ %),<br>PVC ( $w = 33.3$ %)<br>Cs+-20 Cs+-21 ( $w = 0.66$ %),<br>ONPOE ( $w = 65.84$ %),<br>KTFPB ( $x_1 = 16.4$ %),<br>PVC ( $w = 33.33$ %)<br>Cs+-21 Cs+-21 ( $w = 0.66$ %),<br>PVC ( $w = 33.33$ %)<br>T no.1 M Na <sup>+</sup> ,<br>T no.1 M Na <sup>+</sup> ,<br>T no.1 M Na <sup>+</sup> ,<br>T t <sup>+</sup> no.1 M Na <sup>+</sup> . | $\begin{aligned} & \nabla C \ (w = 32.2 \ \%) \\ & S^{+} - 18 \ (w = 1 \ \%), \\ & B EHS \ (w = 65.5 \ \%), \\ & \nabla TFPB \ (x_1 = 50 \ \%), \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ (w = 33 \ 33 \ \%) \\ & \nabla VC \ W \ W \ W \ W \ W \ W \ W \ W \ W \ $ | $\begin{split} & \nabla C \left( w = 32.2  \% \right) & Sr^2 + .3.5  Ba^2 +3.3 \\ & H^+ - 1.0 \\ Start B \left( w = 1  \% \right), & Na^+3.0 \\ & Start B \left( w = 65.5  \% \right), & Na^+3.0 \\ & XTPB \left( x_1 = 50  \% \right), & Na^+1.9 \\ & XTPB \left( x_1 = 50  \% \right), & Na^+3.3 \\ & NOE \left( w = 65.5  \% \right), & Na^+3.3 \\ & NTPB \left( x_1 = 50  \% \right), & Na^+3.3 \\ & NTPB \left( x_1 = 50  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & NTPE \left( x_1 = 50  \% \right), & Ca^2 +3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & Start P \left( w = 33  \% \right), & Na^+3.3 \\ & Start P \left( w = 1  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+3.3 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+1.9 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 65.5  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 55.5  \% \right), & Na^+2.3 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & Na^+2.1 \\ & NTPOE \left( w = 33.33  \% \right), & NTPOE \left( w $ | $\begin{split} & \nabla C & (w = 32.2 \ \%) & \text{ Net}^* - 3.5 \ \text{ Ba}^{2+}, -3.3 \\ & \text{ H}^*, -1.0 & \text{ Net}^*, -3.3 \\ & \text{ H}^*, -1.9 & \text{ K}^*, -1.9 \\ & \text{ SHB} & (w = 5.5 \ \%), & \text{ Net}^*, -3.1 & \text{ FM} \\ & \text{ STFB} & (w = 33 \ \%) & \text{ Net}^*, -3.1 & \text{ RM} \\ & \text{ NCC} & (w = 33 \ \%) & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 33 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -1.9 \\ & \text{ NCDE} & (w = 6.5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -2.1 \\ & \text{ NCDE} & (w = 6.5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -2.1 \\ & \text{ NCDE} & (w = 6.5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -2.1 \\ & \text{ NCDE} & (w = 6.5.5 \ \%), & \text{ Net}^*, -1.9 & \text{ Net}^*, -2.1 \\ & \text{ NCDE} & (w = 5.33 \ \%), & \text{ Net}^*, -2.1 & \text{ Net}^*, -2.1 \\ & \text{ NCDE} & (w = 5.5.4 \ \%), & \text{ Net}^*, -2.1 & \text{ Net}^*, -2.10 \\ & \text{ NCC} & (w = 33.33 \ \%) & \text{ Net}^*, -2.11 & \text{ Net}^*, -2.10 & \text{ Net}^*, -2.10 \\ & \text{ NCC} & (w = 33.33 \ \%) & \text{ Net}^*, -2.10 & \text$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                          | $\begin{split} & \nabla C \ (w = 32.2 \ \%) & S^2 + .3.3 \ Ba^2 +3.3 \ BHS \ (w = 1 \ \%), & S^2 + .3.5 \ Ba^2 +3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.0 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.1 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.1 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.1 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.3 \ BHS \ (w = 65.5 \ \%), & S^2 + .3.0 \ B^2 +2.11 \ B^2 + .2.12 \ B^2 +2.11 \ B^2 + .2.12 \ B^2 +2.11 \ B^2 + .2.12 \$ | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{split} & \text{VC} (w = 32.2 \ \text{e}) & \text{St}^{3}, -35, \text{Ba}^{2}, -3.3 & \text{H} & - & 0.1 & \text{St}^{2}, -3.5 \\ & \text{H}^{*}, -1.0 & \text{H}^{*}, -1.0 & \text{H} & - & 0.1 & \text{St}^{2}, 27\pm 7 & - \\ & \text{St}^{*}, -3.1 & \text{NH}, -1, 9 & \text{St}^{*}, -3.3 & \text{H} & - & 0.1 & \text{St}^{2}, 27\pm 7 & - \\ & \text{St}^{*}, -3.1 & \text{NH}, -1, 9 & \text{St}^{*}, -3.3 & \text{St}^{*}, -1.9 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 & -2.4 $ |

Potentiometric selectivity coefficients of ion-selective electrodes

1965

Table 6: Cs<sup>+</sup>-Selective Electrodes (Continued)

| <ul> <li>Cs+22 Cs+22 (w = 0.66 on DOE (w = 65. KTTPB (xi = 20. KTTPB (xi = 20. VC (w = 33.33 PVC (w = 33.33 PVC</li></ul> | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                    | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , -1.83;<br>-1.68;<br>, +2.93;<br>, -2.93;<br>, -0.99;<br>, -0.199;<br>, -2.70;<br>, +.2.70;<br>, +.2.70;<br>, +.1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.2;<br>-0.8;<br>, +1.2;<br>-0.7;<br>, 5<br><i>Settin Trans. 2</i> , 4                                                                                                                  | -D (D                                                                                 | 0.01<br>0.1<br>0.01<br>0.001<br>984). | 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001                             | 52.2                                       | 1 1 1                  | <sup>c</sup> di =<br>10-4.6 M; 25 °C<br>1.0.0.g.<br>1.0.0.g. | و<br>ا         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (w = 0.66 %),<br>3 (w = 65.84 %),<br>8 (x <sub>1</sub> = 20.6 %),<br>v = 33.33 %)<br>v = 33.33 %)<br>x = A. Ishikawa, H. Tamu<br>A. Ishikawa, H. Tamu<br>G.D. Christian, J.L.<br>Y G.D. Christian, J.L. | Ag <sup>+</sup> , +1.1.3<br>Li <sup>+</sup> , -2.27; Na <sup>+</sup> , -<br>Rb <sup>+</sup> , -0.39; MH <sub>4</sub> <sup>+</sup><br>H <sup>+</sup> , -1.10; Be <sup>2+</sup> , -<br>Mg <sup>2+</sup> , -2.77; Ca <sup>2-</sup><br>Ba <sup>2+</sup> , -2.55; Cu <sup>2+</sup> ,<br>Ni <sup>2+</sup> , -2.51; Hg <sup>2+</sup><br>Ni <sup>2+</sup> , -2.56; Cu <sup>2+</sup> ,<br>Rb <sup>2+</sup> , -3.37; Hg <sup>2+</sup><br>Na <sup>+</sup> , -1.8; Na <sup>+</sup> , -1<br>Rb <sup>+</sup> , -0.8; Ag <sup>+</sup> , +0<br>Li <sup>+</sup> , -1.1; Na <sup>+</sup> , -0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.5; Ag <sup>+</sup> , +0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> , H <sup>+</sup> , -0.5; Ag <sup>+</sup> , +0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> , H <sup>+</sup> , -0.5; Ag <sup>+</sup> , +0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> , -0, Rb <sup>+</sup> , +0, Rd <sup>+</sup> , -0, Rb <sup>+</sup> , +0, Rd <sup></sup> | 1.94; K+, -0.89;<br>,-0.99;<br>,-2.70;<br>,-2.70;<br>,-2.43;<br>,-1.15;<br>,+1.83;<br>,+1.83;<br>,+1.83;<br>,+1.83;<br>,+1.83;<br>,+1.2;<br>-0.8;<br>,+1.12;<br>-0.7;<br>.5<br>.5<br>.5<br>.7<br>.2, K+, -1.2;<br>.5<br>.5<br>.5<br>.47 (in table)<br>.5<br>.5<br>.5<br>.47 (in table)<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5 | 1) (                                                                                  | 0.01<br>0.1<br>0.01<br>0.001<br>984). | 0.01                                                                 | 52.2                                       | 1 I I                  | cdi =<br>10-4.6 M; 25 °<br>1.0.0.g.<br>1.0.0.g.              | <sup>[9]</sup> |
| +-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (w = 0.66 %),<br>3 (w = 65.84 %),<br>8 (xi = 20.6 %),<br>y = 33.33 %)<br>y = 33.33 %)<br>A. Ishikawa, H. Tamu<br>A. Ishikawa, H. Tamu<br>G.D. Christian, J.L.<br>Y G.D. Christian, G.D.                 | Li <sup>+</sup> , -0.27; Na <sup>+</sup> , -<br>Rb <sup>+</sup> , -0.39; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -1.10; Be <sup>2+</sup> , -<br>Mg <sup>2+</sup> , -2.71; Ca <sup>2-</sup> ,<br>Ba <sup>2+</sup> , -2.51; Co <sup>2+</sup> ,<br>Sl <sup>2+</sup> , -2.51; Co <sup>2+</sup> ,<br>Nl <sup>2+</sup> , -2.51; Ha <sup>2+</sup> ,<br>Nl <sup>2+</sup> , -3.37; Hg <sup>2+</sup> ,<br>Nl <sup>2+</sup> , -0.8; Ag <sup>+</sup> , +0<br>Li <sup>+</sup> , -1.1; Na <sup>+</sup> , -0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.5; Ag <sup>+</sup> , +0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>Hallman, R.A. Bartsch, <i>Tolum</i> , <i>Soc.</i> , <i>J</i><br>Hallman, R.A. Bartsch, <i>Tolum</i> , <i>Soc.</i> , <i>J</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.94; K+, -0.89;<br>, -0.99;<br>.3.17;<br>, -2.70;<br>, -2.43;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, +1.83;<br>, -0.15;<br>, +1.15;<br>, +1.2;<br>-0.7;<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                                                                             | 1) (1)                                                                                | 0.1<br>0.01<br>0.001<br>984).         | 0.0100.00000000000000000000000000000000                              | 22.2                                       | 1 1 1                  | cdi =<br>10-4.6 M; 25 °<br>r.o.o.g.<br>r.o.o.g.              | [9]            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Ishikawa, H. Tamu<br>ç G.D. Christian, J.L.<br>ç Y.A. Ibrahim, G.D.<br>, D. Diamond, M.R. §                                                                                                          | Li <sup>+</sup> , -1.8; Na <sup>+</sup> , -1.<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.8; Ag <sup>+</sup> , +0<br>Li <sup>+</sup> , -1.1; Na <sup>+</sup> , -0<br>Rb <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> ,<br>H <sup>+</sup> , -0.5; Ag <sup>+</sup> , +0<br>Li <sup>*</sup> , Tshono, J. Chem. Soc., J<br>Hallman, R.A. Bartsch, Takon,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2; K <sup>+</sup> , -1.1;<br>-0.8;<br>-47 (in table)<br>.6; K <sup>+</sup> , -1.2;<br>.5<br>.5<br><i>Perkin Trans.</i> 2, 4<br><i>in.</i> <b>35</b> , 780–794 (                                                                                                                                                                                                      | 0(1)                                                                                  | 0.01<br>0.001<br>984).                | 0.01                                                                 | 1 1                                        | 1 1                    | г.о.о.g.<br>г.о.о.g.                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Ishikawa, H. Tamı<br>, G.D. Christian, J.L.<br>, Y.A. Ibrahim, G.D.                                                                                                                                  | H <sup>+</sup> , -0.8; Ag <sup>+</sup> , +0.<br>Li <sup>+</sup> , -1.1; Na <sup>+</sup> , -0<br>Rb <sup>+</sup> , -0.2; NH <sup>+</sup> ,<br>H <sup>+</sup> , -0.5; Ag <sup>+</sup> , +0<br>Ira, T. Shono, J. Chem. Soc., J<br>Hallman, R.A. Bartsch, Talac,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .4/ (m table)<br>.6; K <sup>+</sup> , -1.2;<br>-0.7;<br>.5<br>?erkin Trans. 2, 4<br>m. <b>35</b> , 789–794 (                                                                                                                                                                                                                                                         | 0(1                                                                                   | 0.001 0.84).                          | 0.001                                                                | I                                          | I                      | r.o.o.g.                                                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Ishikawa, H. Tamu, G.D. Christian, J.L.<br>; Y.A. Ibrahim, G.D.<br>t, D. Diamond, M.R. §                                                                                                             | ıra, T. Shono, <i>J. Chem. Soc., İ</i><br>Hallman, R.A. Bartsch, <i>Talan</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>2</sup> erkin Trans. 2, 4<br>ta. <b>35</b> , 789–794 (                                                                                                                                                                                                                                                                                                          | 147–450 (19<br>(1988)                                                                 | 984).                                 |                                                                      |                                            |                        |                                                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Cygan, J.F. Bierna<br>nenko, N.Y. Titova, N<br>M. Careri, A. Casnati,<br>tenberg, Z. Brzozka, <i>i</i><br>, D. Mulcahy, W.S. M                                                                       | <ul> <li>A.S. Attiýať, Y.A. Ibrahim, G.D. Christian, <i>Microchem, J.</i>, <b>37</b>, 122–128 (1988).</li> <li>A. Cadogan, D. Diamond, M.R. Smyth, G. Svehla, M.A. McKervey, E.M. Seward, S.J. Harris, <i>Analyst</i>, <b>115</b>, 1207–1210 (1990).</li> <li>A. Luboch, A. C. yan, J.F. Biemat, <i>Tetrahedron</i>, <b>47</b>, 4101–4112 (1991).</li> <li>N.G. Lukyanenko, N.Y. Titova, N.L. Nesterenko, T.I. Kirichenko, S.N. Shcherbakov, <i>Anal. Chim. Acta</i>, <b>263</b>, 169–173 (1992).</li> <li>C. Bocchi, M. Careri, A. Casnati, G. Mori, <i>Anad. Chem.</i>, <b>67</b>, 4238 (1995).</li> <li>R.J.W. Lugtenberg, Z. Brzozka, A. Casnati, R. Ungaro, J.F.J. Engbersen, D.N. Reinhoudt, <i>Anal. Chim. Acta</i>, <b>310</b>, 263–267 (1995).</li> <li>M.G. Fallon, D. Mulcahy, W.S. Murphy, J.D. Glennon, <i>Analyst</i>, <b>121</b>, 127–131 (1996).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122–128 (1988).<br>rvey, E.M. Sewai<br>2 (1991).<br>ko, S.V. Shcherbi<br>34–4238 (1995).<br>ngbersen, D.N.R<br><b>121</b> , 127–131 (1                                                                                                                                                                                                                               | urd, S.J. Hai<br>urd, S.J. Hai<br>akov, <i>Anal.</i><br>teinhoudt, <i>i</i><br>1996). | ırris, Anal<br>Chim. A<br>Anal. Chi   | yst, <b>115</b> , 120<br>cta, <b>263</b> , 16<br>m. Acta, <b>310</b> | )7-1210 (15<br>9-173 (199:<br>), 263-267 ( | 90).<br>2).<br>(1995). |                                                              |                |
| H <sup>3</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C12H25                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                      | OC₂H₅                                                                                 |                                       |                                                                      | $\langle$                                  | $\langle$              |                                                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                      | °                                                                                     |                                       | (CH <sub>3</sub> ) <sub>3</sub> C                                    |                                            |                        | C(CH <sub>3</sub> )3                                         |                |
| Cs <sup>+</sup> -1 (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /2 / /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2                                                                                                                                                                | <b>Cs<sup>+</sup>-3</b> ( <i>M</i> <sub>r</sub> = 321.34 ) R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cs <sup>+</sup> -4 (M <sub>r</sub> = 1489.95 ):<br>R = <i>tert</i> -Bu<br>Cc <sup>+</sup> -E (M = 1333.68 ): D = H                                                                                                                                                                                                                                                   | 5):<br>•): Б – Н                                                                      |                                       |                                                                      | $Cs^+-2$ ( $M_r = 516.67$ )                | - 516.67 )             |                                                              |                |



Potentiometric selectivity coefficients of ion-selective electrodes

| S              |
|----------------|
| H H            |
| ŏ              |
| Ē              |
| 5              |
| <u>e</u>       |
| $\Xi$          |
| -              |
| ž              |
| ÷Ξ             |
| 2              |
| E,             |
| e.             |
| $\mathbf{v}$   |
| - L            |
| - <del>4</del> |
| H              |
| F              |
| ~              |
| ň              |
|                |
|                |

| ionophore |                                                                                                                 | lgK <sub>NH4</sub> +,B <sup>n+</sup>                                                                                                                       | method     | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)             | slope<br>decade) | linear<br>range<br>(M)             | remarks                                                                    | ref. |
|-----------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------------------------------------|------------------|------------------------------------|----------------------------------------------------------------------------|------|
| NH4+-1    | <b>NH4</b> <sup>+-1</sup> ( $w = 25 \%$ ),<br>nujol ( $w = 50 \%$ ),<br>octanol ( $w = 25 \%$ )                 | Li <sup>+</sup> , -3.66; Na <sup>+</sup> , -2.57;<br>K <sup>+</sup> , -0.40; Rb <sup>+</sup> , -0.60;<br>Cs <sup>+</sup> , -1.89; H <sup>+</sup> , -2.14   | SSM        | I                           | I                                           | Z                | 10-5-10-3                          | I                                                                          | [1]  |
|           | NH <sub>4</sub> +1, PVC,<br>tris(2-ethylhexyl) phosphate<br>diphenyl ether<br>(weight ratio not reported)       | Na <sup>+</sup> , -3.0; K <sup>+</sup> , -1.0;<br>Mg <sup>2+</sup> , -4.7; Ca <sup>2+</sup> , -4.3                                                         | FIM        | I                           |                                             | 55.5             | 10 <sup>-6</sup> -10 <sup>-1</sup> | 1                                                                          | [2]  |
|           | <b>NH4+1</b> $(w = 1 \%)$ ,<br>DOA $(w = 66.8 \%)$ ,                                                            | Na+, -2.62; K+, -0.89;<br>Mg <sup>2+</sup> , -3.87; Ca <sup>2+</sup> , -2.62                                                                               | SSM        | 0.01                        | 0.01                                        | 57.5             | I                                  | $t_{\rm resp} = 30  {\rm s}$                                               | [3]  |
|           | FVC(W = 32.2%)                                                                                                  | Na <sup>+</sup> , -2.8/; K <sup>+</sup> , -0.90                                                                                                            | FIM        | I                           | Na <sup>+</sup> , 1<br>К <sup>+</sup> , 0.1 |                  |                                    |                                                                            |      |
|           | NH4+1 ( <i>w</i> = 1.9 %),<br>DOA ( <i>w</i> = 30.2 %),<br>PVC ( <i>w</i> = 34 %),<br>VAGH ( <i>w</i> = 34 %)   | Na <sup>+</sup> , -2.47; K <sup>+</sup> , -0.82;<br>Mg <sup>2+</sup> , -3.60; Ca <sup>2+</sup> , -2.73                                                     | SSM        | 0.01                        | 0.01                                        | 55.5             | I                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           | NH4 <sup>+-1</sup> ( <i>w</i> = 1.9 %),<br>DEA ( <i>w</i> = 30.2 %),<br>PVC ( <i>w</i> = 67.9 %)                | Na <sup>+</sup> , -1.76; K <sup>+</sup> , -0.92;<br>Mg <sup>2+</sup> , -3.20; Ca <sup>2+</sup> , -2.06                                                     | SSM        | 0.01                        | 0.01                                        | 55.5             | 1                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           | NH <sub>4</sub> +-1 ( $w = 1.9 \%$ ),<br>oNPPE ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ )                      | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -0.82;<br>Mg <sup>2+</sup> , -3.54; Ca <sup>2+</sup> , -2.49                                                      | SSM        | 0.01                        | 0.01                                        | 47.0             | 1                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           | NH <sub>4</sub> +-1 ( $w = 1.9 \%$ ),<br>DOPP ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ )                       | Na <sup>+</sup> , -1.84; K <sup>+</sup> , -1.15;<br>Mg <sup>2+</sup> , -2.85; Ca <sup>2+</sup> , -1.39                                                     | SSM        | 0.01                        | 0.01                                        | 53.0             | 1                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           | NH4 <sup>+-1</sup> ( <i>w</i> = 1.9 %),<br>DOS ( <i>w</i> = 30.2 %),<br>PVC ( <i>w</i> = 67.9 %)                | Na <sup>+</sup> , -2.28; K <sup>+</sup> , -0.68;<br>Mg <sup>2+</sup> , -3.78; Ca <sup>2+</sup> , -2.59                                                     | SSM        | 0.01                        | 0.01                                        | 58.0             | I                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           | NH <sub>4</sub> +1 ( $w = 1.9 \%$ ),<br>DBP ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ )                         | Na <sup>+</sup> , -1.96; K <sup>+</sup> , -0.89;<br>Mg <sup>2+</sup> , -3.55; Ca <sup>2+</sup> , -2.42                                                     | SSM        | 0.01                        | 0.01                                        | 52.5             | 1                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           | <b>NH</b> <sub>4</sub> +-1 ( $w = 1.9 \%$ ),<br>tripentyl phosphate ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ ) | Na <sup>+</sup> , -1.59; K <sup>+</sup> , -0.92;<br>Mg <sup>2+</sup> , -3.25; Ca <sup>2+</sup> , -2.08                                                     | SSM        | 0.01                        | 0.01                                        | 55.0             | I                                  | $t_{\text{resp}} = 30 \text{ s;}$  <br>$c_{\text{dl}} = 10^{-5} \text{ M}$ | [3]  |
|           | NH4 <sup>+-1</sup> ( $w = 4.6 \%$ ),<br>DOA ( $w = 29.4 \%$ ),<br>PVC ( $w = 66 \%$ )                           | Na <sup>+</sup> , -2.63; K <sup>+</sup> , -0.82;<br>Mg <sup>2+</sup> , -4.13; Ca <sup>2+</sup> , -3.96                                                     | SSM        | 0.01                        | 0.01                                        | 55.0             | I                                  | $t_{\rm resp} = 30 \text{ s};$<br>$c_{\rm dl} = 10^{-5} \text{ M}$         | [3]  |
|           | <b>NH4<sup>+1</sup></b> ( $w = 0.2  \%$ ),<br>DOA ( $w = 30.7  \%$ ),<br>PVC ( $w = 69.1  \%$ )                 | Na <sup>+</sup> , -2.51; K <sup>+</sup> , -0.96;<br>Mg <sup>2+</sup> , -4.01; Ca <sup>2+</sup> , -3.99<br>Na <sup>+</sup> , -1.85; K <sup>+</sup> , -0.96; | SSM<br>FIM | 0.01                        | 0.01<br>Na <sup>+</sup> , 1                 | 56.2             | I                                  | $t_{\text{resp}} = 30 \text{ s};$<br>$c_{\text{dl}} = 10^{-5} \text{ M}$   | [3]  |
|           |                                                                                                                 |                                                                                                                                                            |            |                             |                                             |                  |                                    |                                                                            |      |

Y. UMEZAWA et al.

| ionophore | membrane<br>composition                                                                                                                                                         | $\lg K_{\mathrm{NH4^+,B^{n+}}}$                                                                                                                | method    | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>decade) | linear<br>range<br>(M)             | remarks r                                                                                           | ref.                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|-------------------------------------------------------|------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|
|           | · ·                                                                                                                                                                             | Mg <sup>2+</sup> , Ca <sup>2+</sup> ,<br>no interference                                                                                       |           |                             | K <sup>+</sup> , 0.1                                  |                  |                                    |                                                                                                     |                     |
|           | <b>NH4+1</b> ( $w = 1.9 \%$ ),<br>dinonyl adipate ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ ),<br>KTpCIPB ( $x_1 = 67 \%$ )                                                     | K <sup>+</sup> , +0.30                                                                                                                         | SSM       | 0.01                        | 0.01                                                  | 53.0             | I                                  | $t_{\text{resp}} = 30 \text{ s};$ [<br>$c_{\text{dl}} = 10^{-5} \text{ M}$                          | [3]                 |
|           | NH <sub>4</sub> +1 ( $w = 1.9 \%$ ),<br>dinonyl adipate ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ ),<br>KTpCIPB ( $x_i = 168 \%$ )                                              | K+, +0.4                                                                                                                                       | SSM       | 0.01                        | 0.01                                                  | 54.0             | I                                  | $t_{\text{resp}} = 30 \text{ s;}$ [<br>$c_{\text{dl}} = 10^{-5} \text{ M}$                          | [3]                 |
|           | NH <sub>4</sub> +1 ( $w = 1.9 \%$ ),<br>DOA ( $w = 30.2 \%$ ),<br>PVC ( $w = 67.9 \%$ ),<br>KTpCIPB ( $x_1 = 235 \%$ )                                                          | K <sup>+</sup> , +0.34                                                                                                                         | SSM       | 0.01                        | 0.01                                                  | 53.0             | I                                  | $t_{\text{resp}} = 30 \text{ s;}$ [<br>$c_{\text{dl}} = 10^{-5} \text{ M}$                          | [3]                 |
|           | NH4+1, cellulose triacetate                                                                                                                                                     | $\begin{array}{l} Li^+,-4.7;Na^+,-2.9;\\ K^+,-0.9;H^+,-4.3;\\ N(CH_3)4^+,-3.7;\\ Mg^{2+},-3.2;Ca^{2+},-5.0\end{array}$                         | SSM       | 0.1                         | 0.1                                                   | I                | 1                                  | asymmetric [<br>membrane                                                                            | [4]                 |
|           | NH4+1,<br>hydroxylated cellulose triacetate                                                                                                                                     | $\begin{array}{l} Li^+, -4.5;  Na^+, -2.9; \\ K^+, -0.9;  H^+, -4.3; \\ N(CH_{3})_{4^+}, -3.7; \\ Mg^{2^+}, -3.2;  Ca^{2^+}, -4.8 \end{array}$ | SSM       | 0.1                         | 0.1                                                   | I                | I                                  | asymmetric [<br>membrane                                                                            | [4]                 |
|           | NH4+1.<br>aminated cellulose triacetate                                                                                                                                         | $\begin{array}{l} Li^+,-4.5;Na^+,-2.9;\\ K^+,-0.9;H^+-4.3;\\ N(CH_3)_{4^+},-4.2;\\ Mg^{2+},-3.2;Ca^{2+},-4.9\end{array}$                       | SSM       | 0.1                         | 0.1                                                   | I                | I                                  | asymmetric [.<br>membrane                                                                           | [4]                 |
|           | $\label{eq:NH4+1} \begin{split} \text{NH4+1} & (w = 10 \ \%), \\ \text{KTpCIPB} & (x_i = 12 \ \%), \\ \text{DBS} & (w = 86.5 \ \%), \\ \text{PVC} & (w = 2.5 \ \%) \end{split}$ | Na <sup>+</sup> , $-2.7$ ; K <sup>+</sup> , $-1.0$ ;<br>Mg <sup>2+</sup> , no interference;<br>Ca <sup>2+</sup> , no interference              | FIM       | I                           | Na+,<br>3.13 mM<br>K+, 200 μM                         |                  | $57.6 \pm 1.1 \ 10^{-5} - 10^{-3}$ | minielectr.; [<br>$c_{\rm dl} = 10^{-6}$ M;<br>FIA                                                  | [5]                 |
|           | <b>NH4+1</b> ( $w = 1$ %),<br>DOA ( $w = 66$ %),<br>polyurethane ( $w = 26.4$ %),<br>PVA ( $w = 6.6$ %)                                                                         | $\begin{array}{l} Li^+,-4.8, Na^+,-3.2;\\ K^+,-1.2, N(CH_3)_4^+,-4.0;\\ H^+,-4.4; Mg^{2+},-4.7;\\ Ca^{2+},-4.7\end{array}$                     | SSM<br>0; | I                           | I                                                     | 48               | I                                  | PVA: poly- [6]<br>(vinylchloride/vinyl<br>acetate/vinyl alchol);<br>ISFET; t <sub>resp</sub> < 10 s | 5]<br>vinyl<br>.0 s |

continues on next page

| Ð            |
|--------------|
| ţe.          |
| ıu           |
| ιti          |
| õ            |
| Ċ.           |
| Š            |
| des          |
| Ō.           |
| ctr          |
| O O          |
| Ξ            |
| ē            |
| ÷            |
| SCI          |
| ĕ            |
| Š            |
| +'           |
| - <u>4</u> - |
| 晋            |
| 4            |
| ř            |
| e            |
| -            |

| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                           | ionophore                                 | membrane<br>composition                                                                                                         | lgK <sub>NH4</sub> +,Bn+                                                                                                                                                                                     | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)                  | slope<br>decade) | linear<br>range<br>(M)             | remarks                                                                                                                                                              | ref.                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                           |                                           | <b>NH4+-1</b> ( $w = 1$ %),<br>DOA ( $w = 66$ %),<br>polyurethane ( $w = 26.4$ %),<br>PVA ( $w = 6.6$ %)                        | $\begin{array}{l} Li^+,-4.1; Na^+,-3.1;\\ K^+,-1.2; N(CH_3)4^+,-3.9\\ H^+,-3.5; Mg^{2+},-4.4;\\ Ca^{2+},-4.5\end{array}$                                                                                     |        | I                           | 1                                                | 48               | I                                  | PVA: poly- [6]<br>(vinylchloride/vinyl<br>acetate/vinyl alchol);<br>ISFET; Membrane<br>surface was covered<br>with hydrophilic<br>polyurethane.                      | [6]<br>ide/viny1<br>/1 alchol);<br>mbrane<br>covered<br>shilic<br>ie. |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                           |                                           | <b>NH</b> <sub>4</sub> + <b>1</b> ( $w = 1$ %),<br>DOA ( $w = 66$ %),<br>polyurethane ( $w = 26.4$ %),<br>PVA ( $w = 6.6$ %)    | Li <sup>+</sup> , -4.8; Na <sup>+</sup> , -3.2;<br>K <sup>+</sup> , -1.2; N(CH <sub>3</sub> ) <sub>4</sub> <sup>+</sup> , -4.0<br>H <sup>+</sup> , -4.4; Mg <sup>2+</sup> , -4.7;<br>Ca <sup>2+</sup> , -4.7 |        | I                           | I                                                | 48               | I                                  | PVA: poly- [6]<br>(vinylchloride/vinyl<br>acetate/vinyl alchol);<br>ISFET; Membrane<br>was covered with<br>hydrophilic poly-<br>urerthane loaded<br>with polylysine. | [6]<br>[de/vinyl<br>/l alchol);<br>mbrane<br>1 with<br>poly-<br>sine. |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                           |                                           | <b>NH4+1</b> ( $w = 1.9$ %),<br>KTpCIPB ( $x_1 = 33$ %),<br>DOS ( $w = 67$ %), PVC ( $w \approx 31$ %)                          | Na <sup>+</sup> , -0.73; K <sup>+</sup> , -0.61                                                                                                                                                              | FIM    | I                           | I                                                | 49.2             | 10 <sup>-5</sup> -10 <sup>-2</sup> | FIA                                                                                                                                                                  | [7]                                                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                            |                                           | NH4+-1 (w = 3 %),<br>PVC (w = 30 %), BEHS (w = 66.5 %),<br>KTpCIPB (x <sub>i</sub> = 21 %)                                      | $\begin{array}{l} Li^+,-3.5;Na^+,-2.4;\\ K^+,-1.0;Rb^+,-1.5;\\ Cs^+,-2.4;Mg^{2+},-4.0;\\ Ca^{2+},-3.8;Sr^{2+},-3.6;\\ Ba^{2+},-4.0\end{array}$                                                               | SSM    | 0.1                         | 0.1                                              | 1                | I                                  | I                                                                                                                                                                    | [8]                                                                   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                            |                                           |                                                                                                                                 | Na <sup>+</sup> , -2.5; K <sup>+</sup> , -0.8                                                                                                                                                                | FIM    | I                           | 0.01                                             |                  |                                    |                                                                                                                                                                      |                                                                       |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                           |                                           | <b>NH4+-1</b> ( $w = 4.4 \%$ ),<br>silicone rubber ( $w = 94.15 \%$ ),<br>KTpCIPB ( $x_1 = 41 \%$ )                             | Na <sup>+</sup> , -2.3                                                                                                                                                                                       | FIM    | I                           | 0.01                                             | 46               | I                                  | $c_{\rm dl} = 4$<br>× 10 <sup>-5</sup> M                                                                                                                             | [6]                                                                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                           |                                           | <b>NH4+-1</b> ( $w = 2.1  \%$ ),<br>silicone rubber ( $w = 69.1  \%$ ),<br>BEHS ( $w = 28  \%$ ),<br>KTpCIPB ( $x_i = 48  \%$ ) | Na+, -3.1; K+, -0.8                                                                                                                                                                                          | FIM    | I                           | Na <sup>+</sup> , 0.01<br>K <sup>+</sup> , 0.001 | 54               | I                                  | $c_{\rm dl} = 4 \times$ $10^{-5} \rm M;$ $\tau > 7 \rm d$                                                                                                            | [6]                                                                   |
| Li <sup>+</sup> , -4.3; Na <sup>+</sup> , -2.9; SSM 0.1 0.1<br>K <sup>+</sup> , -0.9; Rb <sup>+</sup> , -1.3;<br>Cs <sup>+</sup> , -2.4; H <sup>+</sup> , -3.6; | H4 <sup>+</sup> -1/<br>H4 <sup>+</sup> -2 | NH4+-1/NH4+-2 (72:28)<br>tris(2-ethylhexyl) phosphate<br>(weight ratio not reported)                                            | Li <sup>+</sup> , -2.38; Na <sup>+</sup> , -2.70;<br>K <sup>+</sup> , -0.92; Rb <sup>+</sup> , -1.37;<br>Cs <sup>+</sup> , -2.32; H <sup>+</sup> , -1.80;<br>Ca <sup>2+</sup> , -3.77                        | FIM    | I                           | 0.1                                              | 58.0             | $10^{-5}$ - $10^{-1}$              | 25 °C;<br>micro-<br>electrode                                                                                                                                        | [10]                                                                  |
|                                                                                                                                                                 |                                           | <b>NH4+1/NH4+-2</b> (72:28; <i>w</i> = 0.5 %),<br>PVC ( <i>w</i> = 32.7 %),<br>DOA ( <i>w</i> = 66.8 %)                         | Li+, -4.3; Na+, -2.9;<br>K+, -0.9; Rb+, -1.3;<br>Cs <sup>+</sup> , -2.4; H <sup>+</sup> , -3.6;                                                                                                              | SSM    | 0.1                         | 0.1                                              | 57.5 ± 1.5       | $57.5 \pm 1.5$ $10^{-5} - 10^{-1}$ | r.o.o.g.; [<br>minielectrode;<br>22 °C;                                                                                                                              | [11]<br>de;                                                           |

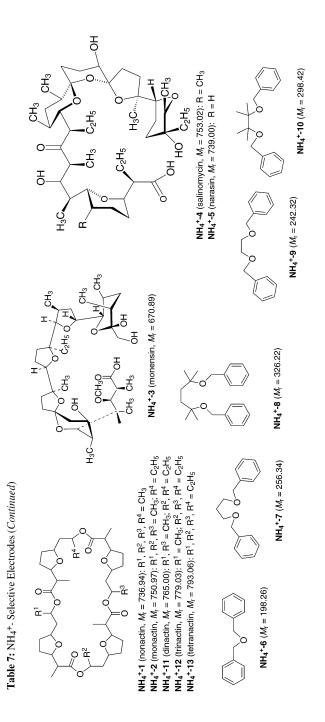
Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                                                   | lgKNH4+,Bn+                                                                                                                                                                                                                             | method | primary interferi<br>ion conc. ion conc.<br>(M) (M) | interfering<br>ion conc.<br>(M) | slope<br>decade) | linear<br>range<br>(M)                        | remarks                                                                                               | ref.        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------|---------------------------------|------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                     | $\begin{array}{l} Mg^{2+},-5.1;Ca^{2+},-5.1;\\ Sr^{2+},-5.0;Ba^{2+},-4.7 \end{array}$                                                                                                                                                   |        |                                                     |                                 |                  |                                               | $t_{\rm resp} < 1  \min$                                                                              |             |
| <b>NH4+-1/NH4+2</b> (72:28; w = 0.5 %),<br>PVC (w = 32.7 %),<br>DOA (w = 66.8 %)                                                                    | $\begin{array}{l} Li^+, -3.6;  Na^+, -2.9; \\ K^+, -0.8;  Rb^+, -1.2; \\ Cs^+, -2.4;  H^+, -3.8; \\ Mg^{2+}, -5.5;  Ca^{2+}, -4.8; \\ Sr^{2+}, -5.1;  Ba^{2+}, -5.5 \end{array}$                                                        | WSS    | 0.1                                                 | 0.1                             | 57.5 ± 1.5       | $57.5 \pm 1.5 \ 10^{-5} - 10^{-1}$            | 22 °C;<br>r.o.o.g.;<br>t <sub>resp</sub> < 1 min                                                      | [11]        |
| <b>NH<sub>4</sub>+-J/NH<sub>4</sub>+-2</b> (72:28; <i>w</i> = 1.1 %), crosslinking agent ( <i>w</i> = 13.6 %), silicone rubber ( <i>w</i> = 85.3 %) | $\begin{array}{l} Li^+, -4.6;  Na^+, -2.8; \\ K^+, -0.7;  Rb^+, -1.1; \\ Cs^+, -2.3;  Mg^{2+}, -4.9; \\ Ca^{2+}, -4.8;  Sr^{2+}, -5.1; \\ Ba^{2+}, -5.3 \end{array}$                                                                    | WSS    | 0.1                                                 | 0.1                             | 57.8 ± 0.4       | 57.8 ± 0.4 10 <sup>-6</sup> −10 <sup>-1</sup> |                                                                                                       | [12]        |
|                                                                                                                                                     | H <sup>+</sup> , -4.7                                                                                                                                                                                                                   | FIM    | I                                                   | 0.01                            |                  |                                               |                                                                                                       |             |
| NH4+-1/NH4+-2 (75:25; satn.),<br>tris(2-ethylhexyl) phosphate                                                                                       | Na <sup>+</sup> , -0.17; K <sup>+</sup> , -0.07;<br>Ca <sup>2+</sup> , -1.15                                                                                                                                                            | FIM    | I                                                   | 0.1                             | 50-55            | 10 <sup>-5</sup> -10 <sup>-1</sup>            | $20 \pm 0.5 $ °C; [13]<br>microelectrode;<br>$t_{90} = 10$ s;<br>5 < pH < 8                           | [13]<br>de; |
| <b>NH<sub>4</sub>+-I/NH<sub>4</sub>+-2</b> (75:25; $w = 10$ %),<br>NaTPB (x <sub>1</sub> = 18 %),<br>oNPOE ( $w = 89$ %)                            | Na <sup>+</sup> , -1.70; K <sup>+</sup> , -0.42;<br>Ca <sup>2+</sup> , -2.7 0                                                                                                                                                           | FIM    | I                                                   | 0.1                             | 50-55            | 10 <sup>-5</sup> -10 <sup>-1</sup>            | $20 \pm 0.5 ^{\circ}\text{C};$ []<br>microelectrode;<br>$t_{90} = 10 ^{\circ}\text{s};$<br>5 < pH < 8 | [13]<br>de; |
| <b>NH<sub>4</sub>+-1/NH<sub>4</sub>+-2</b> (75:25; $w = 10$ %),<br>oNPOE ( $w = 90$ %)                                                              | Na+, -1.70; K+, -0.40;<br>Ca <sup>2+</sup> , -1.15                                                                                                                                                                                      | FIM    | I                                                   | 0.1                             | 50-55            | 10-5-10-1                                     | $20 \pm 0.5 \circ C;$ [1<br>microelectrode;<br>$t_{90} = 10 s$<br>5 < pH < 8                          | [13]<br>de; |
| <b>NH<sub>4</sub>+-1/NH<sub>4</sub>+-2</b> (75:25; $w = 10$ %),<br>KTpCIPB ( $w_1 = 12$ %),<br>oNPOE ( $w = 89$ %)                                  | Na <sup>+</sup> , -1.7; K <sup>+</sup> , -0.42;<br>Ca <sup>2+</sup> , -2.7                                                                                                                                                              | FIM    | I                                                   | 0.1                             | 50-55            | 10 <sup>-5</sup> -10 <sup>-1</sup>            | 20 ± 0.5 °C; [13]<br>microelectrode;<br>t90 = 10 s;<br>5 < pH < 8                                     | [13]<br>de; |
| NH <sub>4</sub> +-1/NH <sub>4</sub> +-2 (75:25; $w = 6.9 \%$ ),<br>KTpCIPB ( $x_1 = 12 \%$ ),<br>oNPOE ( $w = 92.4 \%$ )                            | $\begin{array}{l} Li^+, -3.6;  Na^+, -2.0; \\ K^+, -0.6;  Rb^+, -0.9; \\ Cs^+, -1.7;  H^+, -2.2; \\ N(CH_3)4^+, -1.8; \\ AcCh^+, -1.9;  Mg^{2+}, -4.4; \\ Ca^{2+}, -4.2;  Sr^{2+}, -4.1; \\ Ba^{2+}, -3.8;  Mn^{2+}, -3.8; \end{array}$ | SSM    | 0.1                                                 | 0.1                             | 59.2             | 10-5-10-1                                     | 22 ± 1 °C; [<br>microelectrode                                                                        | [14]<br>de  |

continues on next page

| Table 7: NH <sub>4</sub> <sup>+</sup> - Selective Electrodes ( <i>Continued</i> ) | onophore membrane |
|-----------------------------------------------------------------------------------|-------------------|
| Table 7: Nl                                                                       | ionophore         |

| hore membrane   | mbrane                                                                                                       | $\lg K_{\mathrm{NH4^+,Bn^+}}$                                                                                                      | method |                  | interfering slope | slope          | linear       | remarks                                                | ref. |
|-----------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------------------|----------------|--------------|--------------------------------------------------------|------|
| COL             | composition                                                                                                  |                                                                                                                                    |        | ion conc.<br>(M) | ion conc.<br>(M)  | decade)        | range<br>(M) |                                                        |      |
| HN              | $\mathbf{NH4^{+-1/NH4^{+-2}}} (75:25; w = 0.75 \%),$                                                         | Li <sup>+</sup> , -2.66; Na <sup>+</sup> , -2.17;                                                                                  | SSM    | I                | I                 | 55.2           | I            | $c_{\rm dl} = 5$                                       | [15] |
| DO<br>PV        | DOS ( <i>w</i> = 66 %),<br>PVC ( <i>w</i> = 33 %),                                                           | K+, +0.24; Mg <sup>2+</sup> , -4.09;<br>Ca <sup>2+</sup> , -4.11                                                                   |        |                  |                   | ± 0.98         |              | × 10 <sup>-6</sup> M                                   |      |
| KT              | KTpCIPB ( $x_i = 41 \ \%$ )                                                                                  | Li+, -1.98; Na+, -2.11;<br>K+, +0.09; Mg <sup>2+</sup> , -3.08                                                                     | FIM    | I                | 0.01              |                |              |                                                        |      |
| HN O<br>No      | NH <sub>4</sub> +-1/NH <sub>4</sub> +-2 (75:25; $w = 0.75$ %),<br>oNPPE ( $w = 66$ %),<br>PVC ( $w = 33$ %), | Li <sup>+</sup> , -2.43; Na <sup>+</sup> , -1.98;<br>K <sup>+</sup> , -0.38; Mg <sup>2+</sup> , -3.94;<br>Ca <sup>2+</sup> , -3.92 | SSM    | I                | I                 | 55.2<br>± 0.98 | I            | $c_{\rm dl} = 5$<br>× 10 <sup>-6</sup> M               | [15] |
| KT              | KTpCIPB $(v_i = 41 \%)$                                                                                      | Li <sup>+</sup> , -2.11; Na <sup>+</sup> , -2.00;<br>K <sup>+</sup> , -1.95; Mg <sup>2+</sup> , -3.05;<br>Ca <sup>2+</sup> , -3.11 | FIM    | I                | 0.01              |                |              |                                                        |      |
| NH<br>DB<br>PV( | NH4 <sup>+</sup> -1/NH4 <sup>+</sup> -2 (75:25; w = 0.75 %),<br>DBS (w = 66 %),<br>PVC (w = 33 %),           | Li <sup>+</sup> , -2.11; Na <sup>+</sup> , -2.49;<br>K <sup>+</sup> , -0.26; Mg <sup>2+</sup> , -3.77;<br>Ca <sup>2+</sup> , -3.80 | SSM    | I                | I                 | 55.2<br>± 0.98 | I            | $c_{\rm dl} = 5$<br>× 10 <sup>-6</sup> M               | [15] |
| KT              | KTpCIPB (x <sub>i</sub> = 41 %)                                                                              | Li+, -2.25; Na+, -2.05;<br>K+, -0.87 Mg <sup>2+</sup> , -3.77;<br>Ca <sup>2+</sup> , -3.08                                         | FIM    | I                | 0.01              | I              | I            |                                                        |      |
| HN<br>OT<br>PVY | $NH_4^{+}-1/NH_4^{+}-2 (75:25; w = 0.75 \%),$<br>TOP* ( $w = 66 \%$ ),<br>PVC ( $w = 33 \%$ ),               | Li+, -0.74; Na+, -2.30;<br>K+, -0.42; Mg <sup>2+</sup> , -3.73;<br>Ca <sup>2+</sup> , -2.89                                        | SSM    | I                | I                 | 55.2<br>± 0.98 | I            | $c_{\rm dl} = 5$<br>× 10 <sup>-6</sup> M<br>* trioctyl | [15] |
| KT              | KTpCIPB $(x_i = 41 \%)$                                                                                      | Li <sup>+</sup> , -1.71; Na <sup>+</sup> , -1.78;<br>K <sup>+</sup> , -0.80; Mg <sup>2+</sup> , -3.02;<br>Ca <sup>2+</sup> , -3.08 | FIM    | I                | 0.01              |                |              | phosphate                                              |      |
| HN<br>OD<br>VY  | NH4 <sup>+</sup> -1/NH4 <sup>+</sup> -2 (75:25; w = 0.75 %),<br>DOA (w = 66 %),<br>PVC (w = 33 %),           | Li <sup>+</sup> , -2.58; Na <sup>+</sup> , -2.37;<br>K <sup>+</sup> , -0.06; Mg <sup>2+</sup> , -3.92;<br>Ca <sup>2+</sup> , -3.96 | SSM    | I                | I                 | 55.2<br>± 0.98 | I            | $c_{\rm dl} = 5$<br>× 10 <sup>-6</sup> M               | [15] |
| KT              | KTpCIPB (x <sub>i</sub> = 41 %)                                                                              | Li <sup>+</sup> , -2.08; Na <sup>+</sup> , -2.11;<br>K <sup>+</sup> , -0.91; Mg <sup>2+</sup> , -3.22;<br>Ca <sup>2+</sup> , -3.32 | FIM    | I                | 0.01              |                |              |                                                        |      |
| HN<br>DO<br>DV  | NH4 <sup>+</sup> -1/NH4 <sup>+</sup> -2 (75:25; w = 0.75 %),<br>DOPP (w = 66 %),<br>PVC (w = 33 %),          | Li <sup>+</sup> , -0.76; Na <sup>+</sup> , -1.58;<br>K <sup>+</sup> , -0.62; Mg <sup>2+</sup> , -2.89;<br>Ca <sup>2+</sup> , -2.57 | SSM    | I                | I                 | 55.2<br>± 0.98 | I            | $c_{\rm dl} = 5$<br>× 10 <sup>-6</sup> M               | [15] |
| KT              | KTpCIPB (vi = 41 %)                                                                                          | Li+, -0.97; Na+, -1.49;<br>K+, -0.91; Mg <sup>2+</sup> , -3.00;<br>Ca <sup>2+</sup> , -2.67                                        | FIM    | I                | 0.01              |                |              |                                                        |      |


Y. UMEZAWA et al.

| onophore | ionophore membrane<br>composition                                                                                    | lgKnH₄+,Bn+                                                                                                                                                            | method | primary interferi<br>ion conc. ion conc.<br>(M) (M) | 1g   | slope<br>decade) | linear<br>range<br>(M) | remarks                                  | ref.           |
|----------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------|------|------------------|------------------------|------------------------------------------|----------------|
|          | <b>NH<sub>4</sub>+1/NH<sub>4</sub>+-2</b> (75:25; $w = 0.75 \%$ ),<br>oNPOE ( $w = 66 \%$ ),<br>PVC ( $w = 33 \%$ ), | Li+, -2.89; Na+, -2.32;<br>K+, -1.11; Mg <sup>2+</sup> , -4.02;<br>Ca <sup>2+</sup> , -3.91                                                                            | SSM    | 1                                                   | 0.01 | 55.2<br>± 0.98   | 1                      | $c_{\rm dl} = 5$<br>× 10 <sup>-6</sup> M | [15]           |
|          | KTpCIPB ( $x_i = 41 \ \%$ )                                                                                          | Li <sup>+</sup> , -3.30; Na <sup>+</sup> , -2.14;<br>K <sup>+</sup> , -1.38; Mg <sup>2+</sup> , -4.20;<br>Ca <sup>2+</sup> , -2.62                                     | FIM    | I                                                   | 0.01 |                  |                        |                                          |                |
| NH4+-3   | NH4+-3 ( <i>w</i> = 1 %),<br>DOA ( <i>w</i> = 66.8 %),<br>PVC ( <i>w</i> = 32.2 %)                                   | Na+, +0.32; K+, +0.41                                                                                                                                                  | SSM    | 0.01                                                | 0.01 | 45.0             | 1                      | $t_{\rm resp} = 30 \ {\rm s}$            | [3]            |
| NH4+-4   | NH4+4 ( <i>w</i> = 1 %),<br>DOA ( <i>w</i> = 66.8 %),<br>PVC ( <i>w</i> = 32.2 %),                                   | Na <sup>+</sup> , -2.09; K <sup>+</sup> , -0.74                                                                                                                        | SSM    | 0.01                                                | 0.01 | 55.5             | I                      | $t_{\rm resp} = 30 \ \rm s$              | [3]            |
| NH4+-5   | NH4+5 ( <i>w</i> = 1 %),<br>DOA ( <i>w</i> = 66.8 %),<br>PVC ( <i>w</i> = 32.2 %)                                    | Na <sup>+</sup> , -0.06; K <sup>+</sup> , +0.58                                                                                                                        | SSM    | 0.01                                                | 0.01 | 45.0             | I                      | $t_{\rm resp} = 30 \ \rm s$              | [3]            |
| NH4+-6   | NH <sub>4</sub> +6 ( $w = 69 \%$ ),<br>PVC ( $w = 30 \%$ ),<br>KTpCIPB ( $x_i = 0.6 \%$ )                            | $ \begin{array}{l} Li^+, -1.3;  Na^+, -1.7; \\ K^+, -1.1;  Rb^+, -0.4; \\ Cs^+, +0.6;  Mg^{2+}, -2.8; \\ Ca^{2+}, -2.7;  Sr^{2+}, -2.9; \\ Ba^{2+}, -2.9 \end{array} $ | SSM    | 0.1                                                 | 0.1  | 1                | I                      |                                          | [8]            |
| NH4+-7   | NH <sub>4</sub> +7 ( $w = 69 \%$ ),<br>PVC ( $w = 30 \%$ ),<br>KTpCIPB ( $x_i = 0.8 \%$ )                            | $\begin{array}{l} Li^+,-0.1; Na^+,-0.9;\\ K^+,-0.6; Rb^+,-0.5;\\ Cs^+,+0.1; Mg^{2+},-2.0;\\ Ca^{2+},-2.0; Sr^{2+},-2.1;\\ Ba^{2+},-2.2\end{array}$                     | SSM    | 0.1                                                 | 0.1  | 1                | I                      |                                          | [8]            |
| NH4+-8   | NH <sub>4</sub> +8 ( $w = 69 \%$ ),<br>PVC ( $w = 30 \%$ ),<br>KTpCIPB ( $x_i = 0.9 \%$ )                            | $\begin{array}{l} Lj^+, -l.6;  Na^+, -2.1; \\ K^+, -l.4;  Rb^+, -0.7; \\ Cs^+, +0.3;  Mg^{2+}, -3.0; \\ Ca^{2+}, -3.0;  Sr^{2+}, -2.9; \\ Ba^{2+}, -3.2 \end{array}$   | SSM    | 0.1                                                 | 0.1  | 1                | I                      |                                          | [8]            |
| 0-+4HN   | NH <sub>4</sub> +9 ( $w = 69 \%$ ),<br>PVC ( $w = 30 \%$ ),<br>KTpCIPB ( $x_i = 0.8 \%$ )                            | $ \begin{array}{l} Li^+, -I.4;  Na^+, -I.8; \\ K^+, -I.4;  Rb^+, -I.0; \\ Cs^+, -0.3;  Mg^{2+}, -2.3; \\ Ca^{2+}, -2.2;  Sr^{2+}, -2.4; \\ Ba^{2+}, -2.5 \end{array} $ | SSM    | 0.1                                                 | 0.1  | I                | I                      |                                          | [8]            |
| NH4+-10  | <b>NH4+10</b> $(w = 69 \%)$ ,<br>PVC $(w = 30 \%)$ ,                                                                 | Li+, -1.9; Na+, -2.3;<br>K+, -1.7; Rb+, -1.4;                                                                                                                          | SSM    | 0.1                                                 | 0.1  | I                | I                      |                                          | [8]            |
|          |                                                                                                                      |                                                                                                                                                                        |        |                                                     |      |                  |                        |                                          | commes on next |

Potentiometric selectivity coefficients of ion-selective electrodes

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| ionophore                                        | e membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lgKnH4 <sup>+</sup> ,Bn+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | method                                                                                                                                                                    | primary interferi<br>ion conc. ion conc.<br>(M) (M)                    | interfering<br>ion conc.<br>(M)                            | slope<br>decade)         | linear<br>range<br>(M)             | remarks                         | ref. |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|--------------------------|------------------------------------|---------------------------------|------|
|                                                  | KTpCIPB $(x_i = 0.9 \%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} Cs^+, -0.1;  Mg^{2+}, -3.2; \\ Ca^{2+}, -3.4;  Sr^{2+}, -3.2; \\ Ba^{2+}, -3.4 \\ Na^+ - 7  2\cdot  K^+ -1  7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HIM                                                                                                                                                                       | I                                                                      | 0 01                                                       | I                        | I                                  |                                 |      |
| NH4+-11/<br>NH4+-12/<br>NH4+-13                  | NH4+-11/ NH4+-(11,12,13) (13:6:1 by weight)<br>NH4+-12/ $(w = 5 \%)$ , DBP $(w = 70 \%)$ ,<br>NH4+-13 PVC $(w = 25 \%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Li <sup>+</sup> , -4.36; Na <sup>+</sup> , -2.36;<br>K <sup>+</sup> , -0.48; Rb <sup>+</sup> , -1.15;<br>Cs <sup>+</sup> , -2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SSM                                                                                                                                                                       | I                                                                      |                                                            | z                        | 10 <sup>-5</sup> -10 <sup>-1</sup> | $t_{95} = 0.07 - [16]$<br>1.5 s | [16] |
| (1) T. A. C. | <ul> <li>L.A R. Pioda, W. Simon, <i>Chimia</i>, <b>23</b>, 72–73 (1969).</li> <li>J. G. Schindler, R.G. Schindler, D. Aziz, <i>J. Clin. Chem. Clin. Biochim.</i>, <b>16</b>, 441–445 (1978).</li> <li>J. G. Davies, G.J. Moody, J.D.R. Thomas, <i>Analyst</i>, <b>113</b>, 497–500 (1988).</li> <li>G.G. Davies, G.J. Moody, J.D.R. Thomas, <i>Analyst</i>, <b>113</b>, 497–500 (1988).</li> <li>G.S. Cha, M. Meyerhoff, <i>Talanta</i>, <b>36</b>, 271–278 (1989).</li> <li>G.J. Liu, M.E. Meyerhoff, H.D. Goldberg, R.B. Brown, <i>Anal. Chim. Acta</i>, <b>274</b>, 37–46 (1993).</li> <li>D. Liu, M.E. Meyerhoff, H.D. Goldberg, R.B. Brown, <i>Anal. Chim. Acta</i>, <b>274</b>, 37–46 (1993).</li> <li>D. Liu, M.E. Meyerhoff, H.D. Goldberg, R.B. Brown, <i>Anal. Chim. Acta</i>, <b>274</b>, 37–46 (1993).</li> <li>F.J.S. de Viteri, D. Diamond, <i>Elecromatolysis</i>, 6, 9–16 (1994).</li> <li>D. Siswanta, H. Hisamoto, H. Tohma, N. Yamamoto, <i>K. Suzuki, Chem. Lett.</i>, 945–948 (1994).</li> <li>M. Knoll, K. Cammann, C. Dumschat, C. Sundermeier, J. Eshold, <i>Sens. Actuators B</i>, <b>18–19</b>, 51–55 (1994).</li> <li>M. Scholer, W. Simon, <i>Chimia</i>, <b>24</b>, 372–374 (1970).</li> <li>U. Thanei-Wyss, W.E. Morf, P. Lienemann, Z. Stefanac, I. Mostert, R. Dörig, R.E. Dohner, W. Simon, <i>Mikrochim. Acta</i>, <b>II</b>, 135–147 (1983).</li> <li>I. A. Mostert, P. Anker, HB.Jenny, U. Oesch, W.E. Mostert, R. Dörig, R.E. Dohner, W. Simon, <i>Mikrochim. Acta</i>, <b>II</b>, 135–147 (1983).</li> <li>I. A. Mostert, P. Anker, HB.Jenny, U. Oesch, W.E. Morf, D. Ammann, W. Simon, <i>Mikrochim. Acta</i>, <b>II</b>, 135–147 (1983).</li> <li>M. Scholer, W. Simon, <i>Eur. J. Physiol.</i>, <b>412</b>, 359–362 (1988).</li> <li>T. Bultrer, H. Peter, W. Simon, <i>Analyst</i>, <b>119</b>, 2323–2326 (1988).</li> <li>M.S. Ghauri, J.D.R. Thomas, Analyst, <b>119</b>, 2323–2326 (1988).</li> <li>M.S. Ghauri, J.D.R. Thomas, Analyst, <b>119</b>, 2323–2326 (1988).</li> <li>M.S. Ghauri, J.D.R. Thomas, Analyst, <b>119</b>, 2323–2326 (1988).</li> </ul> | <ul> <li><i>timia</i>, <b>23</b>, <i>72–73</i> (1969).</li> <li>D.R. Thomas, <i>Analyst</i>, <b>113</b>, 497–500 (1988).</li> <li>D.R. Thomas, <i>Analyst</i>, <b>113</b>, 497–500 (1988).</li> <li>D.R. Thomas, <i>Analyst</i>, <b>113</b>, 497–500 (1988).</li> <li><i>alanta</i>, <b>36</b>, 2711–278 (1989).</li> <li>a. R.M. Spanswick, <i>Plant Physiol</i>, <b>93</b>, 271–280 (1990).</li> <li>D. Goldberg, R.B. Brown, <i>Anal. Chim. Acta</i>, <b>274</b>, 37–46 (1993).</li> <li>D. Goldberg, R.B. Brown, <i>Anal. Chim. Acta</i>, <b>274</b>, 37–46 (1993).</li> <li>H. Tohma, N. Yamamoto, K. Suzuki, <i>Chem. Lett.</i>, 945–948 (1994).</li> <li>Dunschaf, C. Sudermeier, J. Eshold, <i>Sens. Actuators B</i>, <b>18–19</b>, 51–55 (1994).</li> <li><i>imia</i>, <b>24</b>, 372–374 (1970).</li> <li>F. Lienemann, Z. Stefanae, I. Mostert, R. Dörig, R.E. Dohner, W. Simon, <i>Mik</i> <b>19</b>, 123–374 (1970).</li> <li>J. P. Lienemann, Z. Stefanae, I. Mostert, R. Dörig, R.E. Dohner, W. Simon, <i>Mik usel</i>, <i>1</i>, 33 und. <i>Lit. J. Physiol</i>, <b>412</b>, 359–562 (1988).</li> <li>s. <i>Analyst</i>, <b>119</b>, 2323–2326 (1984).</li> <li>s. <i>Analyst</i>, <b>119</b>, 2323–2326 (1994).</li> <li>S. Hayano, <i>Nippon Kagaku Kaishi</i>, 1462–1468 (1980).</li> </ul> | <ul> <li>16, 441–445</li> <li>1.</li> <li>280 (1990).</li> <li>274, 37–46</li> <li>274, 37–46</li> <li>Actuators B. Actuators B. W. Simon,</li> <li>58 (1980).</li> </ul> | (1978).<br>(1993).<br>48 (1994).<br><b>18-19</b> , 51-<br>Nohner, W. ' | -55 (1994).<br>Simon, <i>Mikr</i><br>Acta, <b>1</b> , 33–3 | ochim Acta<br>38 (1985). | , Ш, 135–147 (                     | .(583).                         |      |



| es   |
|------|
| rod  |
| lect |
| Ξ    |
| ve   |
| Ċti. |
| ele  |
| Ň    |
| ÷.   |
| ž    |
| ÷    |
| ŝ    |
| lde  |
| Ê    |
|      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ionophore          | membrane<br>composition                                                                                                                                                       | lgK <sub>Mg<sup>2+,B</sup></sub>                                                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks               | ref. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g <sup>2+</sup> -1 | <b>Mg<sup>2+</sup>-1</b> ( $w = 1-2$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)                                                                                      | Li <sup>+</sup> , +0.5; Na <sup>+</sup> , +0.3; K <sup>+</sup> , +0.3;<br>Rb <sup>+</sup> , -0.8; Cs <sup>+</sup> , -0.1; NH <sub>4</sub> <sup>+</sup> , +0.6;<br>Ca <sup>2+</sup> , +1.7; Sr <sup>2+</sup> , +0.4; Ba <sup>2+</sup> , +0.7 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | $\begin{array}{l} Mg^{2+}.I \ (w=1-2 \ \%),\\ \text{oNPOE} \ (w=65-66 \ \%),\\ \text{KTpCIPB} \ (v_{1}=100 \ \%),\\ \text{PVC} \ (w=33 \ \%) \end{array}$                     | $\begin{array}{l} Li^+, +0.2;  Na^+, -0.1;  K^+, +0.1; \\ Rb^+, -0.7;  Cs^+, 0.0;  NH_4^+, +0.6; \\ Ca^{2+}, +3.2;  Sr^{2+}, +1.5;  Ba^{2+}, +1.8 \end{array}$                                                                              | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
| $ \begin{split} \mbox{Mg}^{2+2} (w = 1-2 \ \%), & \mbox{Li}^+, 10.6, \mbox{Na}^+, -0.1; \mbox{K}^+, -1.2; & \mbox{SM} & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{K} (\text{PDB} (i) = 60.6 \ \%), & \mbox{R}^+, -1.5; \mbox{C}^+, -1.6; \ \text{M}_1^+, -0.2; & \mbox{SM} & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{R}^+, -1.5; \mbox{C}^+, +0.5; \ \text{B}^{2++}, -0.1 & \mbox{R}^+, -0.2; & \mbox{SM} & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{R}^+, -1.5; \mbox{C}^+, +0.5; \ \text{B}^{2++}, -1.2; & \mbox{SM} & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{Mg}^+, -1.5; \mbox{C}^+, +0.2; \ \text{N}_1^+, +2.2; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{Mg}^+, -4(w = 1-2 \ \%), & \mbox{R}^+, +0.0; \ \text{S}^{2+}, +0.1; \ \text{B}^{2+}, +0.2; \ \text{R}^+, +1.1; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{Mg}^{2+-4} (w = 1-2 \ \%), & \mbox{R}^+, +0.0; \ \text{S}^{2+}, +0.1; \ \text{B}^{2+}, +0.2; \ \text{R}^+, +1.1; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{Mg}^{2+-4} (w = 1-2 \ \%), & \mbox{R}^+, +0.2; \ \text{R}^+, +3.0; \ \mbox{R}^+, +1.1; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{Mg}^{2+-4} (w = 1-2 \ \%), & \mbox{R}^+, +0.3; \ \mbox{R}^+, +1.1; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{Mg}^{2+-4} (w = 1-2 \ \%), & \mbox{R}^+, +1.3; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{R}^+, +0.4; \ \mbox{R}^+, +1.3; & \mbox{SM} & 0.1 & 0.1 & 0.1 & - & - & 20-22 \ \%, \\ \mbox{PVC} (w = 33 \ \%), & \mbox{R}^+, +0.4; \ \mbox{R}^+, +1.4; \ R$ | g <sup>2+</sup> -2 | $Mg^{2+-2} (w = 1-2 \%),$<br>oNPOE (w = 65-66 %),<br>PVC (w = 33 \%)                                                                                                          | $ \begin{array}{l} Li^+, +0.8;  Na^+, +0.6;  K^+, +0.6; \\ Rb^+, -1.0;  Cs^+, 0.0;  NH_4^+, +1.1; \\ Ca^{2+}, +0.9;  Sr^{2+}, +1.4;  Ba^{2+}, +2.0 \end{array} $                                                                            | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | $\begin{split} \mathbf{Mg}^{2+2}_{0} & (w = 1-2 \ \%), \\ \text{oNPOE} & (w = 65-66 \ \%), \\ \text{KTpCIPB} & (v_{1} = 100 \ \%), \\ \text{PVC} & (w = 33 \ \%) \end{split}$ | $\begin{array}{l} Li^+, +0.6;  Na^+, -0.1;  K^+, -1.2; \\ Rb^+, -1.5;  Cs^+, -1.6;  NH_4^+, -0.2; \\ Ca^{2+}, +2.1;  Sr^{2+}, +0.5;  Ba^{2+}, -0.1 \end{array}$                                                                             | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | []   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g <sup>2+</sup> -3 | $Mg^{2+.3} (w = 1-2 \%),$<br>oNPOE (w = 65-66 \%),<br>PVC (w = 33 \%)                                                                                                         | $ \begin{array}{l} Li^+, +0.4; \ Na^+, +0.4; \ K^+, +0.6; \\ Rb^+, -1.5; \ Cs^+, +0.9; \ NH_4^+, +1.2; \\ Ca^{2+}, -0.2; \ Sr^{2+}, 0.0; \ Ba^{2+}, +0.4 \end{array} $                                                                      | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | $Mg^{2+.3}$ ( $w = 1-2$ %),<br>oNPOE ( $w = 65-66$ %),<br>KTpCIPB ( $x_1 = 100$ %),<br>PVC ( $w = 33$ %)                                                                      | $\begin{array}{l} Li^+, +0.2;  Na^+, +0.3;  K^+, +2.1; \\ Rb^+, +3.0;  Cs^+, +4.3;  NH_4^+, +2.2; \\ Ca^{2+}, +0.0;  Sr^{2+}, +0.1;  Ba^{2+}, +0.5 \end{array}$                                                                             | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>g2+</sup> -4  | $Mg^{2+4} (w = 1-2 \%),$<br>oNPOE (w = 65-66 \%),<br>PVC (w = 33 \%)                                                                                                          | $ \begin{array}{l} Li^+, +0.4; \ Na^+, +0.4; \ K^+, +1.1; \\ Rb^+, +0.3; \ Cs^+, +0.9; \ NH_4^+, +1.0; \\ Ca^{2+}, +0.4; \ Sr^{2+}, +0.3; \ Ba^{2+}, +0.5 \end{array} $                                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | []   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | $Mg^{2+}4$ ( $w = 1-2$ %),<br>oNPOE ( $w = 65-66$ %),<br>KTpCIPB ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)                                                                       | Li <sup>+</sup> , -0.7; Na <sup>+</sup> , +0.2; K <sup>+</sup> , +2.9;<br>Rb <sup>+</sup> , +3.6; Cs <sup>+</sup> , +4.5; NH <sub>4</sub> <sup>+</sup> , +2.3;<br>Ca <sup>2+</sup> , +2.8; Sr <sup>2+</sup> , +2.6; Ba <sup>2+</sup> , +3.0 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>g2+</sup> -5  | $Mg^{2+-5} (w = 1-2 \%),$<br>oNPOE (w = 65-66 \%),<br>PVC (w = 33 \%)                                                                                                         | $ \begin{array}{l} Li^+, +0.7;  Na^+, -0.4;  K^+, +1.3; \\ Rb^+, +0.4;  Cs^+, +1.5;  NH_4^+, +1.4; \\ Ca^{2+}, +0.4;  Sr^{2+}, +0.3;  Ba^{2+}, +0.5 \end{array} $                                                                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | [1]  |
| $Mg^{2+}.6$ (w = 1-2 %),         Li <sup>+</sup> , +1.9; Na <sup>+</sup> , +2.0; K <sup>+</sup> , +1.9;         SSM         0.1         0.1         -         20-22 °C;           oNPOE (w = 65-66 %),         Rb <sup>+</sup> , +2.0; Cs <sup>+</sup> , +2.1; NH <sub>4</sub> <sup>+</sup> , +1.8;         r.o.o.g.         r.o.o.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | $Mg^{2+.5}$ ( $w = 1-2$ %),<br>oNPOE ( $w = 65-66$ %),<br>KTpCIPB ( $w = 100$ %),<br>PVC ( $w = 33$ %)                                                                        | Li <sup>+</sup> , -0.2; Na <sup>+</sup> , +0.8; K <sup>+</sup> , +3.8;<br>Rb <sup>+</sup> , +4.8; Cs <sup>+</sup> , +5.5; NH <sub>4</sub> <sup>+</sup> , +2.9;<br>Ca <sup>2+</sup> , +3.6; Sr <sup>2+</sup> , +1.6; Ba <sup>2+</sup> , +2.4 | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g <sup>2+</sup> -6 | $\mathbf{Mg^{2+-6}} (w = 1-2 \%),$<br>oNPOE (w = 65-66 %),                                                                                                                    | Li <sup>+</sup> , +1.9; Na <sup>+</sup> , +2.0; K <sup>+</sup> , +1.9;<br>Rb <sup>+</sup> , +2.0; Cs <sup>+</sup> , +2.1; NH <sub>4</sub> <sup>+</sup> , +1.8;                                                                              | SSM    | 0.1                         | 0.1                                                   | I                        | I                      | 20–22 °C;<br>r.o.o.g. | Ξ    |

## Y. UMEZAWA et al.

| ionophore            | ionophore membrane<br>composition                                                                                          | lgK <sub>Mg</sub> 2+,B                                                                                                                                                                                                                                                | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                                         | remarks                                                         | ref.         |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------|
|                      | PVC ( $w = 33\%$ )                                                                                                         | Ca <sup>2+</sup> , +3.4; Sr <sup>2+</sup> , +2.2; Ba <sup>2+</sup> , +0.2                                                                                                                                                                                             |        |                             |                                                       |                          |                                                                |                                                                 |              |
|                      | $Mg^{2+-6} (w = 1-2 \%),$<br>oNPOE (w = 65-66 \%),<br>KTpCIPB (x <sub>1</sub> = 50 %),<br>PVC (w = 33 \%)                  | Li <sup>+</sup> , +2.5; Na <sup>+</sup> , +2.1; K <sup>+</sup> , +1.9;<br>Rb <sup>+</sup> , +2.6; Cs <sup>+</sup> , +2.1; NH <sub>4</sub> , +1.8;<br>Ca <sup>2+</sup> , +3.9; Sr <sup>2+</sup> , +2.7; Ba <sup>2+</sup> , +0.5                                        | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                              | 20–22 °C;<br>r.o.o.g.                                           | [1]          |
| Mg <sup>2+</sup> -7  | $Mg^{2+}.7 (w = 1.7 \%),$<br>TEHP (w = 31.8 %),<br>5-phenyl-1-pentanol (w = 31.8 %),<br>PVC (w = 34.7 \%),                 | Li <sup>+</sup> , +0.2; Na <sup>+</sup> , -1.1; K <sup>+</sup> , -1.5;<br>Rb <sup>+</sup> , -1.7; Cs <sup>+</sup> , -1.6; NH <sub>4</sub> <sup>+</sup> , +0.2;<br>Ca <sup>2+</sup> , +1.5; Sr <sup>2+</sup> , -1.0; Ba <sup>2+</sup> , -2.0;<br>H <sup>+</sup> + 3, 8 | SSM    | 0.1                         | 0.1                                                   | 1                        | $\begin{array}{c} 9 \\ \times 10^{-4} \\ -10^{-1} \end{array}$ | 22 ± 0.5 °C;<br>pH = 8.40<br>(internal<br>solution)             | [2]          |
|                      |                                                                                                                            | Li <sup>+</sup> , +1.3; Na <sup>+</sup> , -0.3; K <sup>+</sup> , -0.8;<br>Rb <sup>+</sup> , -1.0; Cs <sup>+</sup> , -0.9; NH <sub>4</sub> , +1.1;<br>Ca <sup>2+</sup> , +0.9; Sr <sup>2+</sup> , -1.6; Ba <sup>2+</sup> , -2.0;<br>H <sup>+</sup> , +4.9              | SSM    | 0.1                         | 0.1                                                   | Z                        | I                                                              | pH = 8.80<br>(internal<br>solution);<br>r.o.o.g.                |              |
|                      | $\begin{split} Mg^{2+,7}_{g}(w = 12~\%), \ DBE \ (w = 60~\%), \\ KTpCIPB \ (x_i = 4~\%), \\ PVC \ (w = 27~\%) \end{split}$ | Li <sup>+</sup> , -1.2; Na <sup>+</sup> , -1.1; K <sup>+</sup> , -0.6;<br>Rb <sup>+</sup> , +0.1; Cs <sup>+</sup> , +1.1; NH <sub>4</sub> <sup>+</sup> , +0.4;<br>Ca <sup>2+</sup> , -0.2; Sr <sup>2+</sup> , -1.1; Ba <sup>2+</sup> , -0.7                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                              | 25 ± 0.5 °C; [3]<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> ) | [3]<br>5M    |
| Mg <sup>2+</sup> -8  | $Mg^{2+.8} (w = 1.7 \%),$<br>TEHP (w = 31.8 %),<br>5-phenyl-1-pentanol (w = 31.8 %),<br>PVC (w = 34.7 \%)                  | $ \begin{array}{l} Li^+, +0.2;  Na^+, -1.1;  K^+, -1.5; \\ Rb^+, -1.7;  Cs^+, -1.6;  NH_4^+, +0.5; \\ Ca^{2+}, +1.2;  Sr^{2+}, -1.1;  Ba^{2+}, -2.1; \\ H^+, +3.8 \end{array} $                                                                                       | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                              | 22 ± 0.5 °C;<br>pH = 8.40<br>(internal<br>solution)             | [2]          |
|                      | ~                                                                                                                          | $ \begin{array}{l} Li^+, +0.6;  Na^+, -1.0;  K^+, -1.6; \\ Rb^+, -2.0;  Cs^+, -2.0;  NH_4^+, +0.3; \\ Ca^{2+}, +2.0;  Sr^{2+}, -1.0;  Ba^{2+}, -2.3; \\ H^+, +3.0 \end{array} $                                                                                       | SSM    | 0.1                         | 0.1                                                   | Z                        | I                                                              | pH = 8.80<br>(internal<br>solution);<br>r.o.o.g.                |              |
| Mg <sup>2+</sup> -9  | $Mg^{2+.9}(w = 1.7\%),$<br>TEHP (w = 31.8\%),<br>5-phenyl-1-pentanol (w = 31.8\%),<br>PVC (w = 34.7\%)                     | $ \begin{array}{l} Li^+, +0.2;  Na^+, -1.2;  K^+, -1.5; \\ Rb^+, -1.8;  Cs^+, -1.7;  NH_4^+, +0.6; \\ Ca^{2+}, +1.0;  Sr^{2+}, -1.0;  Ba^{2+}, -2.0; \\ H^+, +3.9 \end{array} $                                                                                       | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                              | $22 \pm 0.5$ °C;<br>pH = 8.40<br>(internal<br>solution)         | [2]          |
|                      | ~                                                                                                                          | $ \begin{array}{l} Li^+, +0.4;  Na^+, -1.1;  K^+, -1.4; \\ Rb^+, -1.7;  Cs^+, -1.6;  NH_4^+, +0.5; \\ Ca^{2+}, +1.2;  Sr^{2+}, -1.0;  Ba^{2+}, -1.7; \\ H^+, +4.1 \end{array} $                                                                                       | SSM    | 0.1                         | 0.1                                                   | Z                        | I                                                              | pH = 8.80<br>(internal<br>solution)<br>r.o.o.g.                 |              |
| Mg <sup>2+</sup> -10 | $Mg^{2+}-10$ (w = 1.7 %),<br>TEHP (w = 31.8 %),<br>5-phenyl-1-pentanol (w = 31.8 %),                                       | Li <sup>+</sup> , +4.1; Na <sup>+</sup> , +2.4; K <sup>+</sup> , +2.0;<br>Rb <sup>+</sup> , +1.9; Cs <sup>+</sup> , +2.1; NH <sub>4</sub> <sup>+</sup> , +4.1;<br>Ca <sup>2+</sup> , +0.3; Sr <sup>2+</sup> , -0.3; Ba <sup>2+</sup> , -0.1;                          | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                              | 22 ± 0.5 °C; [2]<br>pH = 8.40 (internal<br>solution)            | [2]<br>ernal |
|                      |                                                                                                                            |                                                                                                                                                                                                                                                                       |        |                             |                                                       |                          |                                                                |                                                                 |              |

continues on next page

| (Continued)                                     |  |
|-------------------------------------------------|--|
| Table 8: Mg <sup>2+</sup> -Selective Electrodes |  |

| onophore             | ionophore membrane<br>composition                                                                                                                                        | lgK <sub>Mg<sup>2+</sup>,B</sub>                                                                                                                                                                                                                                     | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)            | remarks                                          | ref.        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|-----------------------------------|--------------------------------------------------|-------------|
|                      | PVC (w = 34.7 %)                                                                                                                                                         | Li <sup>+</sup> , +1.9; Na <sup>+</sup> , +0.2; K <sup>+</sup> , -0.6;<br>Rb <sup>+</sup> , -0.8; Cs <sup>+</sup> , -0.9; NH <sub>4</sub> <sup>+</sup> , +1.6;<br>Ca <sup>2+</sup> , +1.8; Sr <sup>2+</sup> , -0.8; Ba <sup>2+</sup> , -1.4;<br>H <sup>+</sup> , 5.0 | SSM    | 0.1                         | 0.1                             | 28.5<br>± 0.9            | $5 \\ \times 10^{-4} \\ -10^{-1}$ | pH = 8.80<br>(internal<br>solution);<br>r.o.o.g. |             |
| Mg <sup>2+</sup> -11 | $\begin{split} \mathbf{Mg^{2+1}} & (w = 1-2~\%), \\ & \text{KTpCIPB}~(x_1 = 50~\%), \\ & \text{oNPOE}~(w = 65~\%), \\ & \text{PVC}~(w = 33~\%) \end{split}$              | Li <sup>+</sup> , -0.9; Na <sup>+</sup> , -2.3; K <sup>+</sup> , -1.2;<br>Rb <sup>+</sup> , -0.6; Cs <sup>+</sup> , +0.3; H <sup>+</sup> , +6.5;<br>Ca <sup>2+</sup> , +1.5; Sr <sup>2+</sup> , +0.3; Ba <sup>2+</sup> , +0.3                                        | SSM    | 0.1                         | 0.1                             | I                        | I                                 |                                                  | [4]         |
|                      | <b>Mg<sup>2+</sup>-11</b> ,<br>propylene carbonate,<br>NaTPB<br>(weight ratio not reported)                                                                              | $ \begin{array}{l} Li^+, +0.1;  Na^+, -1.1;  K^+, -1.4; \\ Cs^+, -0.9;  AcCh^+, -0.1; \\ NH_4^+, -0.1;  Ca^{2+}, +1.1;  Sr^{2+}, +0.6; \\ Ba^{2+}, +0.7;  H^+, 2.7 \end{array} $                                                                                     | WSS    | 0.1                         | 0.1                             | I                        | I                                 | 22 ± 1 °C;<br>microelec.                         | [5]         |
| Mg <sup>2+</sup> -12 | $Mg^{2+1}2$ (w = 1%),<br>oNPOE (w = 66%), PVC (w = 33%)                                                                                                                  | $ \begin{array}{l} Li^+, +0.5;  Na^+, +0.5;  K^+, +0.6; \\ Rb^+, +0.4;  Cs^+, +0.6;  NH_4^+, +0.3; \\ Ca^{2+}, +0.1;  Sr^{2+}, -0.1;  Ba^{2+}, -0.1 \end{array} $                                                                                                    | MSS    | 0.1                         | 0.1                             | I                        | I                                 | pH = 8.8<br>(0.01 M<br>tris/HCl);<br>r.o.o.g.    | [4],<br>[6] |
|                      | $\begin{split} \mathbf{Mg^{2+12}} & (w = 1 \ \%), \\ \mathbf{KTpCIPB} & (x_1 = 50 \ \%), \\ \mathbf{oNPOE} & (w = 65 \ \%), \\ \mathbf{PVC} & (w = 33 \ \%) \end{split}$ | $ \begin{array}{l} Li^+, -1.5;  Na^+, -1.5;  K^+, -1.4; \\ Rb^+, -1.0;  Cs^+, -1.2;  NH_4^+, -1.2; \\ Ca^{2+}, -0.1;  Sr^{2+}, -1.2;  Ba^{2+}, -1.7 \end{array} $                                                                                                    | SSM    | 0.1                         | 0.1                             | I                        | I                                 | pH = 8.8<br>(0.01 M<br>tris/HCl);<br>r.o.o.g.    | [4],        |
|                      | $Mg^{2+}12 (w = 1 \%),$<br>KTpCIPB ( $i_1 = 73 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                                      | $\begin{array}{l} Li^+,-2.6;Na^+,-2.6;K^+,-2.3;\\ Rb^+,-2.0;Cs^+,-1.3;NH_4^+,-2.3;\\ Ca^{2+},-2.5;Sr^{2+},-3.2;Ba^{2+},-3.1;\\ H^+,10.8\end{array}$                                                                                                                  | SSM    | 0.1                         | 0.1                             | 32 ± 1                   | $10^{-3}$ - $10^{-1}$             | pH = 8.8<br>(0.01 M<br>tris/HCl)                 | [6]         |
|                      | $Mg^{24}-12 (w = 1 \%),$<br>KTpCIPB ( $i_1 = 79 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                                     | $\begin{array}{l} Li^+,-2.7; Na^+,-2.7; K^+,-2.2;\\ Rb^+,-2.0; Cs^+,-1.2; NH_4^+,-2.4;\\ Ca^{2+},-2.7; Sr^{2+},-3.4; Ba^{2+},-3.2 \end{array}$                                                                                                                       | SSM    | 0.1                         | 0.1                             | I                        | I                                 | pH = 8.8<br>(0.01 M<br>tris/HCl);<br>r.o.o.g.    | [4],        |
|                      | $Mg^{2*}$ -12 ( $w = 1$ %),<br>KTpCIPB ( $x_1 = 88$ %),<br>oNPOE ( $w = 65$ %), PVC ( $w = 33$ %)                                                                        | $ \begin{array}{l} Li^+,-2.6;Na^+,-2.5;K^+,-1.2;\\ Rb^+,-0.3;Cs^+,+1.0;NH_4^+,-1.6;\\ Ca^{2+},-2.2;Sr^{2+},-2.9;Ba^{2+},-2.7 \end{array} $                                                                                                                           | MSS    | 0.1                         | 0.1                             | I                        | I                                 | pH = 8.8<br>(0.01 M<br>tris/HCl);<br>r.o.o.g.    | [4],        |
|                      | $Mg^{2*}-12 (w = 1 \%),$<br>KTpCIPB $(x_1 = 120 \%),$<br>oNPOE $(w = 64 \%),$ PVC $(w = 33 \%)$                                                                          | $\begin{array}{l} Li^+,-0.4;Na^+,+1.1;K^+,+4.8;\\ Rb^+,+6.1;Cs^+,+7.2;NH_4^+,+3.4;\\ Ca^{2+},+0.3;Sr^{2+},+0.1;Ba^{2+},+0.7\end{array}$                                                                                                                              | SSM    | 0.1                         | 0.1                             | I                        | I                                 | pH = 8.8<br>(0.01 M<br>tris/HCl);<br>r.o.o.g.    | [4],        |
| Mg <sup>2+</sup> -13 | $\begin{split} \mathbf{Mg^{2*-13}} & (w = 1 \ \%), \ CP \ (w = 65 \ \%), \\ \mathbf{KTpCIPB} \ (x_1 = 70 \ \%), \\ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$             | Li <sup>+</sup> , -2.3 Na <sup>+</sup> , -2.6; K <sup>+</sup> , -2.3;<br>Rb <sup>+</sup> , -1.8; Ca <sup>2+</sup> , +0.9; Sr <sup>2+</sup> , +0.5;<br>Ba <sup>2+</sup> , +0.5; H <sup>+</sup> , +2.6                                                                 | SSM    | 0.1                         | 0.1                             | I                        | I                                 | 21 ± 1 °C;<br>r.o.o.g.                           | [7]         |

Table 8: Mg<sup>2+</sup>-Selective Electrodes (Continued)

ref. Ε 2 Ε Ε [Ε 2 E Ε 21 ± 1 °C;  $t_{95} = 0.9 \text{ s};$ 21 ± 1 °C;  $21 \pm 1$  °C; 21 ± 1 °C; 21 ± 1 °C; r.o.o.g.; remarks r.o.o.g. r.o.o.g. r.o.o.g. r.o.o.g. I.0.0.g. r.o.o.g. r.o.o.g. r.o.o.g. r.o.o.g. r.o.o.g. linear range (M)  $-10^{-1}$ 10-3 I I I T I I I T decade) slope (mV/ 28.0I I I I 1 i. I ۱ I interfering . ion conc. (M) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 primary ion conc. Ē 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 method SSM Rb<sup>+</sup>, +1.8; Ca<sup>2+</sup>, +0.2; Sr<sup>2+</sup>, +0.1; Rb<sup>+</sup>, -2.7; Ca<sup>2+</sup>, +0.1; Sr<sup>2+</sup>, -0.6; Rb+, -2.8; Ca<sup>2+</sup>, -0.1; Sr<sup>2+</sup>, -0.6; Rb<sup>+</sup>, -2.6; Ca<sup>2+</sup>, -0.3; Sr<sup>2+</sup>, -0.8; Rb<sup>+</sup>, -2.6; Ca<sup>2+</sup>, -0.8; Sr<sup>2+</sup>, -1.5; Rb<sup>+</sup>, +1.8; Ca<sup>2+</sup>, -0.3; Sr<sup>2+</sup>, -0.9; Rb<sup>+</sup>, -2.6; Ca<sup>2+</sup>, 0.0; Sr<sup>2+</sup>, -0.7; Na<sup>+</sup>, +0.3; K<sup>+</sup>, +0.7; Ca<sup>2+</sup>, +0.5 Li<sup>+</sup>, +0.7; Na<sup>+</sup>, +0.8; K<sup>+</sup>, +1.1; Na<sup>+</sup>, -0.4; K<sup>+</sup>, +0.7; Ca<sup>2+</sup>, +0.6 Na<sup>+</sup>, -3.6; K<sup>+</sup>, -2.3; Ca<sup>2+</sup>, -0.2 Na<sup>+</sup>, -3.0; K<sup>+</sup>, -2.8; Ca<sup>2+</sup>, +0.4 Li<sup>+</sup>, -3.0; Na<sup>+</sup>, -3.7; K<sup>+</sup>, -3.6; Li<sup>+</sup>, -3.1; Na<sup>+</sup>, -3.8; K<sup>+</sup>, -3.7; Li<sup>+</sup>, -3.3; Na<sup>+</sup>, -3.7; K<sup>+</sup>, -3.7; Li<sup>+</sup>, -3.2; Na<sup>+</sup>, -3.4; K<sup>+</sup>, -3.1; Li<sup>+</sup>, -0.4; Na<sup>+</sup>, -0.7; K<sup>+</sup>, +0.6; Li<sup>+</sup>, -3.3 Na<sup>+</sup>, -3.6; K<sup>+</sup>, -3.7; Ba<sup>2+</sup>, +0.3; H<sup>+</sup>, +2.1 Ba<sup>2+</sup>, -0.6; H<sup>+</sup>, +1.5 Ba<sup>2+</sup>, -0.8; H<sup>+</sup>, +1.8 Ba<sup>2+</sup>, -0.7; H<sup>+</sup>, +1.7 Ba<sup>2+</sup>, -1.5; H<sup>+</sup>, +2.4 Ba<sup>2+</sup>, -0.6; H<sup>+</sup>, +2.2 Ba<sup>2+</sup>, -0.6; H<sup>+</sup>, +2.3  $[gK_{Mg^{2+},B}]$  $Mg^{2+-15}$  (w = 1 %), PVC (w = 33 %), phenylpentanol (w = 32.5 %), oNPOE (w = 32.5 %), PVC (w = 33 %)  $Mg^{2+}_{15}(w = 1\%),$ KTpCIPB ( $x_1 = 70\%$ ), phenylpentanol (w = 32.5%), BEHP (w = 32.5%), PVC (w = 33%) oNPPE (w = 65 %), PVC (w = 33 %)  $Mg^{2+}-15 (w = 1 \%), CP (w = 66 \%),$  $Mg^{2+}-15 (w = 1 \%), CP (w = 65 \%),$  $Mg^{2+-15}$  (w = 1%), CP (w = 65%),  $Mg^{2+-15}$  (w = 1 %), CP (w = 65 %),  $Mg^{2+}-15 (w = 1 \%), CP (w = 65 \%),$  $Mg^{2+-15}$  (w = 1 %), CP (w = 64 %),  $Mg^{2+}-14 (w = 1 \%), CP (w = 65 \%),$ 3,3',4,4'-tetracarboxylate (w = 65%) tetraundecyl benzhydrol KTpCIPB ( $x_i = 120 \%$ ), KTpCIPB ( $x_i = 158 \%$ ), KTpCIPB ( $x_i = 40 \%$ ), KTpCIPB ( $x_i = 80 \%$ ), KTpCIPB  $(x_i = 70\%)$ ,  $Mg^{2+-15} (w = 1 \%),$ KTpCIPB  $(x_i = 70 \%),$  $Mg^{2+-15} (w = 1 \%),$ KTpCIPB  $(x_i = 70 \%),$ KTpCIPB  $(x_i = 70 \%)$ . KTpCIPB  $(x_i = 70 \%)$ , PVC (w = 33 %) PVC (w = 33%) PVC (w = 33 %) composition ionophore membrane Mg<sup>2+</sup>-14 Mg<sup>2+</sup>-15

 Table 8: Mg<sup>2+</sup>-Selective Electrodes (Continued)

| ionophore            | membrane<br>composition                                                                                                                                                           | lgK <sub>Mg<sup>2+</sup>,B</sub>                                                                                                                                                                                                                             | method    | primary<br>ion conc<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                                                | ref.         |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------------------------------------------------------------------------------------------|--------------|
|                      | $Mg^{2^{3}-15}(w = 1 %),$<br>KTpCIPB (x <sub>1</sub> = 70 %),<br>pNP (w = 65 %), PVC (w = 33 %)                                                                                   | Na+, +3.5; K+, +4.8; Ca <sup>2+</sup> , +0.5                                                                                                                                                                                                                 | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 21 ± 1 °C;<br>r.o.o.g.                                                                                 | [2]          |
|                      | $\begin{split} Mg^{2+}_{g} IS & (w = 1 \ \%), \ CP & (w = 32.5 \ \%), \\ KTpCIPB & (x_i = 70 \ \%), \\ onNOE & (w = 32.5 \ \%), \ PVC & (w = 33 \ \%) \end{split}$                | Na+, -3.8; Ca <sup>2+</sup> , 0.0                                                                                                                                                                                                                            | I         | I                          | I                                                     | I                        | I                      | 21 ± 1 °C                                                                                              | [8]          |
|                      | $Mg^{2+.15} (w = 1 \%),$<br>KTpCIPB (xi = $70 \pm 5 \%$ ),<br>oNPOE (w = $65 \%$ ), PVC (w = $33 \%$ )                                                                            | Li <sup>+</sup> , -2.5; Na <sup>+</sup> , -3.0; K <sup>+</sup> , -0.8;<br>Ca <sup>2+</sup> , -0.2; Sr <sup>2+</sup> , -0.7; H <sup>+</sup> , +2.2                                                                                                            | SSM       | 0.1                        | 0.1                                                   | $29.2 \pm 0.5$           | I                      | 21 ± 1 °C                                                                                              | [6]          |
| Mg <sup>2+</sup> -16 | $\begin{split} \mathbf{Mg}^{2^{*}-1}\mathbf{G} \ (w = 1 \ \%), \ \mathbf{CP} \ (w = 65 \ \%), \\ \mathbf{KTpCIPB} \ (x_i = 70 \ \%), \\ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$ | $ \begin{array}{l} Li^+,-3.1;Na^+,-3.5;K^+,-3.8;\\ Rb^+,-2.9;Ca^{2+},-0.1;Sr^{2+},-0.7;\\ Ba^{2+},-0.6;H^+,+2.1 \end{array} $                                                                                                                                | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 21 ± 1 °C;<br>r.o.o.g.                                                                                 | [7]          |
| Mg <sup>2+</sup> -17 | $Mg^{2+.17}$ ( <i>w</i> = 10 %),<br>oNPOE ( <i>w</i> = 89 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 11 %)                                                                          | Na <sup>+</sup> , -2.0; K <sup>+</sup> , -2.2; AcCh <sup>+</sup> , -0.6;<br>Ca <sup>2+</sup> , +1.0                                                                                                                                                          | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 22 ± 1 °C;<br>microelec.                                                                               | [5]          |
|                      | $Mg^{2+.17} (w = 10 %),$<br>oNPOE (w = 88 %),<br>KTpCIPB (x <sub>i</sub> = 23 %)                                                                                                  | Na <sup>+</sup> , -2.2; K <sup>+</sup> , -2.3; AcCh <sup>+</sup> , -0.4;<br>Ca <sup>2+</sup> , +1.0                                                                                                                                                          | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 22 ± 1 °C;<br>microelec.                                                                               | [5]          |
|                      | $Mg^{2+.17}$ ( <i>w</i> = 10 %),<br>oNPOE ( <i>w</i> = 87 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 34 %)                                                                          | Li <sup>+</sup> ,-1.2; Na <sup>+</sup> ,-2.2; K <sup>+</sup> ,-2.3;<br>Cs <sup>+</sup> ,-2.0; NH <sub>4</sub> <sup>+</sup> ,-1.8; AcCh <sup>+</sup> ,-0.2<br>Ca <sup>2+</sup> ,+0.9; Sr <sup>2+</sup> ,+0.6; Ba <sup>2+</sup> ,+0.8;<br>H <sup>+</sup> ,+1.5 | SSM<br>2; | 0.1                        | 0.1                                                   | I                        | I                      | $22 \pm 1 \text{ °C};$<br>microelec.<br>$t_{90} \le 3 \text{ s};$<br>$\tau > 7 \text{ d};$<br>r.o.o.g. | [5],<br>[10] |
|                      | $Mg^{2+.17}$ ( <i>w</i> = 10 %),<br>oNPOE ( <i>w</i> = 86 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 46 %)                                                                          | Na <sup>+</sup> , -2.3; K <sup>+</sup> , -2.4; AcCh <sup>+</sup> , +0.4;<br>Ca <sup>2+</sup> , +0.6                                                                                                                                                          | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 22 ± 1 °C;<br>microelec.                                                                               | [5]          |
|                      | $\mathbf{Mg^{2+-17}} (w = 10 \%), PC (w = 87 \%),$<br>KTpCIPB (xi = 34 \%)                                                                                                        | $\label{eq:rescaled} \begin{split} \dot{Na}^+, -1.7;  \dot{K}^+, -1.7;  AcCh^+, -0.8; \\ Ca^{2+}, +0.9 \end{split}$                                                                                                                                          | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | $22 \pm 1$ °C;<br>microelec.                                                                           | [5]          |
|                      | $Mg^{2+.17} (w = 10 \%),$<br>2,3-DMNB (w = 87 %),<br>KTpCIPB (x <sub>i</sub> = 46 %)                                                                                              | Na+, -2.2; K+, -1.9; AcCh <sup>+</sup> , +1.3;<br>Ca <sup>2+</sup> , +0.8                                                                                                                                                                                    | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 22 ± 1 °C;<br>microelec.                                                                               | [5]          |
|                      | $Mg^{2+-17}$ ( $w = ? \%$ ),<br>oNPOE ( $w = ? \%$ ),<br>KTpCIPB ( $x_i = 70 \%$ )                                                                                                | $ \begin{array}{l} Li^+, -1.3, Na^+, -2.2; K^+, -2.3; \\ NH_4^+, -1.8; AcCh^+, -0.2; \\ Ca^{2+}, +0.8; Sr^{2+}, +0.5; Ba^{2+}, +0.7; \\ H^+, +1.5 \end{array} $                                                                                              | SSM       | 0.1                        | 0.1                                                   | I                        | I                      | 21.5 ± 1 °C;<br>microelec.;<br>r.o.o.g.                                                                | [11]         |

 Table 8: Mg<sup>2+-</sup>Selective Electrodes (Continued)

| ionophore            | membrane<br>composition                                                                                                                                                            | lgK <sub>Mg<sup>2+</sup>,B</sub>                                                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                                                                      | ref.         |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------------|--------------|
| Mg <sup>2+</sup> -18 | $Mg^{2+}-18 (w = 12 \%),$<br>KTpCIPB $(x_1 = 3 \%),$<br>PVC $(w = 27 \%)$                                                                                                          | Li <sup>+</sup> , -2.8; Na <sup>+</sup> , -2.7; K <sup>+</sup> , -1.9;<br>Rb <sup>+</sup> , -1.3; Cs <sup>+</sup> , -0.3; NH <sub>4</sub> <sup>+</sup> , -0.9;<br>Ca <sup>2+</sup> , -2.2; Sr <sup>2+</sup> , -2.9; Ba <sup>2+</sup> , -3.0 | SSM    | 0.1                         | 0.1                                                   | 60                       | $10^{-4}$<br>-<br>$\times 10^{-2}$ | 25 ± 0.5 °C; [3<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> );<br>r.o.o.g.  | [3]<br>5M    |
| Mg <sup>2+</sup> -19 | $Mg^{2+}-19 (w = 12 \%),$<br>KTpCIPB (x <sub>i</sub> = 3 %),<br>DBE (w = 60 %),<br>PVC (w = 27 %)                                                                                  | $ \begin{array}{l} Li^+,-0.6; Na^+,-0.8; K^+,-0.4;\\ Rb^+,+0.2; Cs^+,+1.3; NH_4^+,+0.4;\\ Ca^{2+},-0.4; Sr^{2+},-0.9; Ba^{2+},-1.3 \end{array} $                                                                                            | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 25 ± 0.5 °C; [3]<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> );<br>r.o.o.g. | [3]<br>5M    |
| Mg <sup>2+</sup> -20 | $Mg^{2+}20 (w = 12 \%),$<br>KTpCIPB (x <sub>i</sub> = 3 %),<br>DBE (w = 60 %),<br>PVC (w = 27 %)                                                                                   | $ \begin{array}{l} Li^+,-1.0;Na^+,-1.3;K^+,-0.8;\\ Rb^+,-0.2;Cs^+,+0.8;NH_a^+,+0.1;\\ Ca^{2+},-1.6;Sr^{2+},-2.1;Ba^{2+},-2.2.\\ \end{array} $                                                                                               | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 25 ± 0.5 °C; [3]<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> );<br>r.o.o.g. | [3]<br>5M    |
| Mg <sup>2+</sup> -21 | $Mg^{2+}-21 (w = 12 \%),$<br>KTpCIPB $(x_1 = 5 \%),$<br>DBE $(w = 60 \%),$<br>PVC $(w = 27 \%)$                                                                                    | Li <sup>+</sup> , +0.6; Na <sup>+</sup> , +0.2; K <sup>+</sup> , +0.9;<br>Rb <sup>+</sup> , +1.5; Cs <sup>+</sup> , +2.3; NH <sub>4</sub> <sup>+</sup> , +1.5;<br>Ca <sup>2+</sup> , -0.5; Sr <sup>2+</sup> , -0.8; Ba <sup>2+</sup> , -0.9 | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 25 ± 0.5 °C; [3]<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> );<br>r.o.o.g. | [3]<br>5M    |
| Mg <sup>2+</sup> -22 | $Mg^{2+}-22 (w = 12 \%),$<br>KTpCIPB (xi = 3 %),<br>DBE (w = 60 %),<br>PVC (w = 27 %)                                                                                              | Na <sup>+</sup> , +0.5; K <sup>+</sup> , +1.1; Cs <sup>+</sup> , +2.7;<br>Ca <sup>2+</sup> , +0.4                                                                                                                                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 25 ± 0.5 °C; [3]<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> );<br>r.o.o.g. | [3]<br>5M    |
| Mg <sup>2+</sup> -23 | $Mg^{2+}-23 (w = 12 \%),$<br>KTpCIPB (ii = 3 %),<br>DBE (w = 60 %),<br>PVC (w = 27 %)                                                                                              | Na <sup>+</sup> , +1.2; K <sup>+</sup> , +1.6; Cs <sup>+</sup> , +2.1;<br>Ca <sup>2+</sup> , +0.8                                                                                                                                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 25 ± 0.5 °C; [3]<br>pH = 10.0 (0.05M<br>tris/HNO <sub>3</sub> );<br>r.o.o.g. | [3]<br>5M    |
| Mg <sup>2+</sup> -24 | $\begin{split} Mg^{2+}-24 \ (w=1\ \%), CP \ (w=32.5\ \%), \\ KTpCIPB \ (x_i=70\ \%), \\ on PPE \ (w=32.5\ \%), PVC \ (w=33\ \%) \end{split}$                                       | Li <sup>+</sup> , -1.9; Na <sup>+</sup> , -3.0; K <sup>+</sup> , -2.2;<br>Ca <sup>2+</sup> , -0.2; H <sup>+</sup> , +1.5                                                                                                                    | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 37 °C                                                                        | [12]         |
| Mg <sup>2+</sup> -25 | $Mg^{2+}-25 (w = 1 \%),$<br>oNPOE (w = 66 \%),<br>PVC (w = 33 \%)                                                                                                                  | Li <sup>+</sup> , +1.2; Na <sup>+</sup> , +0.8; K <sup>+</sup> , +1.8;<br>Rb <sup>+</sup> , +1.8; NH <sub>4</sub> <sup>+</sup> , +1.8; Ca <sup>2+</sup> , +0.8;<br>Ba <sup>2+</sup> , +0.9; H <sup>+</sup> , +4.6                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 21 ± 1 °C;<br>r.o.o.g.                                                       | [6],<br>[13] |
|                      | $Mg^{2+}-25 (w = 1 %),$<br>KTpCIPB $(x_1 = 40 %),$<br>oNPOE $(w = 65 \%),$ PVC $(w = 33 \%)$                                                                                       | Li+, -1.8; Na+, -2.5; K+, -2.3;<br>Rb+, -2.2; NH <sub>4</sub> +, -2.2; Ca <sup>2+</sup> , +0.8;<br>Ba <sup>2+</sup> , +1.0; H <sup>+</sup> , +1.8                                                                                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 21 ± 1 °C;<br>r.o.o.g.                                                       | [6],<br>[13] |
|                      | $\begin{split} \mathbf{Mg}^{2*}\textbf{-25} \ (w = 1 \ \%), \\ \mathbf{KTpCIPB} \ (x_i = 70 \ \%), \\ \mathbf{oNPOE} \ (w = 65 \ \%), \\ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$ | Li <sup>+</sup> , -2.2; Na <sup>+</sup> , -2.8; K <sup>+</sup> , -2.5;<br>Rb <sup>+</sup> , -2.3; NH <sub>4</sub> <sup>+</sup> , -2.4; Ca <sup>2+</sup> , +0.6;<br>Ba <sup>2+</sup> , +0.8; H <sup>+</sup> , +1.3                           | SSM    | 0.1                         | 0.1                                                   | I                        | I                                  | 21 ± 1 °C;<br>r.o.o.g.                                                       | [6],<br>[13] |

## Potentiometric selectivity coefficients of ion-selective electrodes

| (Continued)      |
|------------------|
| Electrodes       |
| -Selective       |
| Mg <sup>2+</sup> |
| le 8:            |

| lonopnore            | re membrane<br>composition                                                                                                                                                                                                          | $^{\mathrm{lg}K_{\mathrm{Mg}^{2+,\mathrm{B}}}}$                                                                                                                                                                                                 | method | primary<br>ion conc<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade)                            | linear<br>range<br>(M)                      | remarks                                                                                                      | ref.                     |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|
|                      | $Mg^{2+-25} (w = 1 \%),$<br>KTpCIPB $(x_i = 90 \%),$<br>oNPOE $(w = 65 \%),$ PVC $(w = 33 \%)$                                                                                                                                      | $ \begin{array}{l} Li^+,-2.8; Na^+,-3.1; K+,-2.5;\\ Rb^+,-2.1; NH_4^+,-2.8; Ca^{2+},-0.2;\\ Ba^{2+},-0.6; H^+,+1.2 \end{array} $                                                                                                                | MSS    | 0.1                        | 0.1                                                   | I                                                   | I                                           | 21 ± 1 °C;<br>r.o.o.g.                                                                                       | [6],<br>[13]             |
|                      | $Mg^{2+}25 (w = 1 \%),$<br>KTpCIPB ( $x_i = 120 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                                                                                                | Li <sup>+</sup> , -4.0; Na <sup>+</sup> , -4.1; K <sup>+</sup> , -2.8;<br>Rb <sup>+</sup> , -1.9; NH <sub>4</sub> <sup>+</sup> , -3.2; Ca <sup>2+</sup> , -0.8;<br>Ba <sup>2+</sup> , -1.6; H <sup>+</sup> , +0.9                               | SSM    | 0.1                        | 0.1                                                   | I                                                   | I                                           | 21 ± 1 °C;<br>r.o.o.g.                                                                                       | [6],<br>[13]             |
|                      | $Mg^{2+-2S} (w = 1 \%),$<br>KTpCIPB $(x_i = 150 \%),$<br>oNPOE $(w = 65 \%),$ PVC $(w = 33 \%)$                                                                                                                                     | Li <sup>+</sup> , -3.8; Na <sup>+</sup> , -3.8; K <sup>+</sup> , -2.6;<br>Rb <sup>+</sup> , -1.8; NH <sub>4</sub> <sup>+</sup> , -2.8; Ca <sup>2+</sup> , -0.8;<br>Ba <sup>2+</sup> , -1.7; H <sup>+</sup> , +1.0                               | SSM    | 0.1                        | 0.1                                                   | 29.3                                                | $9.7 \times 10^{-6} - 4.8 \times 10^{-2}$   | 21 ± 1 °C;<br>r.o.o.g.                                                                                       | [6],<br>[13]             |
|                      | $\begin{array}{l} \mathbf{Mg^{2+.25}} \ (w=1\ \%),\\ \mathbf{KTpCIPB} \ (x_i=170\ \%),\\ \mathbf{oNPOE} \ (w=65\ \%), \ \mathbf{PVC} \ (w=33\ \%) \end{array}$                                                                      | $\begin{array}{l} Li^+,+0.8;Na^+,+1.8;K^+,+4.3;\\ Rb^+,+5.3;NH_{4}^+,+3.8;Ca^{2+},+0.7;\\ Ba^{2+},+1.1;H^+,+6.5\end{array}$                                                                                                                     | SSM    | 0.1                        | 0.1                                                   | I                                                   | I                                           | $21 \pm 1 ^{\circ}C;$<br>$\lg P_{TLC} =$<br>$6.9 \pm 0.6;$<br>r.o.o.g.                                       | [6],<br>[13]             |
| Mg <sup>2+</sup> -26 | i $Mg^{2+}-26 (w = 1 \%)$ ,<br>KTpCIPB ( $x_i = 155 \%$ ),<br>oNPOE ( $w = 66 \%$ ), PVC ( $w = 33 \%$ )                                                                                                                            | Li+, -4.3; Na+, -4.3; K+, -2.8;<br>Rb+, -2.0; Ca <sup>2+</sup> , -1.0; Sr <sup>2+</sup> , -2.2;<br>H+, +1.3                                                                                                                                     | SSM    | 0.1                        | 0.1                                                   |                                                     | I                                           | pH = 7.4;<br>r.o.o.g.                                                                                        | [14]                     |
|                      | Mg <sup>2+</sup> -26 ( <i>w</i> = 1 %), PVC ( <i>w</i> = 33 %),<br>ETH 5373 ( <i>w</i> = 66 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 155 %)                                                                                         | Li <sup>+</sup> , -5.5; Na <sup>+</sup> , -5.0; K <sup>+</sup> , -3.4;<br>Rb <sup>+</sup> , -2.5; Ca <sup>2+</sup> , -1.5; Sr <sup>2+</sup> , -3.0;<br>H <sup>+</sup> , +0.7                                                                    | SSM    | 0.1                        | 0.1                                                   |                                                     | I                                           | pH = 7.4;<br>r.o.o.g.                                                                                        | [14]                     |
|                      | $\begin{split} \mathbf{M}_{\mathbf{g}^{2+2}\mathbf{d}}^{\mathbf{g}^{2+2}\mathbf{d}} & (w=1~\%), \\ \text{ETH} & 500 & (w=3~\%), \text{ PVC} & (w=33~\%), \\ \text{KTpCIPB} & (x_1=155~\%), \\ \text{oNPOE} & (w=63~\%) \end{split}$ | Li+, -4.8; Na <sup>+</sup> , -4.7; K+, -2.9;<br>Rb <sup>+</sup> , -2.0; Ca <sup>2+</sup> , -1.3; Sr <sup>2+</sup> , -2.7;<br>H <sup>+</sup> , +0.9                                                                                              | SSM    | 0.1                        | 0.1                                                   | $29.5 \pm 0.3 \ 10^{-4}$ $(37 ^{\circ}C) - 10^{-1}$ | 3 10 <sup>-4</sup><br>-<br>10 <sup>-1</sup> | pH = 7.4;<br>r.o.o.g.                                                                                        | [14]                     |
|                      | $Mg^{2+}-26 (w = 8.8 \%),$<br>ETH 500 (w = 4.4 %),<br>KTpCIPB (x <sub>1</sub> = 60 %),<br>oNPOE (w = 71.8 %),<br>PVC (w = 12 %)                                                                                                     | Li <sup>+</sup> , -2.7; Na <sup>+</sup> , -3.1; K <sup>+</sup> , -3.1;<br>NH <sub>4</sub> , -2.5; Ca <sup>2+</sup> , +0.7;<br>Sr <sup>2+</sup> , +0.4; Ba <sup>2+</sup> , +0.6; H <sup>+</sup> , +1.6;<br>AcCh <sup>+</sup> , -0.3              | SSM    | 0.1                        | 0.1                                                   | 29.1 ± 0.5                                          | $\pm 0.5 \ 10^{-4}$                         | $21 \pm 1 ^{\circ}$ C; [10<br>microelec.;<br>$c_{dl} = 10^{-4.8} \pm 0.1$ M;<br>$t_{90} < 30$ s;<br>r.o.o.g. | [10]<br><sup>11</sup> M; |
|                      | $\begin{array}{l} \mathbf{Mg^{2+-26}} \ (w=8.8 \ \%), \\ \mathrm{ETH} \ 500 \ (w=0.9 \ \%), \\ \mathrm{KTpCIPB} \ (x_1=150 \ \%), \\ \mathrm{oNPOE} \ (w=70.8 \ \%), \\ \mathrm{PVC} \ (w=12 \ \%). \end{array}$                    | Li <sup>+</sup> , -3.5; Na <sup>+</sup> , -3.2; K <sup>+</sup> , -2.7;<br>NH <sub>4</sub> <sup>+</sup> , -2.2; Ca <sup>2+</sup> , -0.7;<br>Sr <sup>2+</sup> , -1.3; Ba <sup>2+</sup> , -1.2; H <sup>+</sup> , +2.3;<br>AcCh <sup>+</sup> , +2.7 | SSM    | 0.1                        | 0.1                                                   | $29.1 \pm 0.5$ $10^{-4}$ - 10^{-2}                  | 5 10 <sup>-4</sup><br>-<br>10 <sup>-2</sup> | 21 ± 1 °C; [10<br>microelec.;<br>c <sub>dl</sub> = 10 <sup>-4.8</sup> ± 0.2 M;<br>r.o.o.g.                   | [10]<br><sup>52</sup> M; |
|                      | $Mg^{2+}26 (w = 1 %),$<br>KTpCIPB (x <sub>i</sub> = 155 %),<br>ETH 500 (w - 3 %)                                                                                                                                                    | Li+, -4.8; Na+, -4.6; K+, -2.8;<br>Rb+, -2.0; Ca <sup>2+</sup> , -1.2; Sr <sup>2+</sup> , -2.6;<br>Ba <sup>2+</sup> -7 5; H+ +1 1                                                                                                               | SSM    | 0.1                        | 0.1                                                   | 29.23<br>± 0.5                                      | I                                           | $21.5 \pm 1 ^{\circ}C;$<br>$c_{\rm dl} = 10^{-5.0} \mathrm{M};$                                              | [11]                     |

Y. UMEZAWA et al.

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                          | ionophore membrane<br>composition                                                                                     | lgK <sub>Mg</sub> ²+,B                                                                                                                                                                                                                          | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                             | ref. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|---------------------------------------------------------------------|------|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | oNPOE ( $w = 59 \%$ ), PVC ( $w = 36 \%$ )                                                                            |                                                                                                                                                                                                                                                 |        |                             |                                                       |                          |                        | r.o.o.g.                                                            |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+.26} (w = ? \%),$<br>KTpCIPB (x <sub>1</sub> = 60 %),<br>ETH 500 (w = ? %),<br>oNPOE (w = ? %), PVC (w = ? %)  | Li <sup>+</sup> , -2.6; Na <sup>+</sup> , -3.1; K <sup>+</sup> , -3.1;<br>NH <sub>4</sub> <sup>+</sup> , -2.5; AcCh <sup>+</sup> , -0.3;<br>Ca <sup>2+</sup> , +0.8; Sr <sup>2+</sup> , +0.4; Ba <sup>2+</sup> , +0.6;<br>H <sup>+</sup> , +1.6 | SSM    | 0.1                         | 0.1                                                   | 29.23<br>± 0.5           | I                      | 21.5 ± 1 °C;<br>r.o.o.g.                                            | [11] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26} (w = ? \%),$<br>KTpCIPB (x <sub>1</sub> = 150 %),<br>ETH 500 (w = ? %),<br>oNPOE (w = ? %), PVC (w = ? %) | Li <sup>+</sup> , -3.4; Na <sup>+</sup> , -3.2; K <sup>+</sup> , -2.7;<br>NH <sub>4</sub> <sup>+</sup> , -2.3; AcCH <sup>+</sup> , +2.8;<br>Ca <sup>2+</sup> , -0.7; Sr <sup>2+</sup> , -1.3; Ba <sup>2+</sup> , -1.2;<br>H <sup>+</sup> , +2.3 | SSM    | 0.1                         | 0.1                                                   | 29.23<br>± 0.5           | I                      | 21.5 ± 1 °C;<br>r.o.o.g.                                            | [11] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26}(w=0.4\%),$                                                                                                | Ca <sup>2+</sup> , -0.80                                                                                                                                                                                                                        | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | KTpCIPB ( $x_i = 155 \%$ ),<br>oNPOE ( $w = 63 \%$ ), PVC ( $w = 36 \%$ )                                             | Ca <sup>2+</sup> , -0.35                                                                                                                                                                                                                        | SAMT   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-0.0} \mathrm{M}$<br>$\ddagger$ see ref 15. |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26} (w = 0.6 \%),$                                                                                            | Ca <sup>2+</sup> , -0.90                                                                                                                                                                                                                        | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | KTpCIPB ( $x_i = 155 \%$ ),<br>oNPOE ( $w = 63 \%$ ), PVC ( $w = 36 \%$ )                                             | Ca <sup>2+</sup> , -0.50                                                                                                                                                                                                                        | SAM†   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-5.0} \mathrm{M}$<br>$\ddagger$ see ref 15. |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26} (w = 1 \%),$                                                                                              | Ca <sup>2+</sup> , -1.00                                                                                                                                                                                                                        | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                          | KTpCIPB ( $x_1 = 155 \%$ ),<br>oNPOE ( $w = 62 \%$ ), PVC ( $w = 36 \%$ )                                             |                                                                                                                                                                                                                                                 | SAM†   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-5.0} \mathrm{M}$<br>$\ddagger$ see ref 15. |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+}-26 (w = 0.3 \%),$                                                                                            | Ca <sup>2+</sup> , -0.90                                                                                                                                                                                                                        | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                          | KTpCIPB (xj = 155 %),<br>oNPOE (w = 60 %), PVC (w = 36 %)<br>ETH 500 (w = 3 %)                                        |                                                                                                                                                                                                                                                 | SAM†   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-5.0} \mathrm{M}$<br>$\ddagger$ see ref 15. |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26} (w = 0.6 \%),$                                                                                            | Ca <sup>2+</sup> , -1.05                                                                                                                                                                                                                        | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | KTpCIPB (x <sub>i</sub> = 155 %),<br>oNPOE (w = 60 %),<br>ETH 500 (w = 3 %), PVC (w = 36 %)                           | -                                                                                                                                                                                                                                               | SAM†   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-5.0} \text{ M}$<br>$\dagger$ see ref 15.   |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26}$ ( $w = 1$ %), PVC ( $w = 36$ %)                                                                          |                                                                                                                                                                                                                                                 | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| ), PVC ( $w = 36$ %), $Ca^{2+}$ , -1.40 SSM 0.1 0.1 29.23 - 21.5 ± 1°C;<br>5 %), $Ca^{2+}$ , -0.60 SAM <sup>†</sup> ± 0.5 $c_{\rm tl} \approx 10^{-5.0}$ M<br>), ETH 500 ( $w = 3$ %) <sup>†</sup> see ref 15.<br>1, Li <sup>+</sup> , +0.9; Na <sup>+</sup> , +0.9; K <sup>+</sup> , +1.1; SSM 0.1 0.1 nN - 21 ± 1 °C;<br>(12 by weight) NH <sub>4</sub> <sup>+</sup> , +1.4; Ca <sup>2+</sup> , +0.3; Sr <sup>2+</sup> , -0.1;<br>$Ba^{2+}$ , +0.3; Sr <sup>2+</sup> , -0.1; | KTpCIPB ( $x_1 = 155 \%$ ),<br>oNPOE ( $w = 59 \%$ ), ETH 500 ( $w = 3$                                               | Ca <sup>2+</sup> , -0.75<br>%)                                                                                                                                                                                                                  | SAM†   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-5.0} \mathrm{M}$<br>$\ddagger$ see ref 15. |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                          | $Mg^{2+-26}$ ( $w = 3$ %), PVC ( $w = 36$ %)                                                                          |                                                                                                                                                                                                                                                 | SSM    | 0.1                         | 0.1                                                   | 29.23                    | I                      | 21.5 ± 1 °C;                                                        | [15] |
| ), Li <sup>+</sup> , +0.9; Na <sup>+</sup> , +0.9; K <sup>+</sup> , +1.1; SSM 0.1 0.1 nN - 21 ± 1 °C; (1:2 by weight) NH <sub>4</sub> <sup>+</sup> , +1.4; Ca <sup>2+</sup> , +0.3; Sr <sup>2+</sup> , -0.1; r.o.o.g. $R_{0,2}^{-2} + .0.5 \cdot H^{-2,5}$                                                                                                                                                                                                                     | KTpCIPB ( $x_i = 155 \%$ ),<br>oNPOE ( $w = 55 \%$ ), ETH 500 ( $w = 3$                                               | Ca <sup>2+</sup> , -0.60<br>%)                                                                                                                                                                                                                  | SAM†   | I                           | I                                                     | ± 0.5                    |                        | $c_{\rm dl} \approx 10^{-5.0} \text{ M}$<br>$\dagger$ see ref 15.   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mg <sup>2+</sup> -26 ( <i>w</i> = 1 %),<br>PVC and oNPOE (1:2 by weight)                                              | Li <sup>+</sup> , +0.9; Na <sup>+</sup> , +0.9; K <sup>+</sup> , +1.1;<br>NH <sub>4</sub> <sup>+</sup> , +1.4; Ca <sup>2+</sup> , +0.3; Sr <sup>2+</sup> , -0.1;<br>$D_{2,2^{+}}^{-1}$ , 0.2, ut $+5.6$                                         |        | 0.1                         | 0.1                                                   | Nn                       | I                      | 21 ± 1 °C;<br>r.o.o.g.                                              | [16] |

## Potentiometric selectivity coefficients of ion-selective electrodes

1983

continues on next page

| (Continued)                                     |
|-------------------------------------------------|
| Table 8: Mg <sup>2+</sup> -Selective Electrodes |

| ionophore            | e membrane<br>composition                                                                                                                                          | lgK <sub>Mg</sub> 2+,B                                                                                                                                                                                                                                                | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade)                          | linear<br>range<br>(M) | remarks                                                                                                  | ref. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|---------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|------|
|                      | Mg <sup>2+</sup> -26 ( <i>w</i> = 3 %),<br>ETH 500 ( <i>w</i> = 3.5 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 155 %),<br>PVC and oNPOE (1:2 by weight)              | Li <sup>+</sup> , -2.9; Na <sup>+</sup> , -3.4; K <sup>+</sup> , -2.6;<br>Rb <sup>+</sup> , -2.4; Cs <sup>+</sup> , -1.4; NH <sub>4</sub> <sup>+</sup> , -2.9;<br>Ca <sup>2+</sup> , -1.1; Sr <sup>2+</sup> , -0.1; Ba <sup>2+</sup> , +0.2;<br>H <sup>+</sup> , +1.3 | SSM    | 0.1                         | 0.1                                                   | 29.5                                              | 1                      | 21 ± 1 °C;<br>r.o.o.g.                                                                                   | [16] |
|                      | <b>Mg<sup>2+</sup>-26</b> ( $w = 1$ %), poly(2-acryl-<br>amido-2-methyl-1-propane sulphonic<br>acid-co-styrene) ( $x_1 = 155$ %),<br>PVC and oNPOE (1:2 by weight) | $ \begin{array}{l} Li^+, -0.6;  Na^+, -1.1;  K^+, -0.9; \\ Rb^+, -1.1;  Cs^+, -0.8;  NH_4^+, -0.6; \\ Ca^{2+}, +0.9;  Sr^{2+}, +0.5;  Ba^{2+}, +0.8; \\ H^+, +3.3 \end{array} $                                                                                       | SSM    | 0.1                         | 0.1                                                   | 29.6                                              | I                      | 21 ± 1 °C;<br>r.o.o.g.                                                                                   | [16] |
|                      | $Mg^{2+-26} (w = 1 \%),$<br>KTpCIPB ( $x_1 = 155 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                              | Li <sup>+</sup> , -4.6; Na <sup>+</sup> , -4.2; K <sup>+</sup> , -2.7;<br>Rb <sup>+</sup> , -1.4; Ca <sup>2+</sup> , -1.0; Sr <sup>2+</sup> , -2.3;<br>H <sup>+</sup> , +0.9                                                                                          | SSM    | 0.1                         | 0.1                                                   | $29.2 \pm 0.5$                                    | I                      | 21 ± 1 °C;                                                                                               | [17] |
|                      | Mg <sup>2+</sup> -26 ( <i>w</i> = 1 %), PVC ( <i>w</i> = 33 %),<br>ETH 5373 ( <i>w</i> = 65 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 155 %)                        | Li <sup>+</sup> , -4.9; Na <sup>+</sup> , -4.5; K <sup>+</sup> , -3.3;<br>Rb <sup>+</sup> , -2.2; Ca <sup>2+</sup> , -1.3; Sr <sup>2+</sup> , -2.7;<br>H <sup>+</sup> , +1.5                                                                                          | SSM    | 0.1                         | 0.1                                                   | $29.2 \pm 0.5$                                    | I                      | 21 ± 1 °C                                                                                                | [17] |
|                      | $Mg^{2+-26} (w = 1 \%),$<br>KTpCIPB (x <sub>i</sub> = 155 ± 5 %),<br>oNPOE (w = 66 %), PVC (w = 33 %)                                                              | Li <sup>+</sup> , -4.6; Na <sup>+</sup> , -4.2; K <sup>+</sup> , -2.7;<br>Ca <sup>2+</sup> , -1.0; Sr <sup>2+</sup> , -2.3; H <sup>+</sup> , +0.9                                                                                                                     | SSM    | 0.1                         | 0.1                                                   | Z                                                 | I                      | 21 ± 1 °C                                                                                                | [6]  |
|                      | $Mg^{2+-26} (w = 1 \%),$<br>KTpCIPB (x <sub>i</sub> = 155 %),<br>oNPOE (w = 55 %), PVC (w = 43 \%)                                                                 | Li+, -4.9; Na+, -4.7; K+, -2.9;<br>Ca <sup>2+</sup> , -1.2                                                                                                                                                                                                            | I      | I                           | I                                                     | 29                                                | I                      | 37 ± 0.5 °C                                                                                              | [18] |
| Mg <sup>2+</sup> -27 | $Mg^{2+-27} (w = 1 \%),$<br>oNPOE (w = 59 %),<br>KTpCIPB (x <sub>1</sub> = 155 %),<br>ETH 500 (w = 3 %), PVC (w = 36 \%)                                           | $\begin{array}{l} Li^+,-4.7; Na^+,-4.8; K^+,-3.8;\\ NH4^+,-3.9; Ca^{2+},-1.5;\\ Sr^{2+},-2.7; H^+,-0.6\end{array}$                                                                                                                                                    | SSM    | 0.1                         | 0.1                                                   | $\begin{array}{c} 29.23 \\ \pm \ 0.5 \end{array}$ | I                      | $21.5 \pm 1 \text{ °C};$<br>$c_{\text{dl}} = 10^{-5} \text{ M};$<br>$t_{90} < 30 \text{ s};$<br>r.o.o.g. | [11] |
|                      | $Mg^{2+,27} (w = 1 \%),$<br>KTpCIPB ( $x_i = 155 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                              | Li+, -4.6; Na+, -4.1; K+, -3.0;<br>Rb+, -2.1; Ca <sup>2+</sup> , -1.4; St <sup>2+</sup> , -2.6;<br>H+, -1.0                                                                                                                                                           | SSM    | 0.1                         | 0.1                                                   | 29.2 ± 0.5                                        | I                      | 21 ± 1 °C                                                                                                | [17] |
|                      | Mg <sup>2+</sup> -27 ( <i>w</i> = 1 %), PVC ( <i>w</i> = 33 %),<br>ETH 5373 ( <i>w</i> = 65 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 155 %)                        | Li <sup>+</sup> , -5.4; Na <sup>+</sup> , -5.0; K <sup>+</sup> , -3.8;<br>Rb <sup>+</sup> , -3.0; Ca <sup>2+</sup> , -1.7; Sr <sup>2+</sup> , -2.9;<br>H <sup>+</sup> , -0.3                                                                                          | SSM    | 0.1                         | 0.1                                                   | 29.2 ± 0.5                                        | 1                      | 21 ± 1 °C                                                                                                | [17] |
| Mg <sup>2+</sup> -28 | $Mg^{2+-28}_{V} (w = 1 \%),$<br>KTpCIPB ( $x_1 = 155 \%$ ),<br>oNPOE ( $w = 66 \%$ ), PVC ( $w = 33 \%$ )                                                          | Li <sup>+</sup> , -4.3; Na <sup>+</sup> , -4.2; K <sup>+</sup> , -2.0;<br>Rb <sup>+</sup> , -0.8; Ca <sup>2+</sup> , -1.2; Sr <sup>2+</sup> , -2.3;<br>H <sup>+</sup> , +1.9                                                                                          | SSM    | 0.1                         | 0.1                                                   | $29.2 \pm 0.5$                                    | I                      | $21 \pm 1$ °C;<br>$\log P_{TLC} =$<br>$7.1 \pm 1.2$                                                      | [17] |
|                      | $\begin{split} \mathbf{Mg^{2+28}} & (w=1~\%), \ \mathbf{PVC} \ (w=33~\%), \\ \mathbf{ETH} \ 5373 \ (w=66~\%), \\ \mathbf{KTpCIPB} \ (x_1=155~\%) \end{split}$      | Li+, -4.4; Na+, -4.0; K+, -3.1;<br>Rb+, -2.0; Ca <sup>2+</sup> , -1.6; Sr <sup>2+</sup> , -2.8;<br>H <sup>+</sup> , +2.3                                                                                                                                              | SSM    | 0.1                         | 0.1                                                   | $29.2 \pm 0.5$                                    | T                      | 21 ± 1 °C                                                                                                | [17] |
|                      |                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |        |                             |                                                       |                                                   |                        |                                                                                                          |      |

Table 8: Mg<sup>2+</sup>-Selective Electrodes (Continued)

| ionophore            | ionophore membrane<br>composition                                                                                                                                                | $\lg K_{\mathrm{Mg}^{2+},\mathrm{B}}$                                                                       | method | primary i<br>ion conc. | interfering<br>ion conc. | slope linear<br>(mV/ range | ar remarks<br>ge                                              | ref.                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------|------------------------|--------------------------|----------------------------|---------------------------------------------------------------|--------------------------------|
| Mg <sup>2+</sup> -29 | $Mg^{2+}29 (w = 1 \%), PVC (w = 33 \%),$<br>KTpCIPB $(x_i = 155 \%),$<br>oNPOE $(w = 65 \%)$                                                                                     | Li+, -4.7; Na+, -4.4; K+, -2.7;<br>Rb+, -1.6; Ca <sup>2+</sup> , -1.7; Sr <sup>2+</sup> , -2.8;<br>H+, +0.1 | SSM    | 0.1                    | 0.1                      | i.                         | $21 \pm 1 \text{ °C};$ $\log P_{\text{TLC}} =$ $8.1 \pm 1.2$  | [17]                           |
|                      | Mg <sup>2+</sup> -29 (w = 1 %), PVC (w = 33 %),<br>ETH 5373 (w = 65 %),<br>KTpCIPB (x <sub>i</sub> = 155 %)                                                                      | Li+, -4.8; Na+, -4.7; K+, -3.7;<br>Rb+, -2.8; Ca <sup>2+</sup> , -1.9; Sr <sup>2+</sup> , -3.1;<br>H+, +0.9 | SSM    | 0.1                    | 0.1                      | 29.2 ± 0.5 −               | 21 ± 1 °C                                                     | [17]                           |
| Mg <sup>2+</sup> -30 | $Mg^{2+}.30 (w = 1 %),$<br>KTpCIPB (x <sub>i</sub> = 70 ± 5 %),<br>oNPOE (w = 65 %), PVC (w = 33 %)                                                                              | Li+, -2.4; Na+, -3.0; K+, -2.0;<br>Ca <sup>2+</sup> , 0.0; Sr <sup>2+</sup> , -0.4; H <sup>+</sup> , +2.1   | SSM    | 0.1                    | 0.1                      | 29.2 ± 0.5 −               | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -31 | $Mg^{2+}.31 (w = 1 \%),$<br>KTpCIPB ( $x_i = 70 \pm 5 \%$ ),<br>oNPOE ( $w = 65 \%$ ), PVC ( $w = 33 \%$ )                                                                       | Li+, -1.9; Na+, -2.6; K+, -2.1;<br>Ca <sup>2+</sup> , +0.8; Sr <sup>2+</sup> , +0.8; H+, +3.5               | SSM    | 0.1                    | 0.1                      | 29.2 ± 0.5 –               | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -32 | $\begin{split} \mathbf{Mg^{2+.32}} & (w = 1 \ \%), \\ \mathbf{KTpCIPB} \ (x_i = 155 \pm 5 \ \%), \\ \mathbf{oNPOE} & (w = 65 \ \%), \\ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$ | Li+, -3.5; Na+, -3.4; K+, -2.7;<br>Ca <sup>2+</sup> , -0.7; Sr <sup>2+</sup> , -1.8; H <sup>+</sup> , +1.7  | SSM    | 0.1                    | 0.1                      | I<br>Z                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -33 | $\begin{split} Mg^{2+}.33 \ (w=1\ \%), \\ KTpCIPB \ (x_i=155 \pm 5\ \%), \\ oNPOE \ (w=65\ \%), \ PVC \ (w=33\ \%) \end{split}$                                                  | Li+, -3.6; Na+, -3.5; K+, -2.2;<br>Ca <sup>2+</sup> , -0.8; Sr <sup>2+</sup> , -2.1; H <sup>+</sup> , +1.4  | SSM    | 0.1                    | 0.1                      | ı<br>Z                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -34 | $Mg^{2+}.34 (w = 1 \%),$<br>KTpCIPB (x <sub>i</sub> = 155 ± 5 %),<br>oNPOE (w = 65 %), PVC (w = 33 %)                                                                            | Li+, -3.2; Na+, -3.2; K+, -1.4;<br>Ca <sup>2+</sup> , -0.9; Sr <sup>2+</sup> , -2.0; H+, +0.5               | SSM    | 0.1                    | 0.1                      | ı<br>Z                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -35 | $\begin{split} \mathbf{Mg^{2+.35}} & (w = 1 \ \%), \\ \mathbf{KTpCIPB} & (x_i = 155 \pm 5 \ \%), \\ \mathbf{oNPOE} & (w = 65 \ \%), \\ \mathbf{PVC} & (w = 33 \ \%) \end{split}$ | Li+, -3.9; Na+, -3.7; K+, -2.0;<br>Ca <sup>2+</sup> , -0.9; Sr <sup>2+</sup> , -2.1; H+, +0.2               | SSM    | 0.1                    | 0.1                      | ı<br>Z                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -36 | $\begin{split} \mathbf{Mg^{2+.36}} & (w = 1 \ \%), \\ \mathbf{KTpCIPB} \ (x_i = 155 \pm 5 \ \%), \\ \text{oNPOE} & (w = 65 \ \%), \\ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$   | Li+, -3.9; Na+, -3.7; K+, -2.3;<br>Ca <sup>2+</sup> , -0.8; Sr <sup>2+</sup> , -1.9; H+, +0.2               | SSM    | 0.1                    | 0.1                      | ı<br>X                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -37 | $\begin{split} \mathbf{Mg^{2+.37}} & (w = 1 \ \%), \\ \mathbf{KTpCIPB} \ (x_i = 155 \pm 5 \ \%), \\ \text{oNPOE} & (w = 65 \ \%), \\ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$   | Li+, -3.3; Na+, -2.7; K+, +1.5;<br>Ca <sup>2+</sup> , -0.4; Sr <sup>2+</sup> , -1.4; H <sup>+</sup> , +1.3  | SSM    | 0.1                    | 0.1                      | ı<br>Z                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -38 | $\begin{split} \mathbf{Mg^{2+.38}} & (w = 1 \ \%), \\ \mathbf{KTpCIPB} \ (x_i = 155 \pm 5 \ \%), \\ \text{oNPOE} \ (w = 65 \ \%), \ \mathbf{PVC} \ (w = 33 \ \%) \end{split}$    | Li+, -3.3; Na+, -2.9; K+, -0.2;<br>Ca <sup>2+</sup> , -0.6; Sr <sup>2+</sup> , -1.8; H <sup>+</sup> , -0.1  | SSM    | 0.1                    | 0.1                      | ı<br>Z                     | 21 ± 1 °C                                                     | [6]                            |
| Mg <sup>2+</sup> -39 | $\begin{split} Mg^{2+}.39 \ (w=?\ \%), \\ KTpCIPB \ (x_i=?\ \%), \ PVC \ (w=?\ \%), \\ oNPOE \ (w=?\ \%) \end{split}$                                                            | Na <sup>+</sup> , -2.0; K <sup>+</sup> , -2.1; Ca <sup>2+</sup> , -1.6                                      | MSM    | I                      | I                        | 23.0 -                     | $25 \pm 1 ^{\circ}C;$<br>$c_{dl} = 2.0$<br>$\times 10^{-5} M$ | [19]<br>continues on next page |

| (Continued)                                     |  |
|-------------------------------------------------|--|
| <b>Table 8:</b> $Mg^{2+}$ -Selective Electrodes |  |

| ionophore            | membrane<br>composition                                                                                                                                             | $\lg K_{\mathrm{Mg}^{2+,\mathrm{B}}}$                                  | method | primary<br>ion conc<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                           | ref.                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------|----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------------------------------------------------|--------------------------|
| Mg <sup>2+</sup> -40 | $\begin{split} \mathbf{Mg}^{2^{*}-40} & (w = ? \%), \\ \mathbf{KTPCIPB} & (x_{1} = ? \%), \\ \mathbf{PVC} & (w = ? \%), \\ \mathbf{oNPOE} & (w = ? \%) \end{split}$ | Na+, -2.5; K+, -2.7; Ca <sup>2+</sup> , -2.2                           | MSM    | I                          | I                                                     | 27.0                     | I                      | $25 \pm 1 ^{\circ}C;$<br>$c_{dl} = 9.5 \times 10^{-6} M$                          | [19]                     |
| Mg <sup>2+</sup> -41 | $Mg^{2+-41} (w = ? \%), DBP (w = ? \%), KTpCIPB (x_i = ? \%), PVC (w = ? \%)$                                                                                       | Na+, -0.3; K+, -0.2; Ca <sup>2+</sup> , -0.5                           | MSM    | I                          | I                                                     | 11.5                     | I                      | $25 \pm 1 ^{\circ}C;$ [19<br>$c_{dl} = 3.6 \times 10^{-3} M$                      | [19]<br>- <sup>3</sup> M |
|                      | $Mg^{2+-41} (w = ? \%), BEHS (w = ? \%), KTpCIPB (x_i = ? \%), PVC (w = ? \%)$                                                                                      | Na <sup>+</sup> , -0.5; K <sup>+</sup> , -0.4; Ca <sup>2+</sup> , -0.8 | MSM    | I                          | I                                                     | 13.6                     | I                      | $25 \pm 1 \circ C;$ [19<br>$c_{dl} = 2.5 \times 10^{-3} M$                        | [19]<br>- <sup>3</sup> M |
|                      | $Mg^{2+-41} (w = ? \%), TEHP (w = ? \%), KTpCIPB (x_i = ? \%), PVC (w = ? \%)$                                                                                      | Na+, -0.8; K+, -0.9; Ca <sup>2+</sup> , -1.2                           | MSM    | I                          | I                                                     | 16.2                     | I                      | $25 \pm 1 ^{\circ}C;$ [19<br>$c_{dl} = 1.3 \times 10^{-3} M$                      | [19]<br>- <sup>3</sup> M |
|                      | $Mg^{2+-41} (w = ? \%), DOPP (w = ? \%), KTpCIPB (x_i = ? \%), PVC (w = ? \%)$                                                                                      | Na <sup>+</sup> , -1.6; K <sup>+</sup> , -1.8; Ca <sup>2+</sup> , -1.9 | MSM    | I                          | I                                                     | 22.4                     | I                      | $25 \pm 1 ^{\circ}C;$ [19<br>$c_{dl} = 2.2 \times 10^{-5} M$                      | [19]<br>-5 M             |
|                      | $Mg^{2+-41} (w = ? \%), DPE (w = ? \%), KTpCIPB (x_i = ? \%), PVC (w = ? \%)$                                                                                       | Na+, -1.2; K+, -1.4; Ca <sup>2+</sup> , -1.5                           | MSM    | I                          | I                                                     | 18.8                     | I                      | $25 \pm 1 ^{\circ}C;$ [19<br>$c_{dl} = 6.5 \times 10^{-3} M$                      | [19]<br>- <sup>3</sup> M |
|                      | $\begin{split} \mathbf{Mg}^{2^{n}-41} & (w=?~\%), \\ \mathbf{KTpCIPB} & (x_1=?~\%), \\ \mathbf{PVC} & (w=?~\%), \\ \mathbf{oNPOE} & (w=?~\%) \end{split}$           | Na+, -3.1; K+, -3.3; Ca <sup>2+</sup> , -2.8                           | MSM    | I                          | I                                                     | 30.0                     | I                      | $25 \pm 1 \text{ °C};$ [19<br>$c_{dl} = 6.3 \times 10^{-6} \text{ M}$             | [19]<br>-6 M             |
|                      | $\begin{split} \mathbf{Mg}^{2^{n}-41} & (w=?~\%), \\ \mathbf{KTpCIPB} & (x_i=?~\%), \\ \mathbf{PVC} & (w=?~\%), \\ \mathbf{oNPPE} & (w=?~\%) \end{split}$           | Na+, -3.0; K+, -3.1; Ca <sup>2+</sup> , -2.2                           | MSM    | I                          | I                                                     | 24.5                     | I                      | $25 \pm 1 ^{\circ}\text{C};$ [19<br>$c_{\text{dl}} = 3.0 \times 10^{-5} \text{M}$ | [19]<br>-5 M             |
|                      | $\begin{array}{l} Mg^{2+}{}_{4}{}_{4}{}_{1}(w=?\%),\\ \text{KTpCIPB}(v_{1}=?\%), \text{PVC}(w=?\%),\\ \text{oNPOE}(w=45\%) \end{array}$                             | Ca <sup>2+</sup> , -0.6                                                | MSM    | I                          | Ι                                                     | 7                        | I                      | 25 ± 1 °C;<br>r.o.o.g.                                                            | [19]                     |
|                      | $\begin{array}{l} Mg^{2+}{}_{-41} (w=?\%), \\ \text{KTpCIPB} (x_i=?\%), \text{PVC} (w=?\%), \\ \text{oNPOE} (w=47\%) \end{array}$                                   | Ca <sup>2+</sup> , -1.0                                                | MSM    | I                          | I                                                     | 10                       | I                      | 25 ± 1 °C;<br>r.o.o.g.                                                            | [19]                     |
|                      | $ \begin{array}{l} Mg^{2+.41} (w=?\%), \\ \text{KTpCIPB} (x_i=?\%), \\ \text{PVC} (w=?\%), \\ \text{oNPOE} (w=50\%). \end{array} $                                  | Ca <sup>2+</sup> , -1.5                                                | MSM    | I                          | I                                                     | 15                       | I                      | 25 ± 1 °C;<br>r.o.o.g.                                                            | [19]                     |
|                      | $\begin{array}{l} Mg^{2+}{}_{41}(w=?\%),\\ \text{KTpCIPB}(v_i=?\%), \text{PVC}(w=?\%),\\ \text{oNPOE}(w=52\%) \end{array}$                                          | Ca <sup>2+</sup> , -1.9                                                | MSM    | I                          | I                                                     | 19                       | I                      | 25 ± 1 °C;<br>r.o.o.g.                                                            | [19]                     |
|                      | $\begin{split} & \text{Mg}^{2+.41} \ (w = ? \%), \\ & \text{KTpCIPB} \ (x_i = ? \%), \\ & \text{PVC} \ (w = ? \%), \\ & \text{oNPOE} \ (w = 56 \%) \end{split}$     | Ca <sup>2+</sup> , -2.4                                                | MSM    | I                          | I                                                     | 24                       | I                      | 25 ± 1 °C;<br>r.o.o.g.                                                            | [19]                     |
|                      | $\begin{split} Mg^{2+}-41 \ (w=?\ \%), \\ KTpCIPB \ (x_{i}=?\ \%), \\ PVC \ (w=?\ \%), \end{split}$                                                                 | Ca <sup>2+</sup> , -2.7                                                | MSM    | I                          | I                                                     | 27                       | I                      | 25 ± 1 °C;<br>r.o.o.g.                                                            | [19]                     |

| ionophore membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\lg K_{\mathrm{Mg}^{2+},\mathrm{B}}$ | method | primary interfering<br>ion conc. ion conc.<br>(M) (M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                | ref. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------------------------------------------------------|---------------------------------|--------------------------|------------------------|------------------------|------|
| oNPOE ( $w = 60 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |        |                                                       |                                 |                          |                        |                        |      |
| $\begin{array}{l} Mg^{2+}.4I \ (w=?\ \%), \\ KTpCIPB \ (x_{1}=?\ \%), \ PVC \ (w=?\ \%), \\ oNPOE \ (w=64\ \%) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ca <sup>2+</sup> , -2.8               | MSM    | I                                                     |                                 | 30                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} \mathbf{Mg^{2+-41}} & (w=?~\%),\\ \mathbf{KTpCIPB} & (x_i=?~\%), \ \mathbf{PVC} & (w=?~\%),\\ \mathrm{oNPOE} & (w=66~\%) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca <sup>2+</sup> , -2.8               | MSM    | I                                                     |                                 | 29                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} \mathbf{Mg^{2+}41} \ (w=?\ \%), \\ \mathbf{KTpCIPB} \ (x_{1}=?\ \%), \\ \mathbf{PVC} \ (w=?\ \%), \\ \mathrm{oNPOE} \ (w=69\ \%), \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ca <sup>2+</sup> , -2.5               | MSM    | I                                                     |                                 | 27                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [61] |
| $\begin{array}{l} \mathbf{Mg^{2+.41}} & (w=?~\%),\\ \mathbf{KTpcIPB} & (x_1=?~\%),\\ \mathbf{PVC} & (w=?~\%),\\ \mathrm{oNPOE} & (w=72~\%) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca <sup>2+</sup> , -2.3               | MSM    | I                                                     |                                 | 25                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $Mg^{2+}-4I \ (w = 0.5 \%), WC \ (w = ? \%), oNPOE \ (w = ? \%), PVC \ (w = ? \%), oNPOE \ (w = ? \%), WC \ (w = ?$ | Ca <sup>2+</sup> , -1.3               | MSM    | I                                                     |                                 | 15                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $Mg^{2+.4I} (w = 1.0 \%),$<br>KTpCIPB $(x_i = ? \%),$ PVC $(w = ? \%),$<br>oNPOE $(w = ? \%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ca <sup>2+</sup> , -1.7               | MSM    | I                                                     |                                 | 19                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} \mathbf{Mg}^{2+}\mathbf{-4I} \ (w=1.5\ \%),\\ \mathbf{KTpCIPB} \ (x_{i}=?\ \%), \ \mathbf{PVC} \ (w=?\ \%),\\ \mathbf{oNPOE} \ (w=?\ \%), \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ca <sup>2+</sup> , -2.2               | MSM    | I                                                     |                                 | 25                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} \mathbf{Mg}^{2+}\mathbf{-4I} \ (w=2.0\ \%),\\ \mathbf{KTpCIPB} \ (v_i=?\ \%), \ \mathbf{PVC} \ (w=?\ \%),\\ \mathbf{o}\mathbf{NPOE} \ (w=?\ \%), \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ca <sup>2+</sup> , -2.5               | MSM    | I                                                     |                                 | 29                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} \mathbf{Mg}^{2+} - 4I \; (w = 2.3 \; \%), \\ \mathbf{KTpCIPB} \; (x_{1} = ? \; \%), \\ \mathbf{PVC} \; (w = ? \; \%), \\ \mathbf{o} \mathbf{NPOE} \; (w = ? \; \%) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ca <sup>2+</sup> , -2.7               | MSM    | 1                                                     |                                 | 30                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} \mathbf{Mg}^{2+}\mathbf{-4I} \ (w=2.6\ \%),\\ \mathbf{KTpCIPB} \ (w=2.6\ \%),\\ \mathbf{PVC} \ (w=2\ \%),\\ \mathbf{oNPOE} \ (w=2\ \%), \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ca <sup>2+</sup> , -2.8               | MSM    | I                                                     |                                 | 30                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} \mathbf{Mg^{2+}.4I} \ (w=3.0 \ \%), \\ \mathbf{KTpCIPB} \ (x_{i}=? \ \%), \\ \mathbf{PVC} \ (w=? \ \%), \\ \mathbf{o} \mathbf{NPOE} \ (w=? \ \%), \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ca <sup>2+</sup> , -2.8               | MSM    | I                                                     |                                 | 29                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} Mg^{2+}{}_{4}I\ (w=3.3\ \%),\\ KTpCIPB\ (x_{i}=?\ \%),\ PVC\ (w=?\ \%),\\ oNPOE\ (w=?\ \%) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ca <sup>2+</sup> , -2.6               | MSM    | I                                                     |                                 | 29                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |

1987

| (Continued)                                                 |                                   |  |
|-------------------------------------------------------------|-----------------------------------|--|
| Table 8: Mg <sup>2+</sup> -Selective Electrodes (Continued) | ionophore membrane<br>composition |  |
| Table 8:                                                    | ionophor                          |  |

| re membrane<br>composition                                                                                                                                                                   | lgK <sub>Mg<sup>2+</sup>,B</sub> | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                | ref. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|------------------------|------|
| $\begin{array}{l} \mathbf{Mg^{2+.41}} \ (w=4.0\ \%), \\ \mathbf{KTpCIPB} \ (x_1=?\ \%), \ \mathbf{PVC} \ (w=?\ \%), \\ \mathbf{oNPOE} \ (w=?\ \%) \end{array}$                               | Ca <sup>2+</sup> , -2.3          | MSM    | I                           | 1                                                     | 28                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [61] |
| $\begin{array}{l} Mg^{2+}{\bf 41} \; (w=4.3 \; \%), \\ {\rm KTpcIPB} \; (x_{\rm i}=? \; \%), \\ {\rm PVC} \; (w=? \; \%), \\ {\rm oNPOE} \; (w=? \; \%), \end{array}$                        | Ca <sup>2+</sup> , -2.1          | MSM    | I                           | 1                                                     | 27                       | ļ                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} Mg^{2+} & 4I \ (w = 5.1 \ \%), \\ KTpCIPB \ (x_i = ? \ \%), \\ PVC \ (w = ? \ \%), \\ oNPOE \ (w = ? \ \%) \end{split}$                                                       | Ca <sup>2+</sup> , -2.0          | MSM    | I                           | I                                                     | 27                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} Mg^{2+} & 4I \ (w = 6.3 \ \%), \\ KTpCIPB \ (x_{i} = ? \ \%), PVC \ (w = ? \ \%), \\ oNPOE \ (w = ? \ \%) \end{split}$                                                        | Ca <sup>2+</sup> , -1.9          | MSM    | I                           | I                                                     | 26                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} \mathbf{Mg^{2+.41}} & (w = 7.7 \ \%), \\ \mathbf{KTpCIPB} & (x_1 = ? \ \%), \\ \mathbf{PVC} & (w = ? \ \%), \\ \mathbf{oNPOE} & (w = ? \ \%) \end{split}$                     | Ca <sup>2+</sup> , –1.8          | MSM    | I                           | 1                                                     | 26                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} \mathbf{Mg}^{2+}4I \ (w = 8.4 \ \%), \\ \mathbf{KTpCIPB} \ (x_{1} = ? \ \%), \\ \mathbf{PVC} \ (w = ? \ \%), \\ \mathbf{oNPOE} \ (w = ? \ \%), \end{split}$                   | Ca <sup>2+</sup> , -1.7          | MSM    | I                           | I                                                     | 25                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} Mg^{2+}_{g} I \ (w = 10 \ \%), \\ KTpCIPB \ (x_{\tilde{i}} = ? \ \%), \\ PVC \ (w = ? \ \%), \\ oNPOE \ (w = ? \ \%) \end{split}$                                             | Ca <sup>2+</sup> , -1.7          | MSM    | I                           | I                                                     | 24                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} Mg^{2+}{\bf 4}I \; (w=?\;\%), \\ KTpCIPB \; (x_1=10\;\%), \; PVC \; (w=?\;\%), \\ oNPOE \; (w=?\;\%) \end{split}$                                                             | Ca <sup>2+</sup> , –1.6          | MSM    | I                           | I                                                     | 22                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [61] |
| $\begin{split} \mathbf{Mg}^{2+} & 41 \ (w = ? \ \%), \\ & \mathbf{KTpCIPB} \ (\kappa_{\mathrm{f}} = 20 \ \%), \ \mathrm{PVC} \ (w = ? \ \%), \\ & \mathrm{oNPOE} \ (w = ? \ \%) \end{split}$ | Ca <sup>2+</sup> , –2.1          | MSM    | I                           | 1                                                     | 25                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} \mathbf{Mg}^{2+}\mathbf{4I} \; (w = ? \; \%), \\ \mathbf{KTpCIPB} \; (x_i = 30 \; \%), \; \mathbf{PVC} \; (w = ? \; \%), \\ \mathbf{oNPOE} \; (w = ? \; \%) \end{split}$      | Ca <sup>2+</sup> , -2.4          | MSM    | I                           | I                                                     | 27                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{split} & Mg^{2+} - 4I \; (w = ? \; \%), \\ & KTpCIPB \; (x_{j} = 40 \; \%), \; PVC \; (w = ? \; \%), \\ & \text{oNPOE} \; (w = ? \; \%) \end{split}$                                 | Ca <sup>2+</sup> , -2.7          | MSM    | I                           | 1                                                     | 29                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} Mg^{2+} {\bf 41} \; (w=?\;\%), \\ KTpCIPB \; (x_{\rm f}=50\;\%), \; PVC \; (w=?\;\%), \\ \text{oNPOE} \; (w=?\;\%) \end{array}$                                            | Ca <sup>2+</sup> , -2.8          | MSM    | I                           | I                                                     | 30                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |
| $\begin{array}{l} \mathbf{Mg^{2+}4l} \ (w=?\ \%), \\ \mathbf{KTpCIPB} \ (x_{l}=60\ \%), \ \mathbf{PVC} \ (w=?\ \%), \\ \mathrm{oNPOE} \ (w=?\ \%) \end{array}$                               | Ca <sup>2</sup> t, -2.8          | MSM    | I                           | I                                                     | 29                       | I                      | 25 ± 1 °C;<br>r.o.o.g. | [19] |

Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                                                                          | lgK <sub>Mg<sup>2+</sup>,B</sub>                                                                                                                                                              | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)        | remarks                                                                    | ref. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|-------------------------------|----------------------------------------------------------------------------|------|
| $\begin{array}{l} \mathbf{Mg^{2+-41}} & (w=7\ \%), \\ \mathbf{KTpCIPB} & (x_{1}=70\ \%), \\ \mathbf{PVC} & (w=2\ \%), \\ \mathrm{oNPOE} & (w=2\ \%), \end{array}$          | Ca <sup>2+</sup> , -2.7                                                                                                                                                                       | MSM    | I                           | I                                                     | 28                       | 1                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $Mg^{2+}4I (w = ? \%),$<br>KTpCIPB ( $x_i = 84 \%$ ), PVC ( $w = ? \%$ ),<br>oNPOE ( $w = ? \%$ )                                                                          | Ca <sup>2+</sup> , -2.6                                                                                                                                                                       | MSM    | I                           | 1                                                     | 26                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| ), $0 \%$ ), $PVC (w = ? \%)$ ,                                                                                                                                            | Ca <sup>2+</sup> , -2.5                                                                                                                                                                       | MSM    | I                           | I                                                     | 25                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $Mg^{2+.41}(w = ? \%),$<br>KTpCIPB ( $x_i = 120 \%$ ), PVC ( $w = ? \%$ ),<br>oNPOE ( $w = ? \%$ )                                                                         | Ca <sup>2+</sup> , -2.3                                                                                                                                                                       | MSM    | I                           | I                                                     | 23                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $Mg^{2+}.4I (w = 7 \%),$<br>KTpCIPB ( $x_1 = 135 \%$ ), PVC ( $w = 7 \%$ ),<br>oNPOE ( $w = 7 \%$ )                                                                        | Ca <sup>2+</sup> , -2.2                                                                                                                                                                       | MSM    | I                           | I                                                     | 21                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $Mg^{2+}4I (w = 7 \%),$<br>KTpCIPB ( $x_1 = 150 \%$ ), PVC ( $w = ? \%$ ),<br>oNPOE ( $w = ? \%$ )                                                                         | Ca <sup>2+</sup> , -2.0                                                                                                                                                                       | MSM    | I                           | I                                                     | 19                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $Mg^{2+.41} (w = ? \%),$<br>KTpCIPB ( $x_i = ? \%$ ), PVC ( $w = 32 \%$ ),<br>oNPOE ( $w = ? \%$ )                                                                         | Ca <sup>2+</sup> , -2.8                                                                                                                                                                       | MSM    | I                           | I                                                     | 30                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $\begin{array}{l} \mathbf{Mg^{2+.41}} (w = ? \%), \\ \mathrm{KTpCIPB} (x_i = ? \%), \\ \mathrm{PVC} (w = 37 \%), \\ \mathrm{oNPOE} (w = ? \%), \end{array}$                | Ca <sup>2+</sup> , -2.7                                                                                                                                                                       | MSM    | I                           | I                                                     | 29                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [61] |
| $\begin{array}{l} \mathbf{Mg^{2+}.41} \ (w = ? \ \%), \\ \mathbf{KTPCIPB} \ (x_i = ? \ \%), \\ \mathbf{PVC} \ (w = 42 \ \%), \\ \mathbf{oNPOE} \ (w = ? \ \%) \end{array}$ | Ca <sup>2+</sup> , -2.6                                                                                                                                                                       | MSM    | I                           | I                                                     | 28                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [61] |
| $Mg^{2+}.41 (w = ? \%),$<br>KTpCIPB ( $x_1 = ? \%$ ), PVC ( $w = 45 \%$ ),<br>oNPOE ( $w = ? \%$ )                                                                         | Ca <sup>2+</sup> , -2.5                                                                                                                                                                       | MSM    | I                           | I                                                     | 27                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $\begin{array}{l} \mathbf{Mg^{2+}4l} \ (w=7\ \%), \\ \mathrm{KTpCIPB} \ (x_{1}=7\ \%), \\ \mathrm{PVC} \ (w=48\ \%), \\ \mathrm{oNPOE} \ (w=2\ \%), \end{array}$           | Ca <sup>2+</sup> , -2.1                                                                                                                                                                       | MSM    | I                           | I                                                     | 25                       | I                             | 25 ± 1 °C;<br>r.o.o.g.                                                     | [19] |
| $Mg^{24}-41 (w = 2.66 \%),$<br>KTpCIPB $(x_1 = 50 \%),$<br>oNPOE $(w = 64 \%),$ PVC $(w = 32 \%)$                                                                          | $ \begin{array}{l} Li+,-3.8; Na^+,-3.1; K+,-3.3;\\ Cs^+,-3.2; NH_4+,-3.4; Ca^{2+},-2.8;\\ Sr^{2+},-3.6; Ba^{2+},-3.2; Co^{2+},-3.7;\\ Ni^{2+},-4.0; Cu^{2+},-4.1; Cd^{2+},-3.9; \end{array} $ | MSM    | 1                           | I                                                     | 30                       | $3.2 \times 10^{-5} -10^{-1}$ | $25 \pm 1 \text{ °C};$<br>$c_{\rm dl} = 6.3$<br>$\times 10^{-6} \text{ M}$ | [19] |

continues on next page

| (Continued)                                     |  |
|-------------------------------------------------|--|
| Table 8: Mg <sup>2+</sup> -Selective Electrodes |  |

| ionophore            | membrane<br>composition                                                                                                                                                        | lgK <sub>Mg<sup>2+</sup>,B</sub>                                                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                                  | remarks                                                             | ref. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|---------------------------------------------------------|---------------------------------------------------------------------|------|
| Mg <sup>2+</sup> -42 | $\begin{aligned} \mathbf{Mg^{2+-42}} & (w=2~\%), \\ \mathrm{KTpCIPB} & (x_1 = 100~\%), \\ \mathrm{oNPOE} & (w=66~\%), \\ \mathrm{PVC} & (w=31~\%) \end{aligned}$               | $ \begin{array}{l} Li^+, -1.8;  Na^+, -1.6;  K^+, +0.5; \\ Rb^+, +1.6;  Cs^+, +2.8;  NH_4^+, +0.1; \\ Ca^{24}, -0.8;  Sr^{24}, -1.0;  Ba^{24}, -0.4; \\ H^+, -0.2 \end{array} $                                                             | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                       | $25 \pm 0.5  ^{\circ}\text{C};$<br>$\lg P_{o/w} =$<br>$7.4 \pm 0.4$ | [20] |
| Mg <sup>2+</sup> -43 | $\begin{array}{l} Mg^{2*-43} \ (w=2 \ \%), \\ \text{KTpCIPB} \ (x_i=100 \ \%), \\ \text{oNPOE} \ (w=66 \ \%), \\ PVC \ (w=31 \ \%) \end{array}$                                | $ \begin{array}{l} Li^+, -2.6; Na^+, -1.8; K^+, -0.4; \\ Rb^+, -0.4; Cs^+, 0.0; NH_4^+, +0.8; \\ Ca^{2+}, +1.7; Sr^{2+}, +0.1; Ba^{2+}, 0.0; \\ H^+, -0.6 \end{array} $                                                                     | SSM    | 0.1                         | 0.1                                                   | I                        | 1                                                       | $25 \pm 0.5  ^{\circ}$ C;<br>$\lg P_{o/w} =$<br>$6.9 \pm 0.4$       | [20] |
| Mg <sup>2+</sup> -44 | $Mg^{2+.44} (w = 2 \%),$<br>KTpCIPB ( $x_i = 100 \%$ ),<br>oNPOE ( $w = 66 \%$ ), PVC ( $w = 31 \%$ )                                                                          | $ \begin{array}{l} Li^+,-2.7;Na^+,-2.4;K^+,-1.7;\\ Rb^+,-1.2;Cs^+,-0.5;NH_4^+,-2.0;\\ Ca^{2+},-1.2;Sr^{2+},-1.6;Ba^{2+},-1.7;\\ H^+,-1.0 \end{array} $                                                                                      | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                       | $25 \pm 0.5 ^{\circ}C;$<br>Ig $P_{olw} =$<br>15.0 ± 0.3             | [20] |
| Mg <sup>2+</sup> -45 | $Mg^{2+.45} (w = 2 \%),$<br>KTpCIPB (x <sub>i</sub> = 100 %),<br>oNPOE (w = 66 %), PVC (w = 31 %)                                                                              | $\begin{array}{l} Li^+,-1.8;Na^+,-1.2;K^+,-1.4;\\ Rb^+,-1.5;Cs^+,-1.5;NH_4^+,-1.5;\\ Ca^{2+},0.0;Sr^{2+},-0.7;Ba^{2+},-0.7;\\ H^+,-1.2\end{array}$                                                                                          | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                       | $25 \pm 0.5  ^{\circ}$ C;<br>lg $P_{o/w} =$<br>$4.5 \pm 0.2$        | [20] |
| Mg <sup>2+</sup> -46 | $\begin{split} \mathbf{Mg}^{2*-46} & (w=2~\%), \\ \mathrm{KTpCIPB} & (x_1=50~\%), \\ \mathrm{oNPOE} & (w=66~\%), \\ \mathrm{PVC} & (w=31~\%) \end{split}$                      | Li <sup>+</sup> , -3.1; Na <sup>+</sup> , -3.8; K <sup>+</sup> , -3.1;<br>Rb <sup>+</sup> , -2.4; Cs <sup>+</sup> , -2.4; NH <sub>4</sub> <sup>+</sup> , -2.9;<br>Ca <sup>2+</sup> , +0.8; Sr <sup>2+</sup> , -0.1; Ba <sup>2+</sup> , -0.7 | SSM    | 0.1                         | 0.1                                                   | l                        | I                                                       | 25 ± 0.5 °C;<br>r.o.o.g.                                            | [20] |
|                      | $\begin{split} \mathbf{Mg^{2+46}} & (w = 2 \ \%), \\ \mathbf{KTPCIPB} & (x_1 = 75 \ \%), \\ \mathbf{oNPOE} & (w = 66 \ \%), \\ \mathbf{PVC} & (w = 31 \ \%) \end{split}$       | Li <sup>+</sup> , -3.1; Na <sup>+</sup> , -3.9; K <sup>+</sup> , -2.9;<br>Rb <sup>+</sup> , -2.5; Cs <sup>+</sup> , -2.0; NH <sub>4</sub> <sup>+</sup> , -2.9;<br>Ca <sup>2+</sup> , +0.7; Sr <sup>2+</sup> , -0.3; Ba <sup>2+</sup> , -1.0 | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                       | 25 ± 0.5 °C;<br>r.o.o.g.                                            | [20] |
|                      | $\begin{split} \mathbf{Mg}^{2*-46} & (w=2~\%), \\ \mathbf{KTpCIPB} & (x_1=85~\%), \\ \mathbf{oNPOE} & (w=66~\%), \\ \mathbf{PVC} & (w=31~\%) \end{split}$                      | Li <sup>+</sup> , -3.6; Na <sup>+</sup> , -3.4; K <sup>+</sup> , -2.0;<br>Rb <sup>+</sup> , -0.9; Cs <sup>+</sup> , -0.5; NH <sub>4</sub> <sup>+</sup> , -2.4;<br>Ca <sup>2+</sup> , -0.1; Sr <sup>2+</sup> , -2.0; Ba <sup>2+</sup> , -1.5 | SSM    | 0.1                         | 0.1                                                   | Ĩ                        | I                                                       | 25 ± 0.5 °C;<br>r.o.o.g.                                            | [20] |
|                      | $Mg^{2+.46} (w = 2 \%),$<br>KTpCIPB ( $x_i = 100 \%$ ),<br>oNPOE ( $w = 66 \%$ ), PVC ( $w = 31 \%$ )                                                                          | $ \begin{array}{l} Li^+, -3.8;  Na^+, -3.2;  K^+, -1.5; \\ Rb^+, -0.6;  Cs^+, +0.7;  NH_4^+, -2.0; \\ Ca^{2+}, -2.5;  Sr^{2+}, -3.0;  Ba^{2+}, -2.3; \\ H^+, -0.7 \end{array} $                                                             | SSM    | 0.1                         | 0.1                                                   | Z                        | $\begin{array}{c}2\\\times10^{-5}\\-10^{-1}\end{array}$ | $25 \pm 0.5  ^{\circ}$ C;<br>$\lg P_{o/w} =$<br>$3.0 \pm 0.4$       | [20] |
|                      | $\begin{split} \mathbf{Mg}^{2*-46} & (w=2~\%), \\ \mathrm{KTpCIPB} & (x_i=125~\%), \\ \mathrm{oNPOE} & (w=66~\%), \ \mathrm{PVC} & (w=31~\%) \end{split}$                      | Li <sup>+</sup> , -2.7; Na <sup>+</sup> , -1.9; K <sup>+</sup> , +0.3;<br>Rb <sup>+</sup> , +0.8; Cs <sup>+</sup> , +1.7; NH <sub>4</sub> <sup>+</sup> , -0.4;<br>Ca <sup>2+</sup> , -2.0; Sr <sup>2+</sup> , -2.4; Ba <sup>2+</sup> , -1.8 | SSM    | 0.1                         | 0.1                                                   | I                        | I                                                       | 25 ± 0.5 °C;<br>r.o.o.g.                                            | [20] |
| Mg <sup>2+</sup> -47 | $\begin{array}{l} \mathbf{Mg}^{2*-47} \ (w=2 \ \%), \\ \mathrm{KTpCIPB} \ (x_{\mathrm{i}}=100 \ \%), \\ \mathrm{oNPOE} \ (w=6 \ \%), \ \mathrm{PVC} \ (w=31 \ \%) \end{array}$ | $ \begin{array}{l} Li^+,-1.1; Na^+,-1.4; K^+,-1.9;\\ Rb^+,-2.0; Cs^+,-1.6; NH_4^+,-2.5;\\ Ca^{2+},-0.5; Sr^{2+},-1.4; Ba^{2+},-1.8;\\ H^+,-0.9 \end{array} $                                                                                | SSM    | 0.1                         | 0.1                                                   | I                        | 1                                                       | $25 \pm 0.5 ^{\circ}$ C;<br>$\lg P_{0/W} =$<br>$3.4 \pm 0.4$        | [20] |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                                             |        |                             |                                                       |                          |                                                         |                                                                     |      |

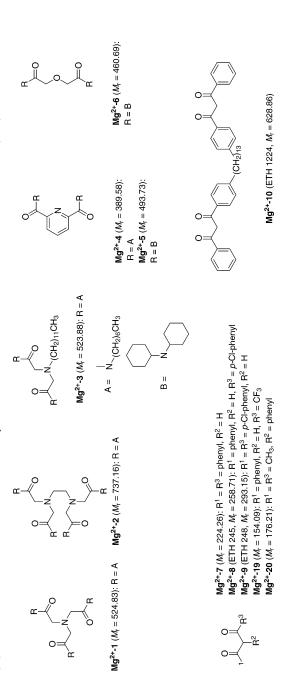
[20] [20] [20] [20] [20] [20] [20] [20] [20] ref. 25 ± 0.5 °C; 25±0.5 °C;  $\lg P_{\rm 0/w} =$  $\lg P_{\rm o/w} =$  $\lg P_{o/w} =$  $g P_{o/w} =$  $2.3 \pm 0.2$  $P_{o/w} =$  $\lg P_{o/w} =$  $\lg P_{\rm o/w} =$  $P_{0/W} =$  $\lg P_{o/w} =$  $1.8 \pm 0.2$  $5.1 \pm 0.4$  $3.2 \pm 0.3$  $4.0 \pm 0.3$  $4.6 \pm 0.4$  $7.6 \pm 0.4$  $6.1 \pm 0.4$  $6.2 \pm 0.4$ remarks linear range (M) I I T L I T I I T decade) slope (mV/ ī I I I I 1 T interfering ion conc. Ē 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ion conc. primary Ē 0.10.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 method SSM SSM SSM SSM SSM SSM SSM SSM SSM Rb<sup>+</sup>, +2.5; Cs<sup>+</sup>, +3.5; NH<sub>4</sub><sup>+</sup>, +1.3;  $Ca^{2+}$ , +0.7;  $Sr^{2+}$ , +0.6;  $Ba^{2+}$ , +1.1;  $Ca^{2+}$ , +0.5;  $Sr^{2+}$ , +0.6;  $Ba^{2+}$ , +1.1;  $Ca^{2+}$ , -0.5;  $Sr^{2+}$ , -0.7;  $Ba^{2+}$ , -0.6; Ca<sup>2+</sup>, +0.2; Sr<sup>2+</sup>, -0.1; Ba<sup>2+</sup>, -0.4; Rb<sup>+</sup>, -2.3; Cs<sup>+</sup>, -1.6; NH<sub>4</sub><sup>+</sup>, -3.0; Ca<sup>2+</sup>, +0.9; Sr<sup>2+</sup>, +0.8; Ba<sup>2+</sup>, +1.3; Ca<sup>2+</sup>, -0.9; Sr<sup>2+</sup>, -1.2; Ba<sup>2+</sup>, -1.2; Rb<sup>+</sup>, +5.9; Cs<sup>+</sup>, +7.1; NH<sub>4</sub><sup>+</sup>, +4.5; Ca<sup>2+</sup>, -0.3; Sr<sup>2+</sup>, -1.0; Ba<sup>2+</sup>, -1.0; Ca<sup>2+</sup>, -0.7; Sr<sup>2+</sup>, -1.2; Ba<sup>2+</sup>, -1.5; Rb<sup>+</sup>, +4.1; Cs<sup>+</sup>, +4.3; NH<sub>4</sub><sup>+</sup>, +2.5; Rb<sup>+</sup>, -0.3; Cs<sup>+</sup>, +0.5; NH<sub>4</sub><sup>+</sup>, -0.1; Rb<sup>+</sup>, +0.5; Cs<sup>+</sup>, +1.2; NH<sub>4</sub><sup>+</sup>, -0.9; Ca<sup>2+</sup>, 0.0; Sr<sup>2+</sup>, +0.2; Ba<sup>2+</sup>, +0.6;  $Rb^+$ , -0.6;  $Cs^+$ , 0.0;  $NH_4^+$ , -1.4; Rb<sup>+</sup>, +4.7; Cs<sup>+</sup>, +6.1; NH<sub>4</sub><sup>+</sup>, +3.1 Rb<sup>+</sup>, -0.1; Cs<sup>+</sup>, 1.3; NH<sub>4</sub><sup>+</sup>, 0.3; Li<sup>+</sup>, +4.6; Na<sup>+</sup>, +1.7; K<sup>+</sup>, +4.9; Li+, -0.7; Na+, -0.6; K+, +3.7; Li<sup>+</sup>, -2.8; Na<sup>+</sup>, +0.8; K<sup>+</sup>, +2.8;  $Li^+, -0.2; Na^+, -0.6; K^+, -0.5;$ Li<sup>+</sup>, -1.3; Na<sup>+</sup>, -1.5; K<sup>+</sup>, -0.8; Li+, -1.9; Na+, -3.2; K+, -2.6; Li<sup>+</sup>, -1.1; Na<sup>+</sup>, -0.4; K<sup>+</sup>, +1.6; Li<sup>+</sup>, -1.3; Na<sup>+</sup>, -1.9; K<sup>+</sup>, -1.0; Li<sup>+</sup>, -1.1; Na<sup>+</sup>, -1.6; K<sup>+</sup>, 0.0;  $gK_{Mg^{2+},B}$ H<sup>+</sup>, +1.6 H<sup>+</sup>, -0.2 H<sup>+</sup>, +1.3 H<sup>+</sup>, +1.1 H<sup>+</sup>, +0.3 H<sup>+</sup>, -0.1 H<sup>+</sup>, -1.0 H<sup>+</sup>. +0.9 H<sup>+</sup>, 0.0 oNPOE (w = 66%), PVC (w = 31%) oNPOE (w = 66%), PVC (w = 31%) oNPOE (w = 66%), PVC (w = 31%) DNPOE (w = 66%), PVC (w = 31%) oNPOE (w = 66%), PVC (w = 31%) oNPOE (w = 66%), PVC (w = 31%) DNPOE (w = 66%), PVC (w = 31%) oNPOE (w = 66 %), PVC (w = 31 %) KTpCIPB ( $x_i = 100 \%$ ), KTpCIPB ( $x_1 = 100 \%$ ), KTpCIPB ( $x_i = 100 \%$ ), KTpCIPB ( $x_i = 100 \%$ ), KTpCIPB ( $x_i = 100 \%$ ), KTpClPB ( $x_i = 100 \%$ ), KTpCIPB ( $x_i = 100 \%$ ), KTpCIPB ( $x_i = 50 \%$ ), KTpCIPB ( $x_i = 50 \%$ ),  $Mg^{2+-49}$  (w = 2%),  $Mg^{2+}-51 (w = 2 \%),$  $Mg^{2+}-53 (w = 2 \%),$  $Mg^{2+}-48 (w = 2\%),$  $Mg^{2+}-50 (w = 2\%),$  $Mg^{2+-52} (w = 2\%),$  $Mg^{2+}-54 (w = 2\%),$  $Mg^{2+}-55 (w = 2\%),$  $Mg^{2+}-56 (w = 2\%),$ oNPOE (w = 66%), PVC (w = 31 %) composition ionophore membrane Mg<sup>2+</sup>-48 Mg<sup>2+</sup>-49 Mg<sup>2+</sup>-50 Mg<sup>2+-52</sup> Mg<sup>2+-53</sup> Mg<sup>2+</sup>-54 Mg<sup>2+-55</sup> Mg<sup>2+</sup>-56 Mg<sup>2+</sup>-51

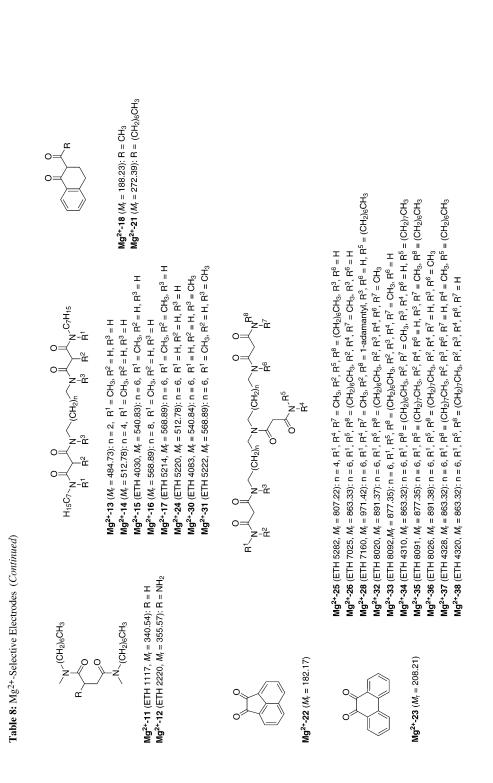
Potentiometric selectivity coefficients of ion-selective electrodes

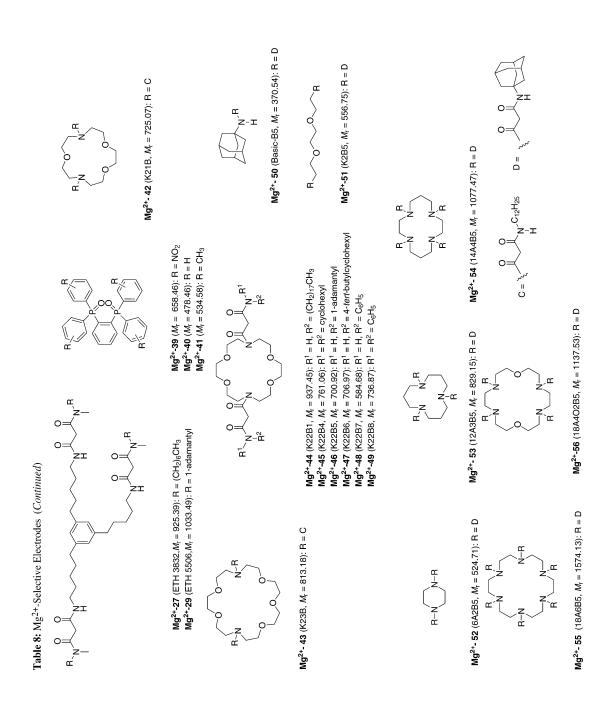
1991

Table 8: Mg<sup>2+</sup>-Selective Electrodes (Continued)

**Table 8:** Mg<sup>2+</sup>-Selective Electrodes (Continued)


- D. Erne, N. Stojanac, D. Ammann, E. Pretsch, W. Simon, *Helv. Chim. Acta*, **63**, 2264–2270 (1980). M. Maj-Zurawska, W. Buchser, D. Ammann, D.H. Welti, E. Pretsch, W. Keller-Schierlein, W. Simon, *Mikrochim. Acta*, **H**, 1–10 (1987).
  - H. Nagashima, K. Tohda, Y. Matsunari, Y. Tsunekawa, K. Watanabe, H. Inoue, K. Suzuki, Anal. Lett., 23, 1993–2004 (1990).


- M. V. Rouilly, M. Baderscher, E. Pretsch, G. Suter, W. Simon, Anal. Chem., 60, 2013–2016 (1988).
   Z. Hu, T. Bührer, M. Müller, B. Rusterholz, M. Rouilly, W. Simon, Anal. Chem., 61, 574–576 (1989).
   K. Eugster, P.M. Gehrig, W. E. Morf, U.E. Spichiger, W. Simon, Anal. Chem., 62, 2285–2289 (1991).
   M. Müller, M. Rouilly, B. Rusterholz, M. Maj-Zurawska, Z. Hu, W. Simon, Mikrochim. Acta. III, 283–290 (1988).
   M. Maj-Zurawska, M. Rouilly, W.E. Morf, W. Simon, Anal. Chem., 63, 2013–2016 (1988).


  - J. O'Donnell, B. Rusterholz, B. Aebersold, D. Rüegg, W. Simon, E. Pretsch, Mikrochüm. Acra, 113, 45–52 (1994).
    - Б.
- Schaller, U.E. Spichiger, W. Simon, *Pflügers Arch*, **423**, 338–342 (1993). E. Spichiger, R. Eugster, U. Schaller, H. Li, W. Simon, in "2nd Bioanalytical Symposium, Mátrafüred", Akadémiai Kiadó, Budapest, 1992, 185–211. U.E.  $\overset{(3)}{=}\overset{(2)}{=}\overset{(2)}{=}\overset{(2)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset{(3)}{=}\overset$ 

  - M. Rouilly, B. Rusterholz, U.E. Spichiger, W. Simon, *Clin. Chem.*, **36**, 466–469 (1990). U.E. Spichiger, R. Eugster, E. Haase, G. Rumpf, P. Gehrig, A. Schmid, B. Rusterholz, W. Simon, *Fresenius' I. Anal. Chem.*, **341**, 727–731 (1991). R. Eugster, B. Rusterholz, A. Schmid, U.E. Spichiger, W. Simon, *Clin. Chem.*, **39**, 855–859 (1993). T. Rosatzin, E. Bakker, K. Suranki W. Simon, *Anal. Clin. Anal. Chem.*, **341**, 727–731 (1991).
    - - Rosatzin, E. Bakker, K. Suzuki, W. Simon, Anal. Chim. Acta, 280, 197-208, (1993).
- O'Donnell, H. Li, B. Rusterholz, U. Pedrazza, W. Simon, Anal. Chim. Acta, 281, 129-134 (1993).
- H.J. Marsoner, U.E. Spichiger, C. Ritter, C. Sachs, M. Ghahramani, H. Offenbacher, H. Kroneis, C. Kindermans, M. Dechaux, Scand. J. Clin. Lab. Invest., 54 217), 45–51 (1994) (Suppl.

  - M.B. Saleh, J. Electroanal. Chem., **373**, 89–95 (1994). K. Suzuki, K. Watanabe, Y. Matsumoto, M. Kobayashi, S. Sato, D. Siswanta, H. Hisamoto, *Anal. Chem.*, **67**, 324–334 (1995) (19)







| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    |                                       | composition                                                                                                                                                        | lgKCa <sup>2+</sup> ,B <sup>n+</sup>                                                                                                                                                                                                                                  | method | primary<br>ion conc.<br>(M)                                           | interfering slope<br>ion conc. (mV/<br>(M) decade                    | g slope<br>(mV/<br>decade)      | linear<br>range<br>(M)              | remarks                                                   | ret. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|-------------------------------------|-----------------------------------------------------------|------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                    | H <sup>+</sup> , -4.1; Na <sup>+</sup> , -7.6;<br>K <sup>+</sup> , -6.9; Mg <sup>2+</sup> , -5.9                                                                                                                                                                      | SSM    | 10-1                                                                  | 10 <sup>-1</sup>                                                     | 29.5 ± 0.1                      | $29.5 \pm 0.1  10^{-5.3} - 10^{-1}$ | 20 °C                                                     | [1]  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | Ca <sup>7</sup><br>KTJ<br>silic       | $2^{+}1$ ( $w = 4.7\%$ ),<br>pCIPB ( $x_i = 26\%$ ),<br>sslinking agent ( $w = 11.2\%$ ),<br>cone rubber ( $w = 78.9\%$ )                                          | H <sup>+</sup> , -2.2; Na <sup>+</sup> , -4.7;<br>K <sup>+</sup> , -4.7; Mg <sup>2+</sup> , -5.2                                                                                                                                                                      | SSM    | 10 <sup>-1</sup>                                                      | 10 <sup>-1</sup>                                                     | 31.3 ± 0.3                      | $31.3 \pm 0.3  10^{-5} - 10^{-1}$   | 20 °C                                                     | Ξ    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                     | Ca <sup>i</sup><br>NT                 | /C (w<br>),                                                                                                                                                        | $\begin{array}{l} Na^{+},-3.6^{\dagger},-5.5^{\dagger\dagger};\\ K^{+},-3.7^{\dagger},-5.6^{\dagger\dagger};\\ Mg^{2+},-4.2^{\dagger},-5.9^{\dagger\dagger} \end{array}$                                                                                              | SSM    | $\begin{array}{c} 0.1^{\dagger} \\ 0.01^{\dagger\dagger} \end{array}$ | $\begin{array}{c} 0.1^{\dagger}\\ 0.01^{\dagger\dagger} \end{array}$ | 29.2†††<br>28.7††††             | I                                   | $c_{\rm dl} = 10^{-5.8} \mathrm{M^{\pm\uparrow\uparrow}}$ | [2]  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | DO KI                                 | /C (w                                                                                                                                                              |                                                                                                                                                                                                                                                                       | SSM    | 0.1                                                                   | 0.1                                                                  | 29.6 <sup>†††</sup><br>28.8†††† | I                                   | $c_{\rm dl} = 10^{-5.7} \mathrm{M}^{\pm\uparrow\uparrow}$ | [2]  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                    | Ca <sup>2</sup><br>PV(<br>bis(<br>DO) | <b>2+.1</b> ( <i>w</i> = 4.2 %),<br>C ( <i>w</i> = 29.0 %),<br>(1,1',3,3'-tetramethylbutyl)phenyl-<br>sphoric acid ( <i>w</i> = 3.0 %),<br>PP ( <i>w</i> = 63.8 %) | Li <sup>+</sup> , -2.28; Na <sup>+</sup> , -3.06;<br>K <sup>+</sup> , -3.33; Rb <sup>+</sup> , -3.29;<br>Cs <sup>+</sup> , -3.23; NH <sup>4</sup> , -2.85;<br>H <sup>+</sup> , +0.30; Mg <sup>2+</sup> , -2.62;<br>Sr <sup>2+</sup> , -1.51; Ba <sup>2+</sup> , -2.31 | FIM    | I                                                                     | 0.15                                                                 | 1                               | I                                   | I                                                         | [3]  |
| Li <sup>+</sup> , -3.70; Na <sup>+</sup> , -4.00; FIM –<br>K <sup>+</sup> , -4.09; Rb <sup>+</sup> , -3.96;<br>Cs <sup>+</sup> , -4.85; NH <sub>4</sub> <sup>+</sup> , -4.05;<br>H <sup>+</sup> , -4.20; Mg <sup>2+</sup> , -5.06;<br>Sr <sup>2+</sup> , -1.96; Ba <sup>2+</sup> , -2.96 | Ca<br>NG<br>PV(                       | <b>2+1</b> ( <i>w</i> = 3.5 %),<br>pCIPB ( <i>x</i> ] = 83 %),<br>PP ( <i>w</i> = 65.4 %),<br>C ( <i>w</i> = 29.0 %)                                               | $\begin{array}{l} Li^+, -1.55, Na^+, -2.26;\\ K^+, -2.68; Rb^+, -2.75;\\ Cs^+, -2.80; NH4^+, -2.00;\\ H^+, -0.66; Mg^{2+}, -3.20;\\ Sr^{2+}, -1.42; Ba^{2+}, -1.39 \end{array}$                                                                                       | FIM    | 1                                                                     | 0.15                                                                 | I                               | I                                   | 1                                                         | [3]  |
|                                                                                                                                                                                                                                                                                          | Ca <sup>č</sup><br>PV(T]              | $2^{+1}$ ( $w = 10.0$ %),<br>halic acid polyester ( $w = 59.0$ %),<br>pCIPB ( $x_1 = 28$ %),<br>C ( $w = 29.0$ %)                                                  | $ \begin{array}{l} Li^+,-3.70;  Na^+,-4.00; \\ K^+,-4.09;  Rb^+,-3.96; \\ Cs^+,-4.85;  NH_4^+,-4.05; \\ H^+,-4.20;  Mg^{2+},-5.06; \\ Sr^{2+},-1.96;  Ba^{2+},-2.96 \end{array} $                                                                                     | FIM    | I                                                                     | 0.15                                                                 | 29.6                            | 10 <sup>-6</sup> -10 <sup>-2</sup>  | c <sub>dl</sub> =<br>10 <sup>-6.3</sup> M                 | [3]  |
| $Ca^{2+1}$ ( $w = 5.0 \ \%$ ), $Li^+$ , -3.68; $Na^+$ , -4.00;       FIM       -       0.15         KTpCIPB ( $x_1 = 86 \ \%$ ), $K^+$ , -4.09; $Rb^+$ , -3.96;       -       0.15                                                                                                       | Ca <sup>ź</sup><br>KT <sub>l</sub>    | <b>2+.1</b> $(w = 5.0 \%)$ ,<br>pCIPB $(x_i = 86 \%)$ ,                                                                                                            | Li <sup>+</sup> , -3.68; Na <sup>+</sup> , -4.00;<br>K <sup>+</sup> , -4.09; Rb <sup>+</sup> , -3.96;                                                                                                                                                                 | FIM    | I                                                                     | 0.15                                                                 | I                               | I                                   | I                                                         | [3]  |

continues on next page

| (Continued)            |
|------------------------|
| +-Selective Electrodes |
| le 9: Ca <sup>2;</sup> |

| ionophore membrane<br>composition                                                                                                                        | $\lg K_{\operatorname{Ca}^{2+},\operatorname{B}^{n+}}$                                                                                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks | ref. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|----------------------------|------------------------|---------|------|
| BEHS ( $w = 62.9 \%$ ),<br>PVC ( $w = 29.0 \%$ )                                                                                                         | $\begin{array}{l} Cs^+, -3.85; NH_4^+, -4.05; \\ H^+, -4.44; Mg^{2+}, -5.12; \\ Sr^{2+}, -2.07; Ba^{2+}, -3.34 \end{array}$                                                                                                                                                        |        |                             |                                                  |                            |                        |         |      |
| <b>Ca<sup>2+</sup>-1</b> ( $w = 10.0 \%$ ),<br>tri- <i>p</i> -cresyl phosphate ( $w = 59.0 \%$ ),<br>KTpCIPB ( $x_i = 28 \%$ ),<br>PVC ( $w = 29.0 \%$ ) | $ \begin{array}{lll} Li^+, -3.17; Na^+, -3.80; \\ K^+, -4.04; Rb^+, -4.08; \\ Cs^+, -3.89; NH_4^+, -3.96; \\ H^+, -3.60; Mg^{2+}, -5.31; \\ Sr^{2+}, -1.89; Ba^{2+}, -2.74 \end{array} $                                                                                           | FIM    | I                           | 0.15                                             | I                          | I                      |         | [3]  |
| <b>Ca<sup>2+</sup>.1</b> ( $w = 10.0 \%$ ),<br>KTpCIPB ( $x_1 = 28 \%$ ),<br>didodecyl phthalate ( $w = 59.0 \%$ ),<br>PVC ( $w = 29.0 \%$ )             | Li <sup>+</sup> , -3.41; Na <sup>+</sup> , -3.74;<br>K <sup>+</sup> , -3.92; Rb <sup>+</sup> , -3.92;<br>Cs <sup>+</sup> , -3.85; NH <sub>4</sub> <sup>+</sup> , -3.89;<br>H <sup>+</sup> , -4.36; Mg <sup>2+</sup> , -5.02;<br>Sr <sup>2+</sup> , -2.10; Ba <sup>2+</sup> , -2.82 | FIM    | 1                           | 0.15                                             | I                          | I                      |         | [3]  |
| $Ca^{2+,1}$ ( $w = 6.0 \%$ ),<br>KTpCIPB ( $x_1 = 23 \%$ ),<br>BEHS ( $w = 66.0 \%$ ),<br>PVC ( $w = 29.0 \%$ )                                          | Li <sup>+</sup> , -3.48; Na <sup>+</sup> , -3.74;<br>K <sup>+</sup> , -3.60; Rb <sup>+</sup> , -4.04;<br>Cs <sup>+</sup> , -4.15; NH <sub>4</sub> <sup>+</sup> , -3.74;<br>H <sup>+</sup> , -3.74; Mg <sup>2+</sup> , -5.17;<br>Sr <sup>2+</sup> , -2.06; Ba <sup>2+</sup> , -2.93 | HIM    | I                           | 0.15                                             | I                          | I                      | I       | [3]  |
| <b>Ca<sup>2+</sup>.1</b> ( $w = 10.0 \%$ ),<br>BEHS ( $w = 59.0 \%$ ),<br>KTpCIPB ( $x_1 = 28 \%$ ),<br>PVC ( $w = 29.0 \%$ )                            | Li <sup>+</sup> , -3.30; Na <sup>+</sup> , -3.57;<br>K <sup>+</sup> , -3.85; Rb <sup>+</sup> , -4.00;<br>Cs <sup>+</sup> , -4.00; NH <sub>4</sub> <sup>+</sup> , -3.85;<br>H <sup>+</sup> , -3.70; Mg <sup>2+</sup> , -6.40;<br>Sr <sup>2+</sup> , -1.89; Ba <sup>2+</sup> , -2.70 | FIM    | I                           | 0.15                                             | I                          | I                      | 1       | [3]  |
| <b>Ca<sup>2+</sup>.1</b> ( $w = 10.0 \%$ ),<br>KTpCIPB ( $x_1 = 14.\%$ ),<br>didodecyl phthalate ( $w = 60.0 \%$ ),<br>PVC ( $w = 29.0 \%$ )             | $ \begin{array}{l} Li^+, -3.26;  Na^+, -3.57; \\ K^+, -3.82;  Rb^+, -4.00; \\ Cs^+, -4.00;  NH_4^+, -3.85; \\ H^+, -3.80;  Mg^{2+}, -5.64; \\ Sr^{2+}, -2.00;  Ba^{2+}, -2.80 \end{array} $                                                                                        | HIM    | 1                           | 0.15                                             | I                          | I                      |         | [3]  |
| <b>Ca<sup>2+</sup>1</b> ( $w = 10.0 \%$ ),<br>KTpCIPB ( $x_1 = 14 \%$ ),<br>phthalic acid polyester ( $w = 60.0 \%$ ),<br>PVC ( $w = 29.0 \%$ )          | $ \begin{array}{l} Li^+, -3.28 ; Na^+, -3.60; \\ K^+, -3.77 ; Rb^+, -1.85; \\ Cs^+, -3.80; NH_4^+, -3.77; \\ H^+, -3.55; Mg^{2+}, -5.00; \\ Sr^{2+}, -1.85; Ba^{2+}, -2.70 \end{array} $                                                                                           | FIM    | 1                           | 0.15                                             | I                          | I                      |         | [3]  |

Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                                                                          | lgKCa <sup>2+</sup> ,Bn+                                                                                                                                    | method                    | primary<br>ion conc.<br>(M) |                     | interfering slope<br>ion conc. (mV/<br>(M) decade) | linear<br>range<br>(M)            | remarks                                             | ref.                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|---------------------|----------------------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------|--|
| <b>Ca<sup>2+</sup>-1</b> ( $w = 0.8 \%$ ),<br>silicone rubber ( $w = 78.0 \%$ ),<br>DOS ( $w = 21.2 \%$ )                                                                  | Li <sup>+</sup> , -0.41; Na <sup>+</sup> , -0.06;<br>K <sup>+</sup> , -0.64; Mg <sup>2+</sup> , -5.00                                                       | $SSM$ $(E_{A} = E_{B})$   | 1                           | 10 <sup>-1</sup>    | 27.4                                               | 10-5-10-2                         | Ag CWE;<br>c <sub>dl</sub> < 10 <sup>-6</sup> M     | [4]<br>1              |  |
| <b>Ca<sup>2+</sup>-1</b> ( $w = 0.8 $ %),<br>silicone rubber ( $w = 77.2 $ %),<br>KTpCIPB ( $x_{i1} = 21.0 $ %),<br>DOA ( $w = 21.6 $ %),<br>ETH 500 ( $x_{i1} = 21.0 $ %) | Li <sup>+</sup> , <-5.00; Na <sup>+</sup> , <-5.00; SSM<br>K <sup>+</sup> , <-5.00; Mg <sup>2+</sup> , <-5.00 ( $E_A = E_B$ )<br>Na <sup>+</sup> , -4.3 FIM | $SSM (E_{A} = E_{B})$ FIM | 1 1                         | $10^{-1}$ $10^{-1}$ | 28.5 ± 0.5                                         | $28.5 \pm 0.5  10^{-5} - 10^{-2}$ | Ag CWE; [4<br>cdi =<br>10 <sup>-6.54 ± 0.32</sup> M | [4]<br><sup>2</sup> M |  |
| <b>Ca<sup>2+</sup>-1</b> ( $w = 1.6 \%$ ),<br>NaTPB ( $x_i = 120 \%$ ),<br>oNPOE ( $w = 23.4 \%$ ),<br>fluorosilicone rubber ( $w = 61.4 \%$ )                             | Na <sup>+</sup> , -3.6; K <sup>+</sup> , -3.7;<br>Mg <sup>2+</sup> , -4.4                                                                                   | FIM                       | I                           | 10 <sup>-1</sup>    | 30.56<br>± 0.68                                    | $10^{-5.2}$ - $10^{-1}$           | c <sub>dl</sub> =<br>10-5.8 M;<br>ISFET             | [5]                   |  |
| <b>Ca<sup>2+</sup>1</b> ( $w = 1.8 \%$ ),<br>KTpcIPB ( $x_i = 69 \%$ ),<br>DOS ( $w = 10 \%$ ),<br>silicone rubber ( $w = 87.3 \%$ )                                       | Na <sup>+</sup> , -3.4; K <sup>+</sup> , -3.4                                                                                                               | FIM                       | 1                           | 10 <sup>-1</sup>    | 22                                                 | I                                 | 22 ± 2 °C;<br>τ> 14 d                               | [9]                   |  |
| <b>Ca<sup>2+</sup>1</b> ( <i>w</i> = 1.0 %),<br>KTFPB ( <i>x</i> <sub>1</sub> = 68 %),<br>silicone rubber ( <i>w</i> = 98.1 %)                                             | Na <sup>+</sup> , -3.6; K <sup>+</sup> , -3.8                                                                                                               | FIM                       | I                           | $10^{-1}$           | 27.6                                               | 1                                 | 22 ± 2 °C                                           | [9]                   |  |
| <b>Ca<sup>2+</sup>1</b> ( $w = 1.0$ %),<br>KTFPB ( $x_1 = 68$ %),<br>DOS ( $w = 10$ %),<br>silicone rubber ( $w = 88.1$ %)                                                 | Na <sup>+</sup> , -3.6; K <sup>+</sup> , -3.7                                                                                                               | FIM                       | 1                           | $10^{-1}$           | 28.1                                               | 1                                 | 22 ± 2 °C                                           | [6]                   |  |
| <b>Ca<sup>2+</sup>-1</b> ( $w = 1.0 \%$ ),<br>KTFPB ( $r_1 = 15 \%$ ),<br>DOS ( $w = 8 \%$ ),<br>silicone rubber ( $w = 90.8 \%$ )                                         | Na <sup>+</sup> , -2.9; K <sup>+</sup> , -3.0                                                                                                               | FIM                       | I                           | $10^{-1}$           | 29.0                                               | I                                 | 22 ± 2 °C                                           | [9]                   |  |
| <b>Ca<sup>2+</sup>-1</b> ( $w = 1.0 \%$ ),<br>DOS ( $w = 10 \%$ ),<br>silicone rubber ( $w = 89.0 \%$ )                                                                    | Na <sup>+</sup> , -0.7; K <sup>+</sup> , -0.4                                                                                                               | FIM                       | I                           | $10^{-1}$           | 26                                                 | I                                 | 22 ± 2 °C                                           | [6]                   |  |
| <b>Ca<sup>2+</sup>-1</b> ( $w = 1.8 \%$ ),<br>KTpCIPB ( $x_i = 77 \%$ ),<br>silicone rubber ( $w = 97.2 \%$ )                                                              | Na <sup>+</sup> -2.8                                                                                                                                        | FIM                       | I                           | $10^{-1}$           | 18                                                 | I                                 | 22 ± 2 °C;<br>ISFET                                 | [9]                   |  |
| <b>Ca<sup>2+1</sup></b> ( $w = 1.0 \%$ ),<br>KTFPB ( $x_1 = 68 \%$ ),<br>silicone rubber ( $w = 98.1 \%$ )                                                                 | Na <sup>+</sup> , -3.7; K <sup>+</sup> , -3.8                                                                                                               | FIM                       | I                           | 10 <sup>-1</sup>    | 28.6                                               | I                                 | 22 ± 2 °C;<br>ISFET                                 | [9]                   |  |

| Taute > Ca          |                                                                                                                        |                                                                                                                                                                                                                           |        |                             |                                                  |                                   |                                    |                                                                                                                               |
|---------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ionophor            | ionophore membrane<br>composition                                                                                      | lgKCa <sup>2+</sup> ,B <sup>n+</sup>                                                                                                                                                                                      | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | ; slope<br>(mV/<br>decade)        | linear<br>range<br>(M)             | remarks ref.                                                                                                                  |
|                     | Ca <sup>2+</sup> 1 ( $w = 1.0$ %),<br>KTFPB ( $x_i = 68$ %),<br>DOS ( $w = 4.6$ %),<br>silicone rubber ( $w = 93.5$ %) | Na <sup>+</sup> , -3.7; K <sup>+</sup> , -3.8                                                                                                                                                                             | FIM    | 1                           | $10^{-1}$                                        | 28.5                              |                                    | 22±2°C; [6]<br>ISFET                                                                                                          |
|                     | $Ca^{2+1}$ ,<br>KTpCIPB ( $x_i = 70 \%$ ),<br>oNPOE/ PVC-COOH<br>(2:1 by weight)<br>(weight ratio not reported)        | $\begin{array}{l} Li^+,-2.79\pm0.03;\\ Na^+,-2.92\pm0.01;\\ K^+-3.03\pm0.03;\\ NH4^+,-3.14\pm0.10;\\ Mg^{2+},-3.66\pm0.11 \end{array}$                                                                                    | SSM    | 10-1                        | 10 <sup>-1</sup>                                 | 29.7<br>± 0.21                    | 10 <sup>-5</sup> -10 <sup>-1</sup> | microelec.; [7]<br>24.5 ± 0.5 °C;<br>Ag/AgCI CWE                                                                              |
|                     | $Ca^{2+1}$ , KTpCIPB ( $x_i = 70 \%$ ), oNPOE/aliphatic polyurethane (2:1 by weight), (weight ratio not reported)      | $ \begin{array}{l} Li^+-2.97\pm 0.10;\\ Na^+,-2.83\pm 0.04;\\ K^+,-2.88\pm 0.04;\\ NH_4^+,-3.11\pm 0.12;\\ Mg^{2+},-3.37\pm 0.12 \end{array} $                                                                            | SSM    | $10^{-1}$                   | 10 <sup>-1</sup>                                 | $28.7 \pm 0.3  10^{-5} - 10^{-1}$ | 10 <sup>-5</sup> -10 <sup>-1</sup> | microelec.; [7]<br>24.5 ± 0.5 °C;<br>Ag/AgCI CWE                                                                              |
|                     | $Ca^{2+1}$ ,<br>KTpCIPB ( $x_i = 70 \%$ ),<br>DOS/PVC-COOH (2:1)<br>(weight ratio not reported)                        | $ \begin{array}{l} Li^+, -1.98 \pm 0.16; \\ Na^+, -2.09 \pm 0.14; \\ K^+, -2.49 \pm 0.18; \\ NH4^+, -2.65 \pm 0.19; \\ Mg^{2+}-3.49 \pm 0.17 \end{array} $                                                                | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                 | $29.0 \pm 0.1  10^{-5} - 10^{-1}$ | 10 <sup>-5</sup> -10 <sup>-1</sup> | Ag/AgCl [7]<br>CWE;<br>24.5±0.5°C                                                                                             |
| Ca <sup>2+</sup> -2 | <b>Ca<sup>2+</sup>-2</b> , covalently attached to polysiloxane                                                         | Na <sup>+</sup> <-2.6; K <sup>+</sup> <-2.6;<br>NH <sub>4</sub> <sup>+</sup> <-2.6; Mg <sup>2+</sup> <-3.7                                                                                                                | MSM    | I                           | I                                                | I                                 | I                                  | ISFET: [8]<br>Poly(hydroxyethyl<br>methacrylate) was<br>covalently attached<br>to SiO <sub>2</sub> FET gate.                  |
| Ca <sup>2+</sup> -3 | $Ca^{2+.3}$ ( $w = 2.5$ %),<br>KTPB ( $x_1 = 44$ %), PVC ( $w = 30$ %),<br>dinonyl sebacate ( $w = 66.8$ %)            | $\begin{array}{l} Na^+, -4.2; K^+, -4.4; \\ Mg^{2+}, -4.6; Sr^{2+}, -3.1; \\ Ba^{2+}, -3.3; Fe^{2+}, -2.6; \\ Co^{2+}, -3.1; Ni^{2+}, -2.6; \\ Cu^{2+}, -4.1; Zn^{2+}, -2.1; \\ Cu^{2+}, -2.9; Pb^{2+}, -2.7 \end{array}$ | FIM    | T                           | 0.5<br>Zn <sup>2+</sup> , 0.1                    | 28.8                              | -10 <sup>-7.50</sup>               | $\tau > 240 \text{ d};$ [9]<br>3.5 < pH < 12.3;<br>$c_{\rm dl} = 10^{-8.0} \text{ M};$<br>$t_{\rm resp} = 10^{-30} \text{ s}$ |
|                     | Ca <sup>2+</sup> -3 ( $w = 2.5$ %),<br>KTPB ( $x_1 = 44$ %), PVC ( $w = 30$ %),<br>trioctyl phosphate ( $w = 66.8$ %), | $\begin{array}{l} Na^{+}, -3.9;  K^{+}, -4.1; \\ Mg^{2+}, -3.6;  Ba^{2+}, -2.5; \\ Zn^{2+}, -2.6 \end{array}$                                                                                                             | FIM    | I                           | 0.5<br>Zn <sup>2+</sup> , 0.1                    | I                                 | I                                  | [6]                                                                                                                           |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

### Y. UMEZAWA et al.

| ionophore           | ionophore membrane<br>composition                                                                                      | lgKCa <sup>2+</sup> ,B <sup>n+</sup>                                                                                                                                                                                                        | method        | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                                                                                                        | ref.                           |      |
|---------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|--------------------------------------------------|----------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|------|
| Ca <sup>2+</sup> -4 | <b>Ca<sup>2+</sup>.4</b> ( $w = 0.56-1$ %),<br>oNPOE ( $w = 66$ %),<br>NaTPB ( $x_i = 16$ %),<br>PVC ( $w = 33$ %)     | $\begin{array}{l} Li^+, -3.30;  Na^+, -3.38\\ K^+, -4.00;  NH_4^+, -3.28;\\ Mg^{2+}, -3.12;  Sr^{2+}, -3.07;\\ Ba^{2+}, -3.03;  Mn^{2+}, -1.00;\\ Co^{2+}, -3.04;  Ni^{2+}, -3.06;\\ Zn^{2+}, -0.82;  Cd^{2+}, -2.30\end{array}$            | FIM<br>or SSM | -<br>0.1                    | 0.1<br>0.1                                       | I                          | I                                  | 25 ± 1 °C                                                                                                      | [10]                           |      |
|                     | <b>Ca<sup>2+</sup>.4</b> ( $w = 0.56-1$ %),<br>oNPOE ( $w = 66$ %),<br>NaTPB ( $x_1 = 82$ %),<br>PVC ( $w = 33$ %)     | $ \begin{array}{l} Li^+, -4.07;  Na^+, -4.05; \\ K^+, -4.10;  NH_4^+, -3.96; \\ Mg^{2+}, -3.30;  Sr^{2+}, -3.24; \\ Ba^{2+}, -3.14;  Mn^{2+}, -1.02; \\ Co^{2+}, -3.20;  Ni^{2+}, -3.14; \\ Zn^{2+}, -1.05;  Cd^{2+}, -3.00 \end{array} $   | FIM<br>or SSM | -<br>0.1                    | 0.1<br>0.1                                       | 29.0<br>± 0.21             | 10 <sup>-5</sup> -10 <sup>-1</sup> | $25 \pm 1 ^{\circ}C; [1]$ $c_{\rm cl} = 10^{-5.3} \text{ M};$ $\tau = 180 \text{ d};$ $4.2 < \text{pH} < 10.8$ | [10]<br>M:<br>10.8             |      |
|                     | <b>Ca<sup>2+</sup>.4</b> ( $w = 0.56-1$ %),<br>oNPOE ( $w = 66$ %),<br>NaTPB ( $w = 164$ %),<br>PVC ( $w = 33$ %)      | $\begin{array}{l} Li^+,-2.00;\ Na^+,-1.66;\\ K^+,-1.85;\ NH_4^+,-1.96;\\ Mg^{2+},-29;\ Sr^{2+},-2.80;\\ Ba^{2+},-2.55;\ Mn^{2+},-0.68;\\ Co^{2+},-2.51;\ Ni^{2+},-2.38;\\ Zn^{2+},-0.49;\ Cd^{2+},-1.71\end{array}$                         | FIM<br>or SSM | _<br>0.1                    | 0.1                                              | I                          | 1                                  | 25 ± 1 °C                                                                                                      | [01]                           |      |
|                     | <b>Ca<sup>2+</sup>.4</b> ( $w = 0.56-1$ %),<br>oNPOE ( $w = 66$ %),<br>NaTpCIPB ( $x_1 = 12$ %),<br>PVC ( $w = 33$ %)  | $\begin{array}{l} Li^+, -3.42 ; Na^+, -3.64; \\ K^+, -2.03; NH_4^+, -3.51; \\ Mg^{2+}, -3.19; Sr^{2+}, -3.15; \\ Ba^{2+}, -3.10; Mn^{2+}, -1.02; \\ Co^{2+}, -3.07; Ni^{2+}, -3.07; \\ Zn^{2+}, -0.96; Cd^{2+}, -2.38 \end{array}$          | FIM<br>or SSM | 0.1<br>0.1                  | - 0.1                                            | I                          | 1                                  | 25 ± 1 °C                                                                                                      | [01]                           |      |
|                     | <b>Ca<sup>2+</sup>.4</b> ( $w = 0.56-1$ %),<br>oNPOE ( $w = 66$ %),<br>NaTpCIPB ( $x_1 = 58$ %),<br>PVC ( $w = 33$ %)  | $\begin{array}{l} Li^+, -4.21;  Na^+, -4.1 \; 4; \\ K^+, -4.17;  NH_4^+, -4.55; \\ Mg^{2+}, -3.70;  Sr^{2+}, -3.43; \\ Ba^{2+}, -3.25;  Mn^{2+}, -2.66; \\ Co^{2+}, -3.23;  Ni^{2+}, -3.25; \\ Zn^{2+}, -1.22;  Cd^{2+}, -2.52 \end{array}$ | FIM<br>or SSM | 0.1<br>0.1                  | - 0.1                                            | I                          | I                                  | 25 ± 1 °C                                                                                                      | [10]                           |      |
|                     | <b>Ca<sup>2+</sup>.4</b> ( $w = 0.56-1$ %),<br>oNPOE ( $w = 66$ %),<br>NaTpCIPB ( $x_1 = 120$ %),<br>PVC ( $w = 33$ %) | $ \begin{array}{l} Li^+, -2.38; Na^+, -2.68; \\ K^+, -2.96; NH_4^+, -2.24; \\ Mg^{2+}, -3.28; Sr^{2+}, -3.28; \\ Ba^{2+}, -3.12; Mn^{2+}, -1.30; \end{array} $                                                                              | FIM<br>or SSM | 0.1<br>0.1                  | - 0.1                                            | I                          | 1                                  | 25 ± 1 °C                                                                                                      | [10]<br>continues on next page | page |

| (Continued)                                     |  |
|-------------------------------------------------|--|
| Table 9: Ca <sup>2+</sup> -Selective Electrodes |  |

| ionophore           | ionophore membrane                                                                                                                                    | $\lg K_{\mathbf{Ca}^{2+},\mathbf{B}^{n+}}$                                                                                                            | method | primary          | interfering slope                                                    | slope ;         | linear                             | remarks                                                                                  | ref.             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|----------------------------------------------------------------------|-----------------|------------------------------------|------------------------------------------------------------------------------------------|------------------|
|                     | composition                                                                                                                                           |                                                                                                                                                       |        | ion conc.<br>(M) | ion conc.<br>(M)                                                     | (mV/<br>decade) | range<br>(M)                       |                                                                                          |                  |
|                     |                                                                                                                                                       | Co <sup>2+</sup> , -3.16; Ni <sup>2+</sup> , -3.16;<br>Zn <sup>2+</sup> , -1.03; Cd <sup>2+</sup> , -2.42                                             |        |                  |                                                                      |                 |                                    |                                                                                          |                  |
|                     | Ca <sup>2+</sup> -4, oNPOE,<br>NaTPB or KTpCIPB<br>or NaTpCIPB, PVC<br>(weight ratio not reported)                                                    | $K^+$ , -2.28; $Mg^{2+}$ , -2.20; $Sr^{2+}$ , -1.72; $Ba^{2+}$ , -1.49                                                                                | MSM    | I                | 0.1                                                                  | 19.7            | >10 <sup>-4.7</sup>                | I                                                                                        | [11]             |
| Ca <sup>2+</sup> -5 | <b>Ca<sup>2+</sup>-5</b> ( $w = 4.6$ %),<br><b>KTpCIPB</b> ( $x_1 = 48$ %),<br>onPPE ( $w = 70.8$ %), PVC ( $w = 23.3$ %)                             | Na <sup>+</sup> , -3.3; K <sup>+</sup> , -2.6;<br>Mg <sup>2+</sup> , -2.8<br>%)                                                                       | MSM    | I                | Na <sup>+</sup> , K <sup>+</sup> ,<br>0.2;<br>Mg <sup>2+</sup> , 0.1 | 29.8            | 10 <sup>-5</sup> -10 <sup>-2</sup> | 25 °C                                                                                    | [12]             |
| Ca <sup>2+</sup> -6 | $Ca^{2+-6}(w = 2 \%)$ , oNPOE ( $w = 64 \%$ )<br>PVC ( $w = 34 \%$ )                                                                                  | (w = 64 %), Li <sup>+</sup> , -1.2; Na <sup>+</sup> , -1.3;<br>K <sup>+</sup> , -0.8; NH <sub>4</sub> <sup>+</sup> , -0.1;<br>Mg <sup>2+</sup> , -1.1 | SSM    | 0.1              | 0.1                                                                  | I               | I                                  | room temp.; [13]<br>5 mM Tris-HCl,<br>pH = 8.8;<br>r.o.o.g.                              | [13]<br>Cl,      |
|                     | <b>Ca<sup>2+-6</sup></b> ( $w = 2.1 \%$ ),<br>oNPOE ( $w = 63.3 \%$ ),<br>KTpCIPB ( $x_1 = 30 \%$ ),<br>PVC ( $w = 33.7 \%$ )                         | Li <sup>+</sup> , -I.3; Na <sup>+</sup> , -I.9;<br>K <sup>+</sup> , -0.4; NH <sub>4</sub> <sup>+</sup> , -0.3;<br>Mg <sup>2+</sup> , 0.0              | SSM    | 0.1              | 0.1                                                                  | I               | I                                  | room temp.; [13]<br>5 mM Tris-HCl,<br>pH = 8.8;<br>r.o.o.g.                              | [13]<br>21,      |
|                     | <b>Ca<sup>2+-6</sup></b> ( $w = 2.1 \%$ ),<br>oNPOE ( $w = 62.7 \%$ ),<br>KTpCIPB ( $x_1 = 70 \%$ ),<br>PVC ( $w = 33.4 \%$ )                         | Li <sup>+</sup> , -2.2; Na <sup>+</sup> , -2.7;<br>K <sup>+</sup> , -1.0; NH <sub>4</sub> <sup>+</sup> , -1.1;<br>Mg <sup>2+</sup> , -0.1             | SSM    | 0.1              | 0.1                                                                  | 28.6            | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>$c_{\rm dl} = 10^{-5.0}$ M;<br>5 mM Tris-HCl,<br>pH = 8.8            | [13]<br>;<br>Cl, |
|                     | <b>Ca<sup>2+-6</sup></b> ( $w = 2.1 \ \%$ ),<br>oNPOE ( $w = 62.6 \ \%$ ),<br>KTpCIPB ( $x_1 = 80 \ \%$ ),<br>PVC ( $w = 33.5 \ \%$ )                 | Li <sup>+</sup> , -0.9, Na <sup>+</sup> , +0.3;<br>K <sup>+</sup> , +3.8; NH <sub>4</sub> <sup>+</sup> , +3.6;<br>Mg <sup>2+</sup> , -0.3             | SSM    | 0.1              | 0.1                                                                  | 1               | I                                  | room temp.; [13]<br>5 mM Tris-HCl,<br>pH = 8.8;<br>r.o.o.g.                              | [13]<br>21,      |
|                     | $Ca^{2+6}$ ( $w = 2.1 \%$ ),<br>oNPOE ( $w = 62.0 \%$ ),<br>KTpCIPB ( $x_1 = 120 \%$ ),<br>PVC ( $w = 33.1 \%$ )                                      | Li <sup>+</sup> , -0.3; Na <sup>+</sup> , +1.2;<br>K <sup>+</sup> , +3.8; NH <sub>4</sub> <sup>+</sup> , +3.0;<br>Mg <sup>2+</sup> , -0.3             | SSM    | 0.1              | 0.1                                                                  | I               | I                                  | room temp.;[13]<br>5 mM Tris-HCl,<br>pH = 8.8;<br>r.o.o.g.                               | 3]               |
|                     | <b>Ca<sup>2+6</sup></b> ( $w = 2.1 \%$ ),<br>CP ( $w = 32.1 \%$ ),<br>KTpCIPB ( $x_i = 70 \%$ ),<br>PVC ( $w = 34.2 \%$ ),<br>oNPOE ( $w = 32.1 \%$ ) | $\begin{array}{l} Li^+, -1.1;  Na^+, -1.7; \\ K^+, -1.0;  NH_4^+, -0.6; \\ Mg^{2+}, -0.2 \end{array}$                                                 | SSM    | 0.1              | 0.1                                                                  | 25.67           | 1                                  | room temp.; [13]<br>$t_{90} = 5817 \text{ ms};$<br>5  mM Tris-HCI,<br>pH = 8.8; r.o.o.g. | [13]<br>21<br>25 |

Y. UMEZAWA et al.

|                      | ionophore membrane<br>composition                                                                                                                     | $\lg K_{Ca^{2+},B^{n+}}$                                                                                                                  | method | primary<br>ion conc.<br>(M) |                                                                                                                      | interfering slope<br>ion conc. (mV/<br>(M) decade)                                                                        | lincar<br>range<br>(M)             | remarks ref.                                                                                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|
|                      | <b>Ca<sup>2+</sup>.6</b> ( <i>w</i> = 2.1 %),<br>CP ( <i>w</i> = 64.2 %), PVC ( <i>w</i> = 34.2 %),<br>KTpCIPB ( <i>x</i> i = 70 %)                   | Li <sup>+</sup> , -1.0; Na <sup>+</sup> , -1.8;<br>K <sup>+</sup> , -1.0; NH <sub>4</sub> <sup>+</sup> , -0.4;<br>Mg <sup>2+</sup> , -0.3 | SSM    | 0.1                         | 0.1                                                                                                                  | 19.66                                                                                                                     | I                                  | room temp.; [13]<br>$t_{90} = 9229$ ms;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g.                     |
| Ca <sup>2+</sup> -7  | <b>Ca<sup>2+,7</sup></b> ( $w = 2.1$ %),<br>oNPOE ( $w = 62.4$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>PVC ( $w = 33.3$ %)                                 | Li <sup>+</sup> , -2.6; Na <sup>+</sup> , -3.3;<br>K <sup>+</sup> , -1.8; NH <sub>4</sub> <sup>+</sup> , -2.4;<br>Mg <sup>2+</sup> , -2.2 | SSM    | 0.1                         | 0.1                                                                                                                  | 26.2                                                                                                                      | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>c <sub>dl</sub> = 10 <sup>-4.9</sup> M;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g. |
| Ca <sup>2+</sup> -8  | <b>Ca<sup>2+</sup>.8</b> ( $w = 2.1$ %),<br>oNPOE ( $w = 62.4$ %),<br>KTpCIPB ( $x_1 = 70$ %),<br>PVC ( $w = 35.4$ %)                                 | $Li^+, -1.8; Na^+, -1.2; K^+, +1.5; NH_4^+, +1.0; Mg^{2+}, -1.2$                                                                          | SSM    | 0.1                         | 0.1                                                                                                                  | 25.7                                                                                                                      | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>c <sub>dl</sub> = 10 <sup>-4.8</sup> M;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g. |
| Ca <sup>2+</sup> -9  | <b>Ca<sup>2+</sup>.9</b> ( $w = 2.1$ %),<br>oNPOE ( $w = 62.3$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>PVC ( $w = 33.2$ %)                                 | Li <sup>+</sup> , -2.9; Na <sup>+</sup> , -3.0;<br>K <sup>+</sup> , -2.4; NH <sub>4</sub> <sup>+</sup> , -2.5;<br>Mg <sup>2+</sup> , -4.0 | SSM    | 0.1                         | 0.1                                                                                                                  | 26.0                                                                                                                      | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>$c_{\rm dl} = 10^{-4.9}$ M;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g.             |
| Ca <sup>2+</sup> -10 | <b>Ca<sup>2+</sup>-10</b> ( $w = 2.1$ %),<br>oNPOE ( $w = 62.6$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>PVC ( $w = 33.4$ %)                                | Li <sup>+</sup> , -2.9; Na <sup>+</sup> , -2.4;<br>K <sup>+</sup> , -2.3; NH <sub>4</sub> <sup>+</sup> , -2.4;<br>Mg <sup>2+</sup> , -3.7 | SSM    | 0.1                         | 0.1                                                                                                                  | 25.8                                                                                                                      | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>c <sub>dl</sub> = 10 <sup>-4.9</sup> M;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g. |
| Ca <sup>2+</sup> -11 | <b>Ca<sup>2+</sup>.11</b> ( <i>w</i> = 2.1 %),<br>oNPOE ( <i>w</i> = 63.1 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 70 %),<br>PVC ( <i>w</i> = 33.6 %) | Li <sup>+</sup> , -2.6; Na <sup>+</sup> , -2.7;<br>K <sup>+</sup> , -2.2; NH <sub>4</sub> <sup>+</sup> , -2.5;<br>Mg <sup>2+</sup> , -3.6 | SSM    | 0.1                         | 0.1                                                                                                                  | 25.8                                                                                                                      | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>c <sub>dl</sub> = 10 <sup>-4.8</sup> M;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g. |
| Ca <sup>2+</sup> -12 | <b>Ca<sup>2+</sup>12</b> $(w = 2.1 \%)$ ,<br>oNPOE $(w = 63.1 \%)$ ,<br>KTpCIPB $(r_i = 70 \%)$ ,<br>PVC $(w = 33.4 \%)$                              | Li <sup>+</sup> , 1.4, Na <sup>+</sup> , -2.0;<br>K <sup>+</sup> , -1.1, NH <sub>4</sub> <sup>+</sup> , -1.5;<br>Mg <sup>2+</sup> , -2.6  | MSS    | 0.1                         | 0.1                                                                                                                  | 24.8                                                                                                                      | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.; [13]<br>$c_{\rm dl} = 10^{-4.7}$ M;<br>5 mM Tris-HCl,<br>pH = 8.8; r.o.o.g.             |
| Ca <sup>2+</sup> -13 | $Ca^{2+1}3$ ( $w = 1.6$ %),<br>NaTPB( $x_i = 60 \pm 5$ %),<br>oNPOE ( $w = 65.2$ %),                                                                  | $\begin{array}{l} Li^{+},-4.2;K^{+},-3.7;\\ NH_{4}^{+},-5.3;Mg^{2+}-4.0;\\ Sr^{2+},-0.52;Ba^{2+},-1.2; \end{array}$                       | MSM    | I                           | Li <sup>+</sup> , NH <sub>4</sub> <sup>+</sup> , 3<br>0.1; K <sup>+</sup> ,<br>Mg <sup>2+</sup> , 10 <sup>-2</sup> ; | Li <sup>+</sup> , NH <sub>4</sub> <sup>+</sup> , 34 ± 4<br>0.1; K <sup>+</sup> ,<br>Mg <sup>2+</sup> , 10 <sup>-2</sup> ; | 10 <sup>-6</sup> -10-2             | [14]                                                                                                |

Potentiometric selectivity coefficients of ion-selective electrodes

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

continues on next page

| iononhore                                                                              | iononhore membrane                                                                                                                                                                                          | 10K- 2+ m+                                                                                                                                                          | method | nrimarv          | interfering slone                                                                                                                                                   |     | linear                | remarks              | ref  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|----------------------|------|
|                                                                                        | composition                                                                                                                                                                                                 | erca- ,B.                                                                                                                                                           |        | ion conc.<br>(M) | ion conc. (mV/<br>(M) decad                                                                                                                                         | (e) | range<br>(M)          |                      |      |
|                                                                                        | PVC ( $w = 32.6  \%$ )                                                                                                                                                                                      | Na <sup>+</sup> , -4.7†,-4.4††                                                                                                                                      |        |                  | Sr <sup>2+</sup> ,Ba <sup>2+</sup> ,<br>10 <sup>−3</sup> ; Na+,<br>†0.1, ††10 <sup>−2</sup>                                                                         |     |                       |                      |      |
|                                                                                        | $Ca^{2+}-13 (w = 1.6 \%),$<br>oNPOE (w = 65.2 %),                                                                                                                                                           | $Li^+, -4.0; K^+, -3.2; Mg^{2+}, -3.0; Sr^{2+}-1.0;$                                                                                                                | MSM    | I                | Li <sup>+</sup> , 0.1; 43<br>K <sup>+</sup> , Mg <sup>2+</sup> ,                                                                                                    | 10  | $10^{-4.2} - 10^{-2}$ |                      | [14] |
|                                                                                        | 3,3-como-bis(undecahydro-1,2-dicarba Ba <sup>2+</sup> , -1.2;<br>-3-cobalta-closododecaborate Na <sup>+</sup> , -3.8 <sup>+</sup> , -3.3 <sup>++</sup> , -1.<br>$(x_1 = 60 \pm 5 \%)$ , PVC $(w = 32.6 \%)$ | Ba <sup>2+</sup> , -1.2;<br>Na <sup>+</sup> , -3.8 <sup>+</sup> , -3.3 <sup>++</sup> , -1.6 <sup>+++</sup>                                                          |        |                  | 10 <sup>-2</sup> ; Sr <sup>2+</sup> ,<br>Ba <sup>2+</sup> , 10 <sup>-3</sup> ;<br>Na <sup>+</sup> , †10 <sup>-1</sup> ,<br>††10 <sup>-2</sup> , †††10 <sup>-3</sup> |     |                       |                      |      |
|                                                                                        | $Ca^{2+-13} (w = 1.6 \%),$                                                                                                                                                                                  | Li <sup>+</sup> , -4.1; Na <sup>+</sup> , -4.7;                                                                                                                     | MSM    | I                | Li <sup>+</sup> , NH <sub>4</sub> <sup>+</sup> , 38                                                                                                                 | 10  | $10^{-4.4} - 10^{-2}$ |                      | [14] |
|                                                                                        | pNPOE ( $w = 65.2 \%$ ),<br>NaTPB ( $x_1 = 60 \pm 5 \%$ ),<br>PVC ( $w = 32.6 \%$ )                                                                                                                         | $K^+$ , -4.5; NH <sub>4</sub> <sup>+</sup> , -5.2; $Mg^{2+}$ , -3.5; $SI^{2+}$ , -0.46                                                                              |        |                  | $\begin{array}{l} 0.1;K^+,\\ Mg^{2+},10^{-2};\\ Sr^{2+},10^{-3} \end{array}$                                                                                        |     |                       |                      |      |
|                                                                                        | Ca <sup>2+</sup> -13, oNPOE,                                                                                                                                                                                | Li <sup>+</sup> , -2.5; K <sup>+</sup> , -3.0;                                                                                                                      | MSM    | I                | 0.1 24.0                                                                                                                                                            | - ( |                       | $c_{\rm ql} =$       | [11] |
|                                                                                        | NaTPB or KTpCIPB<br>or NaTpCIPB, PVC<br>(weight ratio not reported)                                                                                                                                         | Mg <sup>2+</sup> , -4.8; Sr <sup>2+</sup> , -0.38;<br>Ba <sup>2+</sup> -1.4                                                                                         |        |                  |                                                                                                                                                                     |     |                       | 10 <sup>-5.7</sup> M |      |
| Ca <sup>2+</sup> -14                                                                   | Ca <sup>2+</sup> -14, oNPOE,<br>NaTPB or KTpCIPB                                                                                                                                                            | Li <sup>+</sup> , -0.2; Na <sup>+</sup> , -1.1;<br>K <sup>+</sup> , -1.0; Mg <sup>2+</sup> , -0.5;                                                                  | MSM    | I                | 0.1 –                                                                                                                                                               | Ι   |                       | r.o.o.g.             | [11] |
|                                                                                        | or NaTpCIPB, PVC<br>(weight ratio not reported)                                                                                                                                                             | Sr <sup>2+</sup> -0.7; Ba <sup>2+</sup> , -0.8                                                                                                                      |        |                  |                                                                                                                                                                     |     |                       |                      |      |
| Ca <sup>2+</sup> -15                                                                   | Ca <sup>2+</sup> -15, oNPOE,<br>NaTPB or KTPCIPB<br>or NaTPCIPB, PVC<br>(weight ratio not reported)                                                                                                         | $\begin{array}{l} Li^+, -0.7;  \mathrm{Na}^+, -2.7; \\ \mathrm{K}^+, -2.9;  \mathrm{Mg}^{2+}, -1.0; \\ \mathrm{Sr}^{2+}, -1.7;  \mathrm{Ba}^{2+}, -2.0 \end{array}$ | MSM    | 1                | 0.1 –                                                                                                                                                               | I   |                       | r.o.o.g.             | [11] |
| Ca <sup>2+</sup> -16                                                                   | Ca <sup>2+</sup> -16, oNPOE,<br>NaTPB or KTpCIPB<br>or NaTpCIPB, PVC<br>(weight ratio not reported)                                                                                                         | $ \begin{array}{c} Li^+,-0.8; Na^+,-0.2;\\ K^+,-0.2; Mg^{2+},-1.3;\\ Sr^{2+},-0.8; Ba^{2+},-1.0 \end{array} $                                                       | MSM    | 1                | 0.1 –                                                                                                                                                               | I   |                       | r.o.o.g.             | [1]  |
| Ca <sup>2+</sup> -17                                                                   | Ca <sup>2+</sup> -17, oNPOE,<br>NaTPB or KTPCIPB<br>or NaTPCIPB, PVC<br>(weight ratio not reported)                                                                                                         | $\begin{array}{c} {\rm Li}^+,-1.9;{\rm Na}^+,-2.8;\\ {\rm K}^+,-2.5;{\rm Mg}^{2+}-1.3;\\ {\rm Sr}^{2+},-0.8;{\rm Ba}^{2+},-1.5\end{array}$                          | MSM    | 1                | 0.1 –                                                                                                                                                               | I   |                       | I.0.0.g.             | [1]  |
| † without EGTA.<br>†† with 4×10 <sup>-4</sup> I<br>††† at pH 9.5.<br>†††† in unbuffere | † without EGTA.<br>11 with 4 × 10 <sup>-4</sup> M EGTA.<br>111 at pH 9.5.<br>1111 in unbuffered solution.                                                                                                   |                                                                                                                                                                     |        |                  |                                                                                                                                                                     |     |                       |                      |      |

| I able 9: (          | I able y: Car'-Selective Electrodes (Continuea)                                                                                                                            |                                                                                                                                                                                       |                                 |                             |                                                  |                                      |                                                    |                                                               |                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------------------------|--------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------------------|
| ionophore            | ionophore membrane<br>composition                                                                                                                                          | $\lg K_{\operatorname{Ca}^{2+},\operatorname{B}^{n+}}$                                                                                                                                | method                          | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade)           | linear<br>range<br>(M)                             | remarks                                                       | ref.                            |
| Ca <sup>2+</sup> -18 | Ca <sup>2+</sup> 18, oNPOE,<br>NaTPB or KTPCIPB<br>or NaTPCIPB, PVC<br>(weight ratio not reported)                                                                         | $\begin{array}{l} Li^+, -2.0;  Na^+, -2.8; \\ K^+, -2.6;  Mg^{2+}, -1.2; \\ Sr^{2+}, -0.7;  Ba^{2+}, -1.2 \end{array}$                                                                | MSM                             | ,<br>,<br>,                 | 0.1                                              |                                      |                                                    | Г.О.О. <sup>д</sup> .                                         | [11]                            |
| Ca <sup>2+</sup> -19 | Ca <sup>2+</sup> 19, oNPOE,<br>NaTPB or KTPCIPB<br>or NaTPCIPB, PVC<br>(weight ratio not reported)                                                                         | $\begin{array}{c} Li^+, 2.0; Na^+, -2.8; \\ K^+, -2.5; Mg^{2+}, -1.2; \\ Sr^{2+}, -0.9; Ba^{2+}, -1.2 \end{array}$                                                                    | MSM                             | I                           | 0.1                                              | I                                    | 1                                                  | r.o.o.g.                                                      | [11]                            |
| Ca <sup>2+</sup> -20 | $Ca^{2+}-20 (w = 1.0 \%)$ ,<br>silicone rubber ( $w = 99.0 \%$ )                                                                                                           | Li <sup>+</sup> , -2.16; Na <sup>+</sup> , -2.61;<br>K <sup>+</sup> , -2.73; Mg <sup>2+</sup> , -2.88                                                                                 | SSM (EA = EB)                   | I                           | I                                                | 41.0                                 | $10^{-4}$ - $10^{-2}$                              | Ag CWE                                                        | [4]                             |
|                      | <b>Ca<sup>2+</sup>-20</b> ( $w = 0.8 \%$ ),<br>silicone rubber ( $w = 78.0 \%$ ),<br>DOA ( $w = 21.2 \%$ )                                                                 | Li <sup>+</sup> , -2.17; Na <sup>+</sup> , -2.10;<br>K <sup>+</sup> , -3.63; Mg <sup>2+</sup> , -4.41                                                                                 | $SSM$ $(E_{A} = E_{B})$         | I                           | I                                                | 44.0                                 | $10^{-4}$ - $10^{-2}$                              | Ag CWE                                                        | [4]                             |
|                      | $Ca^{2+}-20$ ( $w = 0.8 \%$ ),<br>silicome rubber ( $w = 78.0 \%$ ),<br>BEHS ( $w = 21.2 \%$ )                                                                             | Li <sup>+</sup> , -1.80; Na <sup>+</sup> , -2.40; SSM<br>K <sup>+</sup> , <-5.00; Mg <sup>2+</sup> , <-5.00 $(E_{A} = E_{B})$                                                         | $SSM$ $(E_{\rm A} = E_{\rm B})$ |                             | I                                                | 39.6                                 | $10^{-4}$ - $10^{-2}$                              | Ag CWE                                                        | [4]                             |
|                      | <b>Ca<sup>2+</sup>-20</b> ( $w = 0.8 \%$ ),<br>silicone rubber ( $w = 77.9 \%$ ),<br>KTpCIPB ( $x_1 = 14.0 \%$ )<br>DOA ( $w = 21.2 \%$ )                                  | Li <sup>+</sup> , -2.30; Na <sup>+</sup> , -3.80;<br>K <sup>+</sup> , -4.70; Mg <sup>2+</sup> , -3.10                                                                                 | SSM<br>$(E_A = E_B)$            | I                           | I                                                | 28.8                                 | 10 <sup>-5</sup> -10 <sup>-2</sup>                 | Ag CWE;<br>c <sub>dl</sub> < 10 <sup>-6</sup> M               | [4]                             |
|                      | <b>Ca<sup>2+</sup>-20</b> ( $w = 0.8 \%$ ),<br>silicone rubber ( $w = 77.2 \%$ ),<br>KTpcIPB ( $x_1 = 14.0 \%$ ),<br>ETH 500 ( $x_1 = 14.0 \%$ ),<br>DOA ( $w = 21.6 \%$ ) | $ \begin{array}{l} \text{Li}^+, <-5.00; \text{ Na}^+, <-5.00; \text{ SSM} \\ \text{K}^+, <-5.00; \text{ Mg}^{2+}, <-5.00  (E_A = E_B) \\ \text{Na}^+, -4.3 & \text{FIM} \end{array} $ | $SSM (E_{A} = E_{B})$ FIM       | 1 1                         | -<br>10 <sup>-1</sup>                            | 28.3 ± 0.5<br>-                      | 28.3 ± 0.5 10 <sup>−5</sup> −10 <sup>−2</sup><br>- | $c_{\rm dl} = [4]$<br>10-6.57 ± 0.32 M                        | [4]<br>M                        |
|                      | <b>Ca<sup>2+</sup>.20</b> (10 mmol/kg),<br>NaTFPB (x <sub>i</sub> = 50 %),<br>PVC/BEHS (1:2 by weight)                                                                     | Na <sup>+</sup> , $-6.2 \pm 0.4$ ;<br>K <sup>+</sup> , $-7.7 \pm 0.4$ ;<br>Mg <sup>2+</sup> , $-9.7 \pm 0.3$                                                                          | SSM                             | $10^{-2}$                   | 10 <sup>-2</sup>                                 | $33.2 \pm 0.2  10^{-3} - 10^{-1}$    | $10^{-3}$ - $10^{-1}$                              | membranes [<br>conditioned in<br>0.01M NaCl;<br>21 5 + 0 5 °C | [15]<br>n                       |
|                      | <b>Ca<sup>2+</sup>.20</b> (10 mmol/ kg %),<br>NaTFPB ( <i>w</i> = 50 %),<br>PVC/DOS (1:2 by weight)                                                                        | $Na^+$ , -3.6 ± 0.1;<br>$K^+$ -4.0 ± 0.1;<br>$Mg^{2+}$ , -4.9 ± 0.1                                                                                                                   | SSM                             | $10^{-2}$                   | 10 <sup>-2</sup>                                 | $34.9 \pm 0.1$ $10^{-3}$ - $10^{-1}$ | $10^{-3}$ - $10^{-1}$                              | membranes [<br>$0.01M CaCl_2;$<br>$0.5 + 0.5 \circ C^2;$      | [15]<br>                        |
|                      | Ca <sup>2+</sup> -20<br>(membrane composition not<br>reported)                                                                                                             | Na <sup>+</sup> , -3.1; K <sup>+</sup> , -2.8;<br>NH4 <sup>+</sup> , <-6.0                                                                                                            | I                               | $10^{-4}$ - $10^{-2}$       | $10^{-4-}$<br>$10^{-3}$                          | 41.0                                 | I                                                  | FIA [16]<br>K was calculated with<br>generic algorithm.       | ,<br>[16]<br>tted with<br>ithm. |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

continues on next page

| ionophore            | ionophore membrane<br>composition                                                                                                                                                 | lgKCa²+,Bn+                                                                                                                                                                    | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade | g slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                        | ref. |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------------|------|
|                      | $Ca^{2+}-20 (w = 24.8 \%),$<br>KTpCIPB (x <sub>i</sub> = 55 %),<br>silicone rubber (w = 96.0 %)                                                                                   | $Li^+, -4.8; Na^+, -4.9; K^+, -5.0; Mg^{2+}, -5.0$                                                                                                                             | SSM    | 1.0                         | 10-1                                              | 26.95<br>± 0.74            | 10-5.3-10-1            | $c_{\rm dl} = 10^{-6} \mathrm{M}$ [5]                          | [5]  |
| Ca <sup>2+</sup> -21 | $Ca^{2+}-21 (w = 2.0 \%),$<br>KTpCIPB (xi = 50 %),<br>oNPOE (w ≈ 66 %),<br>PVC (w = 32 %)                                                                                         | $\begin{array}{l} Li^+, +1.8;  Na^+, -0.8; \\ K^+, +1.8;  Rb^+, +2.7; \\ Cs^+, +4.2;  NH4^+, +1.9; \\ H^+, +1.8;  Mg^{2+}, -1.1; \\ Sr^{2+}, -0.4;  Ba^{2+}, -0.1 \end{array}$ | SSM    | 10 <sup>-1</sup>            | 10-1                                              | I                          | I                      | $25 \pm 0.5 ^{\circ}$ C; [17]<br>lg $P_{o/W}$<br>= 2.9 ± 0.2   | [17] |
|                      | <b>Ca<sup>2+</sup>-21</b> ( $w = 2.0 \ \%$ ),<br>KTpCIPB ( $x_i = 50 \ \%$ ),<br>DOS ( $w \approx 66 \ \%$ ),<br>PVC ( $w = 32 \ \%$ )                                            | $\begin{array}{l} Li^+, +2.5;  Na^+, +2.3; \\ K^+, +3.3;  Rb^+, +3.8; \\ Cs^+, +4.8;  NH4^+, +3.6; \\ H^+, +4.5;  Mg^{2+}, -0.4; \\ Sr^{2+}, -0.2;  Ba^{2+}, +0.5 \end{array}$ | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                  | I                          | I                      | 25 ± 0.5 °C                                                    | [17] |
| Ca <sup>2+</sup> -22 | $Ca^{2+}-22 (w = 2.0 \%),$<br>KTpCIPB (xi = 50 %),<br>oNPOE ( $w \approx 66 \%$ ),<br>PVC ( $w = 32 \%$ )                                                                         | $\begin{array}{l} Li^+, +1.8;  Na^+, -0.6; \\ K^+, +1.6;  Rb^+, +2.9; \\ Cs^+, +4.4;  NH4^+, +2.0; \\ H^+, +1.5;  Mg^{2+}, -1.3; \\ Sr^{2+}, -0.6;  Ba^{2+}, +0.2 \end{array}$ | SSM    | 10 <sup>-1</sup>            | 10-1                                              | I                          | I                      | $25 \pm 0.5 ^{\circ}\text{C};$<br>$\lg P_{o/w}$<br>= 2.0 ± 0.2 | [13] |
| Ca <sup>2+</sup> -23 | <b>Ca<sup>2+</sup>-23</b> ( $w = 2.0 \ \%$ ),<br><b>KTPCIPB</b> ( $x_i = 50 \ \%$ ),<br><b>oNPOE</b> ( $w = 66 \ \%$ ),<br>PVC ( $w = 32 \ \%$ )                                  | $ \begin{array}{l} Li^+, -0.4\ Na^+, +1.0;\\ K^+, +4.1;\ Rb^+, +5.3;\\ Cs^+, +6.6;\ NH4^+, +3.4;\\ H^+, +1.4;\ Mg^{2+}, -0.1;\\ Sr^{2+}, +0.1;\ Ba^{2+}, +0.7 \end{array} $    | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                  | I                          | I                      | $25 \pm 0.5 ^{\circ}C;$<br>$\lg P_{o/W}$<br>= 2.6 ± 0.2        | [17] |
| Ca <sup>2+</sup> -24 | <b>Ca<sup>2+</sup>-24</b> ( $w = 2.0 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 50 \%$ ),<br>oNPOE ( $w \approx 66 \%$ ),<br>PVC ( $w = 32 \%$ )                                           | $\begin{array}{l} Li^+, +1.8;  Na^+, +0.8; \\ K^+, +3.9;  Rb^+, +5.0; \\ Cs^+, +6.4;  NH4^+, +3.3; \\ H^+, +1.8;  Mg^{2+}, -0.3; \\ Sr^{2+}, +0.1;  Ba^{2+}, +0.6 \end{array}$ | SSM    | 10-1                        | 10 <sup>-1</sup>                                  | I                          | 1                      | $25 \pm 0.5 ^{\circ}$ C;<br>lg $P_{o/w}$<br>= 3.1 ± 0.3        | [17] |
| Ca <sup>2+</sup> -25 | $\begin{split} \mathbf{Ca^{2+25}} & (w = 2.0 \ \%), \\ \mathrm{KTpCIPB} & (x_i = 100 \ \%), \\ \mathrm{oNPOE} & (w \approx 66 \ \%), \\ \mathrm{PVC} & (w = 32 \ \%) \end{split}$ | $\begin{array}{l} Li^{+},-0.5;Na^{+},-1.6;\\ K^{+},-1.6;Rb^{+},-1.2;\\ Cs^{+},-0.3;NH_{4}^{+},-1.6;\\ H^{+},+1.7;Mg^{2+},-2.1;\\ Sr^{2+},-0.7;Ba^{2+},-0.5 \end{array}$        | SSM    | 10 <sup>-1</sup>            | $10^{-1}$                                         | I                          | I                      | $25 \pm 0.5 ^{\circ}$ C; [17]<br>$\lg P_{o/W}$<br>= 8.1 ± 0.4  | [17] |

Table 9:  $Ca^{2+}$ -Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| -                    | -                                                            | - 21                                                                                                       | -      |                  | •                 | -               | <u>-</u>     |                                       |
|----------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|------------------|-------------------|-----------------|--------------|---------------------------------------|
| tonophore            | ionophore membrane                                           | IghCa <sup>2+</sup> ,B <sup>n+</sup>                                                                       | method | primary          | intertering slope | g slope         | linear       | remarks ret.                          |
|                      | composition                                                  |                                                                                                            |        | 10n conc.<br>(M) | ion conc.<br>(M)  | (mV/<br>decade) | range<br>(M) |                                       |
| Ca <sup>2+</sup> -26 | $Ca^{2+}-26 (w = 2.0 \%),$                                   | $Li^+, -2.0 Na^+, -0.8;$                                                                                   | SSM    | $10^{-1}$        | $10^{-1}$         | I               | I            | $25 \pm 0.5 ^{\circ}C; [17]$          |
|                      | K1pCIPB $(x_i = 100 \%)$ ,                                   | K <sup>+</sup> , +0.6; Kb <sup>+</sup> , +1.7;                                                             |        |                  |                   |                 |              | $\lg P_{\rm O/W}$                     |
|                      | oNPOE ( $w \approx 66\%$ ),                                  | $Cs^+$ , +3.0; NH <sub>4</sub> <sup>+</sup> , +0.3;                                                        |        |                  |                   |                 |              | $= 7.1 \pm 0.4$                       |
|                      | PVC ( $w = 32\%$ )                                           | H <sup>+</sup> , +1.1; Mg <sup>2+</sup> , +1.3;<br>Sr <sup>2+</sup> , -0.7; Ba <sup>2+</sup> , -0.5        |        |                  |                   |                 |              |                                       |
| Ca <sup>2+</sup> -27 | $Ca^{2+}-27 (w = 2.0 \%),$                                   | Li <sup>+</sup> , -2.6; Na <sup>+</sup> , -3.4;                                                            | SSM    | $10^{-1}$        | $10^{-1}$         | I               | I            | 25 ± 0.5 °C; [17]                     |
|                      | KTpCIPB ( $x_i = 100 \%$ ),                                  | K <sup>+</sup> , -3.1; Rb <sup>+</sup> , -2.9;                                                             |        |                  |                   |                 |              | $\lg P_{\rm o/w}$                     |
|                      | oNPOE $(w \approx 66\%)$ ,                                   | $Cs^+$ , -2.3; $NH_4^+$ , -2.7;                                                                            |        |                  |                   |                 |              | $= 6.9 \pm 0.4$                       |
|                      | PVC(w = 32%)                                                 | H <sup>+</sup> , +2.8; Mg <sup>2+</sup> , -2.1;<br>Sr <sup>2+</sup> , -0.5; Ba <sup>2+</sup> , -0.4        |        |                  |                   |                 |              |                                       |
| Ca <sup>2+</sup> -28 | $Ca^{2+}-28 (w = 2.0 \%),$                                   | Li <sup>+</sup> , -1.7; Na <sup>+</sup> , -2.8;                                                            | SSM    | $10^{-1}$        | $10^{-1}$         | I               | I            | $25 \pm 0.5 ^{\circ}\text{C}; [17]$   |
|                      | KTpCIPB $(x_i = 100 \%)$ ,                                   | K <sup>+</sup> , -2.5; Rb <sup>+</sup> , -2.6;                                                             |        |                  |                   |                 |              | $\lg P_{ m o/w}$                      |
|                      | oNPOE ( $w \approx 66 \%$ ),                                 | Cs <sup>+</sup> , -2.5; NH <sub>4</sub> <sup>+</sup> , -2.8;                                               |        |                  |                   |                 |              | $= 6.8 \pm 0.4$                       |
|                      | PVC ( $w = 32 \%$ )                                          | $H^+, +1.7; Mg^{2+}, -2.5;$                                                                                |        |                  |                   |                 |              |                                       |
|                      |                                                              | Sr <sup>2+</sup> , -0.9; Ba <sup>2+</sup> , -0.3                                                           |        |                  |                   |                 |              |                                       |
| Ca <sup>2+</sup> -29 | $Ca^{2+}-29 (w = 2.0 \%),$                                   | Li <sup>+</sup> , -2.8; Na <sup>+</sup> , -2.7;                                                            | SSM    | $10^{-1}$        | $10^{-1}$         | I               | I            | $25 \pm 0.5 ^{\circ}\text{C}; \ [17]$ |
|                      | KTpCIPB ( $x_i = 100 \%$ ),                                  | K <sup>+</sup> , -3.3; Rb <sup>+</sup> , -3.2;                                                             |        |                  |                   |                 |              | $\lg P_{ m o/w}$                      |
|                      | oNPOE ( $w \approx 66 \%$ ),                                 | Cs <sup>+</sup> , -3.2; NH <sub>4</sub> <sup>+</sup> , -3.0;                                               |        |                  |                   |                 |              | $= 7.4 \pm 0.4$                       |
|                      | PVC ( $w = 32\%$ )                                           | H <sup>+</sup> , -2.2; Mg <sup>2+</sup> , -4.0;<br>Sr <sup>2+</sup> _0 4: Ba <sup>2+</sup> _0 8            |        |                  |                   |                 |              |                                       |
| C-2+ 20              |                                                              | 10, -, -, -, -, -, -, -, -, -, -, -, -, -,                                                                 |        | -0+              | 1-01              |                 |              |                                       |
| Ca                   | $Ca^{-1} - 30 (w = 2.0 \%),$<br>$VT_{-1} C(DD (w) = 100 \%)$ | L1, -2./; Na', -3.1;<br>V+ 26, D1+ 26.                                                                     | MICC   | , 0I             | 10 -              | I               | I            | 25 ± 0.5 °C; [17]                     |
|                      | $\mathbf{NIPCITB}(X_{\mathbf{I}} = 100\%),$                  | $\alpha + 2.00$ NU $(-2.0)$                                                                                |        |                  |                   |                 |              | 18 Fo/w                               |
|                      | $ONPOE (W \approx 00\%),$                                    | CS', -5.4; NH4', -5.4;                                                                                     |        |                  |                   |                 |              | = /.0 ± 0.4                           |
|                      | PVC(w = 32%)                                                 | H <sup>+</sup> , -2./; Mg <sup>2+</sup> , -4.1;<br>Sr <sup>2+</sup> , -0.8; Ba <sup>2+</sup> , -1.6        |        |                  |                   |                 |              |                                       |
| Ca <sup>2+</sup> -31 | $Ca^{2+}-31 (w = 2.0 \%),$                                   | Li <sup>+</sup> , -4.0; Na <sup>+</sup> , -3.8;                                                            | SSM    | $10^{-1}$        | $10^{-1}$         | I               | I            | $25 \pm 0.5 \circ C; [17]$            |
|                      | KTpClPB ( $x_i = 100 \%$ ),                                  | K <sup>+</sup> , -4.0; Rb <sup>+</sup> , -3.8;                                                             |        |                  |                   |                 |              | $\lg P_{ m o/w}$                      |
|                      | oNPOE ( $w \approx 66 \%$ ),                                 | Cs <sup>+</sup> , -2.7; NH <sub>4</sub> <sup>+</sup> , -3.8;                                               |        |                  |                   |                 |              | $= 6.9 \pm 0.3$                       |
|                      | PVC ( $w = 32\%$ )                                           | H <sup>+</sup> , $-2.5$ ; Mg <sup>2+</sup> , $-4.2$ ;<br>Sr <sup>2+</sup> $-0.8$ : Ba <sup>2+</sup> $-1.4$ |        |                  |                   |                 |              |                                       |
| Ca2+_37              | $C_{a}^{2}^{2}^{2}^{-3}^{2}(w - 20\%)$                       | $1 i + -5 0 \cdot N_a + -2 0$                                                                              | MSS    | 10-1             | 10-1              | I               | I            | 35 + 0 5 °C· [17]                     |
|                      | <b>KT</b> pCIPB $(x_i = 50\%)$ .                             | K <sup>+</sup> 1.5: Rb <sup>+</sup> 1.7:                                                                   | MICO   | 2                | 21                |                 |              | $22 \pm 0.0$ $\bigcirc$ $[11]$        |
|                      | oNPOE ( $w \approx 66\%$ ),                                  | Cs <sup>+</sup> , -1.7; NH <sub>4</sub> <sup>+</sup> , -2.5;                                               |        |                  |                   |                 |              | $= 4.1 \pm 0.3$                       |
|                      | PVC $(w = 32\%)$                                             | H <sup>+</sup> , -1.5; Mg <sup>2+</sup> , -3.8;                                                            |        |                  |                   |                 |              | continues on next page                |
|                      |                                                              | Sr <sup>2+</sup> , -0.6; Ba <sup>2+</sup> , -1.4                                                           |        |                  |                   |                 |              |                                       |

Table 9: Ca<sup>2+</sup>-Selective Electrodes (Continued)

| ionophore                                                                                                                        | tonopnore memorane<br>composition                                                                                                        | ı≌^Ca∠∓,Bu∓                                                                                                                                                                     |     | ion conc.<br>(M) | ion conc.<br>(M) | ion conc. (mV/<br>(M) decade) | range<br>(M)                       |                                                              | 101. |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|------------------|-------------------------------|------------------------------------|--------------------------------------------------------------|------|
| Ca <sup>2+</sup> -33                                                                                                             | <b>Ca<sup>2+</sup>-33</b> ( $w = 2.0$ %),<br>KTpCIPB ( $x_i = 50$ %),<br>oNPOE ( $w \approx 66$ %),<br>PVC ( $w = 32$ %)                 | $\begin{array}{l} Li^+,-3.8;Na^+,-3.4;\\ K^+,-1.4;Rb^+,-0.2;\\ Cs^+,+0.9;NH4^+,-1.5;\\ H^+,+0.2;Mg^{2+},-3.6;\\ Sr^{2+},-1.0;Ba^{2+},-1.8\end{array}$                           | SSM | $10^{-1}$        | $10^{-1}$        | I                             | I                                  | 25 ± 0.5 °C; [17]<br>$\lg P_{o/W}$<br>= 7.7 ± 0.4            | [17] |
| Ca <sup>2+</sup> -34                                                                                                             | $Ca^{2+}.34$ ( $w = 2.0$ %),<br>KTpCIPB ( $x_i = 100$ %),<br>oNPOE ( $w \approx 66$ %),<br>PVC ( $w = 32$ %)                             | $\begin{array}{l} Li^{+},-3.5;Na^{+},-3.6;\\ K^{+},-3.8;Rb^{+},-4.0;\\ Cs^{+},-3.5;NH_{4}^{+},-4.1;\\ H^{+},-3.3;Mg^{2+},-4.2;\\ Sr^{2+},-1.0;Ba^{2+},-3.0\end{array}$          | SSM | 10 <sup>-1</sup> | 10 <sup>-1</sup> | I                             | I                                  | 25 ± 0.5 °C; [17]<br>$\lg P_{o/w}$<br>= 14.4 ± 0.4           | [17] |
| Ca <sup>2+</sup> -35                                                                                                             | <b>Ca<sup>2+</sup>.35</b> ( $w = 2.0 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 100 \%$ ),<br>oNPOE ( $w \approx 66 \%$ ),<br>PVC ( $w = 32 \%$ ) | $\begin{array}{l} Li^+,-4.1;Na^+,-4.1;\\ K^+,-4.4;Rb^+,-4.2;\\ Cs^+,-4.0;NH_4^+,-4.2;\\ H^+,-3.6;Mg^{2+},-5.0;\\ Sr^{2+},-1.0;Ba^{2+},-2.1 \end{array}$                         | SSM | 10-1             | 10 <sup>-1</sup> | 29†                           | 10 <sup>-5</sup> -10 <sup>-1</sup> | $25 \pm 0.5 ^{\circ}$ C;<br>lg $P_{o/W}$<br>= 14.6 $\pm 0.4$ | [17] |
|                                                                                                                                  | <b>Ca<sup>2+</sup>.35</b> ( $w = 2.0 \%$ ),<br>KTpCIPB ( $x_1 = 50 \%$ ),<br>oNPOE ( $w \approx 66 \%$ ),<br>PVC ( $w = 32 \%$ )         | $\begin{array}{l} Li^+, -4.2;  Na^+, -3.8; \\ K^+, -4.0;  Rb^+, -4.0; \\ Cs^+, -3.8;  NH_4^+, -4.1; \\ H^+, -3.7;  Mg^{2+}, -4.2; \\ Sr^{2+}, -1.1;  Ba^{2+}, -2.2 \end{array}$ | SSM | 10-1             | 10 <sup>-1</sup> | I                             | I                                  | 25 ± 0.5 °C                                                  | [17] |
|                                                                                                                                  | <b>Ca<sup>2+</sup>.35</b> ( $w = 2.0 \%$ ),<br>KTpCIPB ( $x_i = 75 \%$ ),<br>oNPOE ( $w \approx 66 \%$ ),<br>PVC ( $w = 32 \%$ )         | $\begin{array}{l} Li^+,-4.2;Na^+,-3.9;\\ K^+,-4.1;Rb^+,-4.0;\\ Cs^+,-3.9;NH_4+,-4.1;\\ H^+,-3.7;Mg^{2+},-4.8;\\ Sr^{2+},-1.1;Ba^{2+},-2.2 \end{array}$                          | SSM | 10 <sup>-1</sup> | 10 <sup>-1</sup> | I                             | I                                  | 25 ± 0.5 °C                                                  | [17] |
|                                                                                                                                  | $Ca^{2+}.35$ (w = 2.0 %),<br>KTpCIPB (x <sub>i</sub> = 125 %),<br>oNPOE (w ≈ 66 %),<br>PVC (w = 32 %)                                    | $\begin{array}{l} Li^+, -4.1;  Na^+, -3.2; \\ K^+, -1.2;  Rb^+, -0.2; \\ Cs^+, +1.2;  NH_4^+, -1.9; \\ H^+, +1.0;  Mg^{2+}, -3.4; \\ Sr^{2+}, -0.6;  Ba^{2+}, +0.7 \end{array}$ | SSM | 10-1             | 10 <sup>-1</sup> | I                             | I                                  | 25 ± 0.5 °C                                                  | [17] |
| Ca <sup>2+</sup> -36 Ca <sup>2+</sup> -36 ( $w = 2.0 \ \%$ ),<br>KTpCIPB ( $x_i = 100 \ \%$ ),<br>oNPOE ( $w \approx 66 \ \%$ ), | <b>Ca<sup>2+</sup>.36</b> ( $w = 2.0 \%$ ),<br>KTpCIPB ( $x_i = 100 \%$ ),<br>oNPOE ( $w \approx 66 \%$ ),                               | Li <sup>+</sup> , -2.4; Na <sup>+</sup> , -2.4;<br>K <sup>+</sup> , -3.1; Rb <sup>+</sup> , -3.0;<br>Cs <sup>+</sup> , -3.0; NH4 <sup>+</sup> , -3.0;                           | SSM | 10 <sup>-1</sup> | $10^{-1}$        | I                             | I                                  | $25 \pm 0.5 ^{\circ}$ C;<br>lg $P_{o/W}$<br>= 9.5 ± 0.2      | [17] |

Table 9:  $Ca^{2+}$ -Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| ionophore            | ionophore membrane<br>composition                                                                                                                     | $lgK_{Ca^{2+},B^{n+}}$                                                                                                                                | method | primary<br>ion conc. | interfering slope<br>ion conc. (mV/ | g slope<br>(mV/ | linear<br>range                    | remarks                                            | ref.      |                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|-------------------------------------|-----------------|------------------------------------|----------------------------------------------------|-----------|------------------------|
|                      | 1                                                                                                                                                     |                                                                                                                                                       |        | (W)                  | (W)                                 | decade)         | (M)                                |                                                    |           |                        |
|                      | PVC ( $w = 32\%$ )                                                                                                                                    | H <sup>+</sup> , –3.1; Mg <sup>2+</sup> , –3.9;<br>Sr <sup>2+</sup> , –0.9; Ba <sup>2+</sup> , –2.6                                                   |        |                      |                                     |                 |                                    |                                                    |           |                        |
| Ca <sup>2+</sup> -37 | $Ca^{2+}-37 (w = 2.0 \%),$                                                                                                                            | Li <sup>+</sup> , -4.2; Na <sup>+</sup> , -4.3;                                                                                                       | SSM    | $10^{-1}$            | $10^{-1}$                           | I               | 1                                  | $25 \pm 0.5 \text{ °C}; [17]$                      | ; [17]    |                        |
|                      | <b>KIPCIPB</b> ( $x_1 = 100 \%$ ),<br>ADDOF ( $w_1 \approx 66 \%$ )                                                                                   | К', -3.3; К0', -3.3;<br>Сs <sup>+</sup> _1 6: NH ,+ _4 0:                                                                                             |        |                      |                                     |                 |                                    | $1g P_{0/W}$ = 2 0 + 0 2                           |           |                        |
|                      | PVC(w = 32%)                                                                                                                                          | H <sup>+</sup> , -2.6; Mg <sup>2+</sup> , -3.3;<br>Sr <sup>2+</sup> , -1.6; Ba <sup>2+</sup> , -1.6                                                   |        |                      |                                     |                 |                                    |                                                    |           |                        |
| Ca <sup>2+</sup> -38 | $Ca^{2+}-38 (w = 2.0 \%),$                                                                                                                            | Li <sup>+</sup> , -3.5; Na <sup>+</sup> , -3.7;                                                                                                       | SSM    | $10^{-1}$            | $10^{-1}$                           | I               | I                                  | 25 ± 0.5 °C;                                       | ; [17]    |                        |
|                      | <b>K1 pC1PB</b> ( $x_1 = 100 \%$ ),<br>ondof ( $x_1 \sim 66 \%$ )                                                                                     | $K^+$ , -4.3; $NH_4^+$ , -3.9;<br>$H^+$ -3.1. $M_{\alpha}2^+$ -4.5.                                                                                   |        |                      |                                     |                 |                                    | $\lg P_{\rm O/W}$<br>= 5 2 + 0 2                   |           |                        |
|                      | PVC $(w = 32\%)$ .                                                                                                                                    | Sr <sup>2+</sup> , -1.0; Ba <sup>2+</sup> , -3.3                                                                                                      |        |                      |                                     |                 |                                    | 1.0 <del>-</del> 1.0 -                             |           |                        |
| Ca <sup>2+</sup> -39 | $Ca^{2+}-39 (w = 2.0 \%),$                                                                                                                            | Li <sup>+</sup> , -3.8; Na <sup>+</sup> , -3.9;                                                                                                       | SSM    | $10^{-1}$            | $10^{-1}$                           | I               | I                                  | $25 \pm 0.5 ^{\circ}C;$                            | ; [17]    |                        |
|                      | KIPCIPB $(X_1 \equiv 100\%)$ ,                                                                                                                        | K', -4.3; Kb', -4.1;<br>A + 37, MII + 42                                                                                                              |        |                      |                                     |                 |                                    | $1g P_{0/W}$                                       |           |                        |
|                      | ONFOE $(w \approx 00\%)$ ,<br>PVC $(w = 32\%)$                                                                                                        | Cs <sup>-</sup> , -5.0; NH4 <sup>+</sup> -4.2;<br>H <sup>+</sup> , -2.9; Mg <sup>2+</sup> , -3.6;<br>Sr <sup>2+</sup> , -0.6; Ba <sup>2+</sup> , -2.9 |        |                      |                                     |                 |                                    | = 5.5 ± 0.2                                        |           |                        |
| Ca <sup>2+</sup> -40 | $Ca^{2+}-40 (w = 2.0 \%),$                                                                                                                            | Li <sup>+</sup> , -4.9; Na <sup>+</sup> , -4.8;                                                                                                       | SSM    | $10^{-1}$            | $10^{-1}$                           | I               | I                                  | 25 ± 0.5 °C;                                       | ; [17]    |                        |
|                      | KTpCIPB ( $x_i = 100 \%$ ),                                                                                                                           | K <sup>+</sup> , -4.8; Rb <sup>+</sup> , -4.6;                                                                                                        |        |                      |                                     |                 |                                    | $\lg P_{\rm o/w}$                                  |           |                        |
|                      | oNPOE ( $w \approx 66\%$ ),                                                                                                                           | $Cs^+$ , -3.9; $NH_4^+$ , -4.4;                                                                                                                       |        |                      |                                     |                 |                                    | $= 3.1 \pm 0.2$                                    |           |                        |
|                      | PVC ( $w = 32\%$ )                                                                                                                                    | H <sup>+</sup> , –3.4; Mg <sup>2+</sup> , –5.1;<br>Sr <sup>2+</sup> , –1.0; Ba <sup>2+</sup> , –2.3                                                   |        |                      |                                     |                 |                                    |                                                    |           |                        |
| Ca <sup>2+</sup> -41 | <b>Ca<sup>2+</sup>-41</b> ( <i>w</i> = 1.3 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 50 %),<br>oNPOE ( <i>w</i> = 65.4 %),<br>PVC ( <i>w</i> = 32.8 %) | Na <sup>+</sup> , -3.5; K <sup>+</sup> , -3.5;<br>Mg <sup>2+</sup> , -3.1                                                                             | FIM    | I                    | $10^{-1}$                           | I               | 10 <sup>-6</sup> -10 <sup>-3</sup> | 37 °C; [<br>c <sub>dl</sub> < 10 <sup>-3.9</sup> M | [18]<br>M |                        |
|                      | $Ca^{2+}-42 \ (w=1.3 \ \%),$                                                                                                                          | Na <sup>+</sup> , -2.8; K <sup>+</sup> , -2.7;                                                                                                        | FIM    | I                    | $10^{-1}$                           | I               | 1                                  | 37 °C                                              | [18]      |                        |
|                      | KTpCIPB ( $x_1 = 50 \%$ ),<br>BBPA ( $w = 65.4 \%$ ),<br>PVC ( $w = 32.8 \%$ )                                                                        | Mg <sup>2+</sup> , -3.3                                                                                                                               |        |                      |                                     |                 |                                    |                                                    |           |                        |
| Ca <sup>2+</sup> -42 | $Ca^{2+.42}$ ( <i>w</i> = 1.3 %),<br>KTpCIPB ( <i>x</i> i = 53 %),<br>oNPOE ( <i>w</i> = 65.4 %),                                                     | Na <sup>+</sup> , -2.3; K <sup>+</sup> , -3.2;<br>Mg <sup>2+</sup> , -4.8                                                                             | FIM    | I                    | $10^{-1}$                           | 25              | $10^{-6} - 10^{-3}$                | 37 °C; [<br>c <sub>dl</sub> < 10 <sup>-4.0</sup> M | [18]<br>M |                        |
|                      | PVC ( $w = 32.8 \%$ )                                                                                                                                 |                                                                                                                                                       |        |                      |                                     |                 |                                    |                                                    |           |                        |
| Ca <sup>2+</sup> -43 | $Ca^{2+}-43 (w = 1.3 \%),$<br>KTDCIPB $(x_i = 37 \%).$                                                                                                | Na <sup>+</sup> , -0.1; K <sup>+</sup> , -0.1;<br>Mg <sup>2+</sup> , -3.4                                                                             | FIM    | I                    | $10^{-1}$                           | I               | I                                  | 37 °C                                              | [18]      |                        |
|                      |                                                                                                                                                       |                                                                                                                                                       |        |                      |                                     |                 |                                    |                                                    | CONUN     | continues on next page |

Table 9:  $Ca^{2+}$ -Selective Electrodes (Continued)

| ionohooi             | iononhora mamhrana                                                                                                                                                                     | $ \alpha K \sim \beta   - \alpha r$                                                                                                       | method | hrimary          | interfering clone | a clone                    | linear                             | ramarke                 | rof  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------------------|----------------------------|------------------------------------|-------------------------|------|
|                      | composition                                                                                                                                                                            | er Carl, Bu                                                                                                                               |        | ion conc.<br>(M) | ion conc.<br>(M)  | e merce<br>(mV/<br>decade) | range<br>(M)                       |                         |      |
|                      | oNPOE ( $w = 65.4$ %),<br>PVC ( $w = 32.8$ %)                                                                                                                                          |                                                                                                                                           |        |                  |                   |                            |                                    |                         |      |
| Ca <sup>2+</sup> -44 | $Ca^{2+.44}$ ( $w = 1.3$ %),<br>KTpCIPB ( $x_1 = 57$ %),<br>oNPOE ( $w = 65.4$ %),<br>PVC ( $w = 32.8$ %)                                                                              | Na <sup>+</sup> , -1.2; K <sup>+</sup> , -2.1;<br>Mg <sup>2+</sup> , -1.5                                                                 | FIM    | I                | 10 <sup>-1</sup>  | I                          | I                                  | 37 °C                   | [18] |
| Ca <sup>2+</sup> -45 | <b>Ca<sup>2+</sup>-45</b> ( $w = 1.3 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 40 \%$ ),<br>oNPOE ( $w = 65.4 \%$ ),<br>PVC ( $w = 32.8 \%$ )                                                  | Na <sup>+</sup> , -0.1; K <sup>+</sup> , -0.1;<br>Mg <sup>2+</sup> , -3.8                                                                 | FIM    | I                | $10^{-1}$         | I                          | 1                                  | 37 °C                   | [18] |
| Ca <sup>2+</sup> -46 | $\begin{array}{l} \textbf{Ca}^{2+}\textbf{-46} \ (w=0.66 \ \%), \\ \textbf{KTpCIPB} \ (x_i=33 \ \%), \\ \textbf{oNPOE} \ (w=66.18 \ \%), \\ \textbf{PVC} \ (w=33.09 \ \%) \end{array}$ | Li <sup>+</sup> , -1.6; Na <sup>+</sup> , -2.2;<br>K <sup>+</sup> , -2.7; NH <sub>4</sub> <sup>+</sup> , -2.0;<br>Mg <sup>2+</sup> , -2.6 | SSM    | 10 <sup>-2</sup> | 10 <sup>-2</sup>  | 26.3                       | $10^{-4}$ - $10^{-1}$              | τ= 42 d                 | [19] |
| Ca <sup>2+</sup> -47 | Ca <sup>2+</sup> -47, KTpCIPB,<br>oNPOE, PVC<br>(weight ratio not reported)                                                                                                            | Li <sup>+</sup> , -2.2; Na <sup>+</sup> , -2.4;<br>K <sup>+</sup> , -2.0; Mg <sup>2+</sup> , -3.6;<br>Zn <sup>2+</sup> , -2.4             | FIM    | I                | I                 | z                          | $10^{-5} - 10^{-1}$                | $\lg P_{\rm o/w} = 4.0$ | [20] |
| Ca <sup>2+</sup> -48 | Ca <sup>2+</sup> -48, KTpCIPB,<br>oNPOE, PVC<br>(weight ratio not reported)                                                                                                            | Li <sup>+</sup> , -2.5; Na <sup>+</sup> , -2.4;<br>K <sup>+</sup> , -1.9; Mg <sup>2+</sup> , -3.1;<br>Zn <sup>2+</sup> , -2.1             | FIM    | I                | I                 | z                          | 10 <sup>-5</sup> -10 <sup>-1</sup> | $\lg P_{\rm o/w} = 6.6$ | [20] |
| Ca <sup>2+</sup> -49 | Ca <sup>2+</sup> -49, KTpCIPB,<br>oNPOE, PVC<br>(weight ratio not reported)                                                                                                            | $\begin{array}{l} Li^+,-3.0;Na^+,-2.5;\\ K^+,-2.1;Mg^{2+},-3.0;\\ Zn^{2+},-2.6\end{array}$                                                | FIM    | I                | I                 | z                          | $10^{-5}-10^{-1}$                  | $\lg P_{\rm o/w} = 6.5$ | [20] |
| Ca <sup>2+</sup> -50 | Ca <sup>2+</sup> -50, KTpCIPB,<br>oNPOE, PVC<br>(weight ratio not reported)                                                                                                            | Li <sup>+</sup> , -2.3; Na <sup>+</sup> , -2.1;<br>K <sup>+</sup> , -1.7; Mg <sup>2+</sup> , -3.2;<br>Zn <sup>2+</sup> , -2.4             | FIM    | I                | 1                 | I                          | 1                                  | $\lg P_{\rm o/W} = 5.6$ | [20] |
| Ca <sup>2+</sup> -51 | <b>Ca<sup>2+</sup>-51</b> ( $w = 3$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 32$ %)                                                                                                   | $Li^+$ , -0.3; Na <sup>+</sup> , +2.0;<br>$K^+$ , -0.5; Rb <sup>+</sup> , -1.6;<br>$Sr^{2+}$ , -0.5                                       | SSM    | I                | I                 | 1                          | I                                  | 22 ± 1 °C;<br>r.o.o.g.  | [21] |
|                      | $Ca^{2+}$ -51 ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 0.22$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 32$ %)                                                                                 | Li <sup>+</sup> , -0.8; Na <sup>+</sup> , +1.8;<br>K <sup>+</sup> , -1.0; Rb <sup>+</sup> , -2.2;<br>Sr <sup>2+</sup> , -0.5              | SSM    | I                | I                 | I                          | I                                  | 22 ± 1 °C ;<br>r.o.o.g. | [21] |
|                      | $Ca^{2+}-51 (w = 3\%),$<br>KTpCIPB ( $x_i = 0.58\%$ ),                                                                                                                                 | Li <sup>+</sup> , -1.2; Na <sup>+</sup> , +1.5;<br>K <sup>+</sup> , -1.4; Rb <sup>+</sup> , -2.4;                                         | SSM    | I                | I                 | I                          | I                                  | 22 ± 1 °C;<br>r.o.o.g.  | [21] |

|                                                                                                                                                              |                           | lgKCa²+,Bn+                                                                                                                                                                                                                                                             | method                          | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad                                                                            | ig slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                                  | ref.     | 1                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|------------------------------------------|----------|------------------------|
| oNPOE ( $w = 65 \%$ ),<br>PVC ( $w = 32 \%$ )                                                                                                                |                           | Sr <sup>2+</sup> , -0.5                                                                                                                                                                                                                                                 |                                 |                             |                                                                                                                             |                             |                                    |                                          |          |                        |
| $\begin{array}{l} {\bf Ca^{2+.51}} \ (w=3\ \%), \\ {\rm KTpCIPB} \ (x_{\rm i}=1.2\ \%), \\ {\rm oNPOE} \ (w=65\ \%), \\ {\rm PVC} \ (w=32\ \%), \end{array}$ | ć                         | $\begin{array}{l} Li^+, -1.5;  Na^+, +1.2; \\ K^+, -1.6;  Rb^+, -2.6; \\ Sr^{2+}, -0.5 \end{array}$                                                                                                                                                                     | SSM                             | I                           | 1                                                                                                                           | 1                           | I                                  | 22 ± 1 °C;<br>r.o.o.g.                   | [21]     |                        |
| <b>Ca<sup>2+</sup>-51</b> ( $w = 3$ %),<br>KTpCIPB ( $x_i = 2.85$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 32$ %)                                           | 6) <b>,</b>               | $\begin{array}{l} Li^+, -1.8;  Na^+, +0.7; \\ K^+, -1.9;  Rb^+, -2.7; \\ Sr^{2+}, -0.5 \end{array}$                                                                                                                                                                     | SSM                             | I                           | 1                                                                                                                           | I                           | I                                  | 22 ± 1 °C;<br>r.o.o.g.                   | [21]     |                        |
| $C_a^{2+}.51$ ( $w = 3$ %),<br>KTpCIPB ( $x_i = 0.025$ %),<br>oNPOE ( $w = 65$ %),<br>aliphatic polyurethane ( $w = 32$ %)                                   | %),<br>( <i>w</i> = 32 %) | K <sup>+</sup> , -0.7                                                                                                                                                                                                                                                   | SSM                             | 1                           | I                                                                                                                           | I                           | I                                  | 22 ± 1 °C;<br>r.o.o.g.                   | [21]     |                        |
| <b>Ca<sup>2+</sup>.51</b> ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 0.05$ %),<br>oNPOE ( $w = 65$ %),<br>aliphatic polyurethane ( $w = 32$ %)                        | 6),<br>( <i>w</i> = 32 %) | K <sup>+</sup> , -1.0                                                                                                                                                                                                                                                   | SSM                             | I                           | I                                                                                                                           | I                           | I                                  | 22 ± 1 °C;<br>r.o.o.g.                   | [21]     |                        |
| <b>Ca<sup>2+</sup>-51</b> ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 0.1$ %),<br>oNPOE ( $w = 65$ %),<br>aliphatic polyurethane ( $w = 32$ %)                         | ), $(w = 32\%)$           | K <sup>+</sup> , -1.3                                                                                                                                                                                                                                                   | SSM                             | I                           | I                                                                                                                           | I                           | I                                  | 22 ± 1 °C;<br>r.o.o.g.                   | [21]     |                        |
| $C_a^{2+}.51$ ( $w = 3$ %),<br>KTpCIPB ( $x_i = 0.2$ %),<br>oNPOE ( $w = 65$ %),<br>aliphatic polyurethane ( $w = 32$ %)                                     | ), $(w = 32\%)$           | K <sup>+</sup> , –1.6                                                                                                                                                                                                                                                   | SSM                             | 1                           | I                                                                                                                           | I                           | I                                  | 22 ± 1 °C;<br>r.o.o.g.                   | [21]     |                        |
| Ca <sup>2+</sup> -52 Ca <sup>2+</sup> -52 in DOPP (100 µL),<br>ethylene-vinyl acetate (350 mg),<br>DOP (1 mL),<br>nitrobenzene (1 mL)                        | (11),<br>(350 mg),        | $\begin{array}{l} L_{1}^{+},<-4; Na^{+},<-4;\\ K^{+},<-4; Mg^{2+},-1.4;\\ Sr^{2+},-1.3; Ba^{2+},-0.35;\\ Mn^{2+},-0.52; Fe^{2+},<-4;\\ Co^{2+},-1.5; Ni^{2+},-1.6;\\ Cu^{2+},-1.5; Ni^{2+},-1.5;\\ Cd^{2+},-1.3; Sn^{2+},-1.5;\\ Hg^{2+},-2.2; Pb^{2+},-1.6\end{array}$ | FIM                             | I                           | Fe <sup>2+</sup> ,<br>Pb <sup>2+</sup> ,<br>Sn <sup>2+</sup> ,<br>Cd <sup>2+</sup> ,<br>$10^{-3}$ ;<br>others,<br>$10^{-2}$ | 26                          | 10 <sup>-5</sup> -10 <sup>-1</sup> | room temp.;<br>7 > 180 d;<br>8 < pH < 11 | [22]     |                        |
|                                                                                                                                                              |                           | $\begin{array}{l} Li^{+}, <-4;  Na^{+}, <-4; \\ K^{+}, <-4;  Mg^{2+}, -1.7; \\ Si^{2+}, -2.3;  Ba^{2+}, -1.5; \end{array}$                                                                                                                                              | $SSM$ $(E_{\rm A} = E_{\rm B})$ | -                           | I                                                                                                                           | I                           | I                                  |                                          | continue | continues on next page |

Potentiometric selectivity coefficients of ion-selective electrodes

|                      | Tank >. Ca -Delenant Firenones (Commen)                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                          |                             |                                                   |                                               |                                    |                                                                            |      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------|----------------------------------------------------------------------------|------|
| ionophore            | ionophore membrane<br>composition                                                                                                                                                                                                                    | lgK <sub>Ca</sub> ²+,Bn+                                                                                                                                                                                                                                                     | method                   | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decade | g slope<br>(mV/<br>decade)                    | linear<br>range<br>(M)             | remarks                                                                    | ref. |
|                      |                                                                                                                                                                                                                                                      | $\begin{array}{l} Mn^{2+}, -0.57; Fe^{2+}, <-4;\\ Co^{2+}, -2.3; Ni^{2+}, -2.1;\\ Cu^{2+}, -2.4; Zn^{2+}, -1.6;\\ Cd^{2+}, -3.0; Sn^{2+}, <-4;\\ Hg^{2+}, -2.3; Pb^{2+}, -3.2\end{array}$                                                                                    |                          |                             |                                                   |                                               |                                    |                                                                            |      |
|                      | <b>Ca<sup>2+</sup>-52</b> in DOPP (100 μL),<br>PVC (300 mg),<br>DOP (1mL),<br>nitrobenzene (1mL)                                                                                                                                                     | $\begin{split} Na^+, <-4;  K^+, -2.2; & l \\ Mg^{2+}, -1.6;  Mn^{2+}, -0.70; \\ Cu^{2+}, +1.0;  Zn^{2+}, -1.4; \\ Hg^{2+}, -2.0 \end{split}$                                                                                                                                 | FIM                      | I                           | $10^{-3}$                                         | 24                                            | I                                  | 8 < pH < 11                                                                | [22] |
|                      |                                                                                                                                                                                                                                                      | $\begin{split} Na^+, <-4; & K^+, <-4; \\ Mg^{2+}, <-3; & Mn^{2+}, -0.40; \\ Zn^{2+}, -1.5; & Hg^{2+}, -0.52 \end{split}$                                                                                                                                                     | SSM<br>$(E_{A} = E_{B})$ | I                           | $10^{-3}$                                         | I                                             | I                                  | I                                                                          |      |
| Ca <sup>2+</sup> -53 | Ca <sup>2+</sup> -53,<br>DOPP,<br>PVC<br>(weight ratio not reported)                                                                                                                                                                                 | $\begin{array}{l} \mathrm{Na^{+},-2.7;K^{+},-3.0;}\\ \mathrm{Mg^{2+},-3.1;Ba^{2+},-2.1;}\\ \mathrm{Fe^{2+},-1.3;Cu^{2+},-2.1} \end{array}$                                                                                                                                   | FIM                      | 1                           | I                                                 | 26.8 ± 2.2                                    | I                                  | ISFET,<br>Ta <sub>2</sub> O <sub>5</sub> gate;<br>τ > 120 d;<br>5 < pH < 9 | [23] |
| Ca <sup>2+</sup> .54 | Ca <sup>2+</sup> -54 ( $w = 6.0$ %),<br>KTpCIPB ( $x_i = 8$ %),<br>aromatic epoxyacrylate ( $w = 44.8$ %),<br>copolynerizable benzophenone photo-<br>initiator ( $w = 5.4$ %),<br>DOPP ( $w = 19.9$ %),<br>1,6-hexanediyl diacrylate ( $w = 22.4$ %) | Li <sup>+</sup> , -4.9; Na <sup>+</sup> , -4.5;<br>K <sup>+</sup> , -4.5; NH <sub>4</sub> <sup>+</sup> , -4.5;<br>Mg <sup>2+</sup> , -1.7; Sr <sup>2+</sup> , -1.85;<br>Ni <sup>2+</sup> , -2.9; Cu <sup>2+</sup> , -1.9;<br>Ba <sup>2+</sup> , Zn <sup>2+</sup> , interfere | FIM                      | I                           | I                                                 | 31.0                                          | 10 <sup>-5</sup> -10 <sup>-1</sup> | FIA;<br>photocured<br>membrane;<br>pH > 4                                  | [24] |
|                      | $Ca^{2+}-54$ ( $w = 6.0\%$ ),<br>DOPP ( $w = 65.0\%$ ),<br>PVC ( $w = 29.0\%$ )                                                                                                                                                                      | $ \begin{array}{l} Li^+, -3.14;  Na^+, -3.34; \\ K^+, -3.24;  Rb^+, -3.18; \\ Cs^+, -3.08;  NH_4^+, -3.38; \\ H^+, -1.44;  Mg^{2+}, -3.39; \\ Sr^{2+}, -1.64;  Ba^{2+}, -3.48 \end{array} $                                                                                  | FIM                      | I                           | 0.15                                              | I                                             | I                                  | T                                                                          | [25] |
|                      | $Ca^{2+}$ -54 ( $w = 0.20 \%$ ),<br>KTFPB ( $x_1 = 70.9 \%$ ),<br>oNPOE ( $w = 66.5 \%$ ),<br>PVC ( $w = 33.0 \%$ )                                                                                                                                  | $ \begin{array}{l} Li^+, +0.7;  Na^+, +2.4; \\ K^+, +6.0;  Rb^+, +7.0; \\ Cs^+, +8.0;  NH_4^+, +5.0; \\ H^+, +3.0;  Mg^{2+}, -0.6; \\ Sr^{2+}, +0.1;  Ba^{2+}, +0.9 \end{array} $                                                                                            | SSM                      | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                  | 24.8 ± 0.9 10 <sup>-4</sup> −10 <sup>-1</sup> | $10^{-4}$ – $10^{-1}$              | r.o.o.g.;<br>22 °C                                                         | [26] |
|                      | $Ca^{2+-54}$ (w = 0.21 %),<br>KTFPB (x <sub>i</sub> = 29.6 %),                                                                                                                                                                                       | Li <sup>+</sup> , +0.3; Na <sup>+</sup> , +2.4;<br>K <sup>+</sup> , +6.0; Rb <sup>+</sup> , +7.0;                                                                                                                                                                            | SSM                      | $10^{-1}$                   | $10^{-1}$                                         | $25.3 \pm 0.3  10^{-4} - 10^{-1}$             | $10^{-4}$ - $10^{-1}$              | r.o.o.g.;<br>22 C                                                          | [26] |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

### Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                                           | lgKCa <sup>2+</sup> ,B <sup>n+</sup>                                                                                                                                                                                                                                      | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decad | g slope<br>(mV/<br>decade)                    | linear<br>range<br>(M)             | remarks            | ret.                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------|--------------------|--------------------------------|
| oNPOE ( $w = 66.7 \%$ ),<br>PVC ( $w = 33.0 \%$ )                                                                                           | $\begin{array}{c} Cs^+, +8.0; \ NH_4^+, +5.1; \\ H^+, +3.3; \ Mg^{2+}, -0.5; \\ Sr^{2+}, -0.5; \ Ba^{2+}, -0.2 \end{array}$                                                                                                                                               |        |                             |                                                  |                                               |                                    |                    |                                |
| Ca <sup>2+</sup> .54 ( $w = 0.14$ %),<br>KTFPB ( $x_i = 10.5$ %),<br>oNPOE ( $w = 66.8$ %),<br>PVC ( $w = 33.0$ %)                          | $\begin{array}{l} Li^+,-0.6;Na^+,+0.6;\\ K^+,+3.8;Rb^+,+5.5;\\ Cs^+,+6.9;NH4^+,+3.7;\\ H^+,+4.5;Mg^{2+},-0.2;\\ Sr^{2+},+0.3;Ba^{2+},-0.2;\\ Sr^{2+},+0.3;Ba^{2+},-0.2;\\ \end{array}$                                                                                    | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                 | 11.2 ± 2.4 10 <sup>-4</sup> −10 <sup>-1</sup> | $10^{-4}$ – $10^{-1}$              | r.o.o.g.;<br>22 °C | [26]                           |
| $Ca^{2+}.54$ (w = 0.18 %),<br>oNPOE (w = 66.54 %),<br>PVC (w = 33.28 %)                                                                     | $\begin{array}{c} Li^+, -0.2;  Na^+,  +0.6; \\ K^+, -0.5;  Rb^+,  -0.3; \\ Cs^+, 0.7;  NH_{4^+},  -0.5; \\ H^+,  +4.5;  Mg^{2^+},  +0.5; \\ Sr^{2^+},  -0.5;  Ba^{2^+},  +0.5 \end{array}$                                                                                | SSM    | $10^{-1}$                   | 10 <sup>-1</sup>                                 | 13.4 ± 0.3 10 <sup>-4</sup> −10 <sup>-1</sup> | $10^{-4}$ – $10^{-1}$              | r.o.o.g.;<br>22 °C | [26]                           |
| <b>Ca<sup>2+</sup>.54</b> ( $w = 0.10$ %),<br>TDDMACI ( $x_1 = 16.3$ %),<br>oNPOE ( $w = 66.9$ %),<br>PVC ( $w = 33.0$ %)                   | Li <sup>+</sup> , -2.1; Na <sup>+</sup> , -1.9;<br>K <sup>+</sup> , -1.7; Rb <sup>+</sup> , -1.7;<br>Cs <sup>+</sup> , -0.6; NH <sub>4</sub> <sup>+</sup> , -1.0;<br>H <sup>+</sup> , +5.3; Mg <sup>22+</sup> , -1.0;<br>Sr <sup>2+</sup> , -0.2; Ba <sup>2+</sup> , -0.2 | WSS    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                 | 23.2 ± 0.4 10 <sup>-4</sup> −10 <sup>-1</sup> | $10^{-4}$ – $10^{-1}$              | r.o.o.g.;<br>22 °C | [26]                           |
| $Ca^{2+.54}$ ( <i>w</i> = 0.21 %),<br>TDDMACI ( <i>x</i> <sub>i</sub> = 37.3 %),<br>oNPOE ( <i>w</i> = 66.7 %),<br>PVC ( <i>w</i> = 33.0 %) | $\begin{array}{l} Li^+,-2.3;Na^+,-2.8;\\ K^+,-2.7;Rb^+,-2.6;\\ Cs^+,-2.4;NH4^+,-2.7;\\ H^+,+3.8;Mg^{2+},-1.1;\\ Sr^{2+},-0.3;Ba^{2+},-0.1. \end{array}$                                                                                                                   | SSM    | $10^{-1}$                   | 10 <sup>-1</sup>                                 | 26.8 ± 0.1 10 <sup>-4</sup> −10 <sup>-1</sup> | $10^{-4}$ – $10^{-1}$              | r.o.o.g.;<br>22 °C | [26]                           |
| $Ca^{2+.54}$ (w = 0.20 %),<br>TDDMACI (x <sub>i</sub> = 79.0 %),<br>oNPOE (w = 66.6 %),<br>PVC (w = 33.0 %)                                 | $\begin{array}{l} Li^+,-1.4;Na^+,-1.0;\\ K^+,-0.9;Rb^+,-1.4;\\ Cs^+,-1.9;NH4^+,-0.7;\\ H^+,+5.3;Mg^{2+},-0.9;\\ Sr^{2+},-1.0;Ba^{2+},-1.1 \end{array}$                                                                                                                    | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                 | 24.6±0.2 10 <sup>-4</sup> −10 <sup>-1</sup>   | 10 <sup>-4</sup> -10 <sup>-1</sup> | r.o.o.g.;<br>22 °C | [26]                           |
| Ca <sup>2+</sup> .54 ( $w = 0.11$ %),<br>KTFPB ( $x_1 = 177.8$ %),<br>BEHS ( $w = 66.5$ %),<br>PVC ( $w = 33.0$ %)                          | Li <sup>+</sup> , +4.2; Na <sup>+</sup> , +4.9;<br>K <sup>+</sup> , +5.8; Rb <sup>+</sup> , +5.9;<br>Cs <sup>+</sup> , +6.4; Mg <sup>2+</sup> , -0.5;<br>H <sup>+</sup> +6.4; Mg <sup>2+</sup> , -0.5;<br>Sx <sup>2+</sup> , -0.7; $Bx^{2+}$ , -0.1;                      | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                 | 23.0 ± 1.3 10 <sup>-4</sup> −10 <sup>-1</sup> | $10^{-4}$ - $10^{-1}$              | r.o.o.g.;<br>22 °C | [26]                           |
| $Ca^{2+.54}$ (w = 0.16 %),<br>KTFPB (x <sub>i</sub> = 30.3 %),                                                                              | Li <sup>+</sup> , -1.5; Na <sup>+</sup> , +2.0;<br>K <sup>+</sup> , +4.2; Rb <sup>+</sup> , +5.5;                                                                                                                                                                         | SSM    | $10^{-1}$                   | $10^{-1}$                                        | $33.8 \pm 1.7 \ 10^{-4} - 10^{-1}$            | $10^{-4}$ - $10^{-1}$              | r.o.o.g.;<br>22 °C | [26]<br>continues on next page |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

|                                           | ref.                                               |                                                                                                                            | [26]                                                                                                                                                  | [26]                                                                                                                                                                       | [26]                                                                                                                                                                           | [26]                                                                                                                                                                           | [26]                                                                                                                                                  | [26]                                                                                                                                                   | [26]                                            |
|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                           | remarks                                            |                                                                                                                            | 1.0.0.g.;<br>22 °C                                                                                                                                    | 1.0.0.g.;<br>22 °C                                                                                                                                                         | r.o.o.g.;<br>22 °C                                                                                                                                                             | r.o.o.g.;<br>22 °C                                                                                                                                                             | r.o.o.g.;<br>22 °C                                                                                                                                    | r.o.o.g.;<br>22 °C                                                                                                                                     | r.o.o.g.;                                       |
|                                           | linear<br>range<br>(M)                             |                                                                                                                            | 31.9±2.3 10 <sup>-4</sup> −10 <sup>-1</sup>                                                                                                           | $36.5 \pm 0.2  10^{-4} - 10^{-1}$                                                                                                                                          | $34.1 \pm 0.2  10^{-4} - 10^{-1}$                                                                                                                                              | 25.3 ± 0.2 10 <sup>-4</sup> −10 <sup>-1</sup>                                                                                                                                  | $24.7 \pm 0.2  10^{-4} - 10^{-1}$                                                                                                                     | $26.7 \pm 0.2  10^{-4} - 10^{-1}$                                                                                                                      | $29.1 \pm 0.4  10^{-4} - 10^{-1}$               |
|                                           | interfering slope<br>ion conc. (mV/<br>(M) decade) |                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                | 25.3 ± 0.                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                        |                                                 |
|                                           | primary inte<br>ion conc. ion<br>(M) (M)           |                                                                                                                            | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                                                                     | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                                                                                          | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                                                                                              | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                                                                                              | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                                                                     | 10 <sup>-1</sup> 10 <sup>-1</sup>                                                                                                                      | 10 <sup>-1</sup> 10 <sup>-1</sup>               |
|                                           | method                                             |                                                                                                                            | SSM                                                                                                                                                   | SSM                                                                                                                                                                        | SSM                                                                                                                                                                            | SSM                                                                                                                                                                            | SSM                                                                                                                                                   | SSM                                                                                                                                                    | SSM                                             |
| ueu)                                      | lgKCa <sup>2+</sup> ,B <sup>n+</sup>               | $\begin{array}{l} Cs^+, +6.0; \ NH4^+, +4.8; \\ H^+, +6.3; \ Mg^{2+}, -3.5; \\ Sr^{2+}, -2.9; \ Ba^{2+}, -4.0 \end{array}$ | $\begin{array}{l} Li^+,-4.3;Na^+,-4.0;\\ K^+,-3.4;Rb^+,-3.3;\\ Cs^+,2.9;NH_4^+,-3.0;\\ H^+,-2.5;Mg^{2+},-6.5;\\ Sr^{2+},-3.0;Ba^{2+},-4.1\end{array}$ | $\begin{array}{c} Li^+, -4.3; Na^+, -4.1; \\ K^+, -3.3; Rb^+, -2.8; \\ Cs^+, -2.8; NH_4^+, -3.4; \\ H^+, -2.1; Mg^{2+}, -5.5; \\ Sr^{2+}, -3.2; Ba^{2+}, -4.0 \end{array}$ | $\begin{array}{l} Li^+, -3.1;  Na^+, -3.9; \\ K^+, -3.6;  Rb^+, -4.8; \\ Cs^+, -5.2;  NH4^+, -3.6; \\ H^+, -3.7;  Mg^{2+}, -2.0; \\ Sr^{2+}, -3.8;  Ba^{2+}, -3.9 \end{array}$ | $\begin{array}{l} Li^+, -1.0;  Na^+, -1.5; \\ K^+, -1.2;  Rb^+, -1.6; \\ Cs^+, -1.6;  NH4^+, -1.5; \\ H^+, +4.6;  Mg^{2+}, -1.1; \\ Sr^{2+}, +1.0;  Ba^{2+}, +1.2 \end{array}$ | $\begin{array}{l} Li^+,-2.3;Na^+,-2.5;\\ K^+,-2.5;Rb^+,-2.4;\\ Cs^+,-2.2;NH4^+,-2.4;\\ H^+,+3.3;Mg^{22},-1.8;\\ Sr^{2+},+0.1;Ba^{2+},+0.5\end{array}$ | $\begin{array}{l} Li^+,-2.0;Na^+,-2.1;\\ K^+,-2.1;Rb^+,-2.4;\\ Cs^+,-2.9;NH4^+,-1.7;\\ H^+,+5.2;Mg^{2+},-1.0;\\ Sr^{2+},-1.4;Ba^{2+},-1.2 \end{array}$ | Li <sup>+</sup> , +1.5; Na <sup>+</sup> , -0.9; |
| Table 7. Ca - JOINTAN FIRMINARS (COMMARD) | ionophore membrane<br>composition                  | BEHS ( $w = 66.75  \%$ ),<br>PVC ( $w = 33.0  \%$ )                                                                        | <b>Ca<sup>2+</sup>:54</b> ( $w = 0.10$ %),<br>KTFPB ( $x_i = 20.3$ %),<br>BEHS ( $w = 66.86$ %),<br>PVC ( $w = 33.0$ %)                               | <b>Ca<sup>2+</sup>-54</b> ( $w = 0.09 \ \%$ ),<br><b>KTFPB</b> ( $x_i = 12.9 \ \%$ ),<br><b>BEHS</b> ( $w = 66.89 \ \%$ ),<br><b>PVC</b> ( $w = 33.0 \ \%$ )               | $Ca^{2+.54} (w = 0.19 \%)$ ,<br>BEHS (w = 66.81 %),<br>PVC (w = 33.0 \%)                                                                                                       | $Ca^{2+}$ -54 ( $w = 0.10$ %),<br>TDDMACI ( $x_i = 15.9$ %),<br>BEHS ( $w = 66.88$ %),<br>PVC ( $w = 33.0$ %)                                                                  | <b>Ca<sup>2+</sup>-54</b> ( <i>w</i> = 0.20 %),<br>TDDMACI ( <i>x</i> i = 35.2 %),<br>BEHS ( <i>w</i> = 66.72 %),<br>PVC ( <i>w</i> = 33.0 %)         | $Ca^{2+}$ <b>54</b> ( $w = 0.10$ %),<br>TDDMACI ( $x_i = 81.3$ %),<br>BEHS ( $w = 66.81$ %),<br>PVC ( $w = 33.0$ %)                                    | $Ca^{2+}-54 (w = 1.0 \%),$                      |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

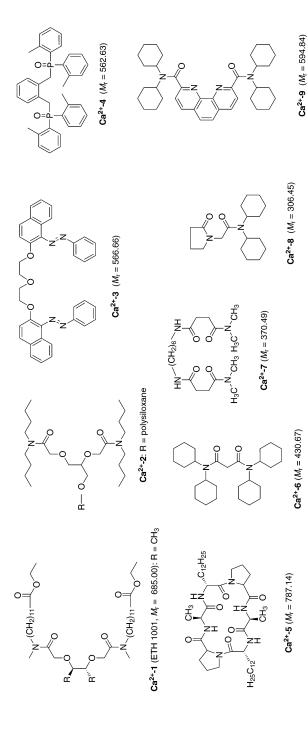
|

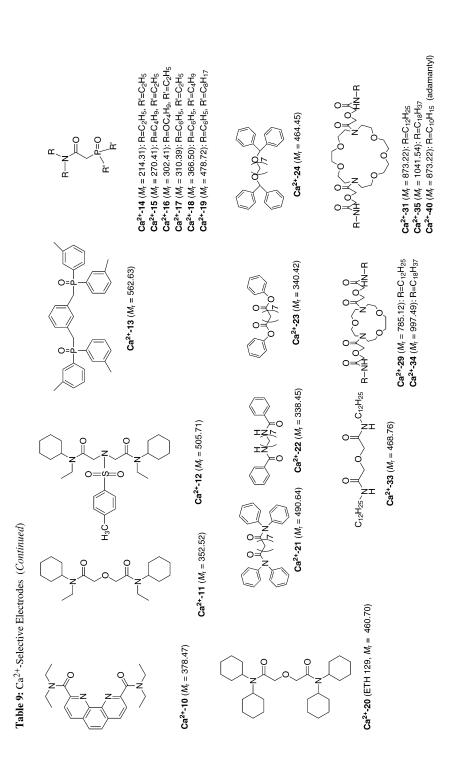
| IgKCa <sup>2+</sup> , B <sup>n+</sup> method         primary         interfering slope           ion conc.         ion conc.         (mV/<br>(M)         (mV/<br>(M)           Cs <sup>+</sup> , -2.0; NH4 <sup>+</sup> , -0.1;         (M)         (M)         decada           H <sup>+</sup> , +3.4; Mg <sup>2+</sup> , -1.1;         (M)         (M)         (M)         (M) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{split} & Sr^2+, -1.3; Ba^2+, -1.1 \\ & Li^+, +0.4; Na^+, -2.0; \\ & K^+, -2.8; Rb^+, -3.0; \\ & Cs^+, -3.0; NH4^+, -1.0; \\ & H^+, +2.1; Mg^{2+}, -1.5; \\ & Sr^{2+}, -1.5; Ba^{2+}, -1.5 \end{split}$                                                                                                                                                                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                            |
| Li <sup>+</sup> , -2.0; Na <sup>+</sup> , -3.0; SSM 10 <sup>-1</sup> 10 <sup>-1</sup><br>K <sup>+</sup> , -2.9; Rb <sup>+</sup> , -3.1;                                                                                                                                                                                                                                          |

Potentiometric selectivity coefficients of ion-selective electrodes

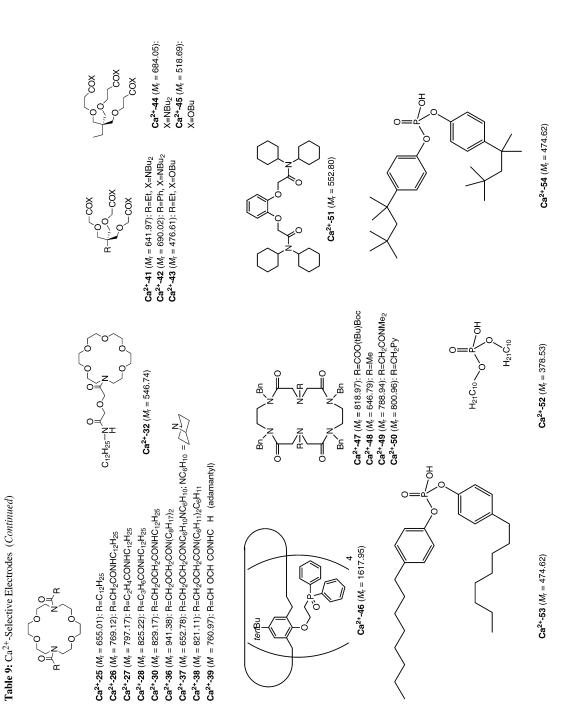
 Table 9: Ca<sup>2+</sup>-Selective Electrodes (Continued)

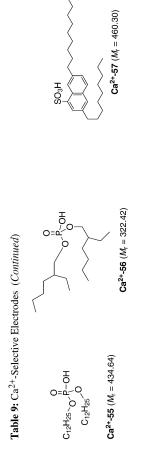
| (Continued)                                     |  |
|-------------------------------------------------|--|
| Table 9: Ca <sup>2+</sup> -Selective Electrodes |  |


| ionophor             | ionophore membrane<br>composition                                                                                                                    | $\lg K_{Ca^{2+},B^{n+}}$                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | interfering slope<br>ion conc. (mV/<br>(M) decada | g slope<br>(mV/<br>decade)                    | linear<br>range<br>(M)             | remarks                                                                             | ref.       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------|------------|
|                      | DOPP (w = 65.39 %),<br>PVC (w = 33.0 %)                                                                                                              | $\begin{array}{l} Cs^{+},-3.0;NH_{4}^{+},-2.5;\\ H^{+},+2.6;Mg^{2+},-2.2;\\ Sr^{2+},-1.9;Ba^{2+},-2.5\end{array}$                                                                                   |        |                             |                                                   |                                               |                                    |                                                                                     |            |
|                      | Ca <sup>2+</sup> -54 ( $w = 1.0 \%$ ),<br>KTFPB ( $x_1 = 87.2 \%$ ),<br>DOPP ( $w = 64.97 \%$ ),<br>PVC ( $w = 33.0 \%$ )                            | $ \begin{array}{l} Li^+, -0.7; Na^+, -1.5; \\ K^+, -1.5; Rb^+, -2.3; \\ Cs^+, -1.4; NH4^+, -1.3; \\ H^+, +2.5; Mg^{2+}, -1.5; \\ Sr^{2+}, -1.4; Ba^{2+}, -2.0 \end{array} $                         | SSM    | 10 <sup>-1</sup>            | $10^{-1}$                                         | 23.7 ± 1.0 10 <sup>-4</sup> -10 <sup>-1</sup> | 10 <sup>-4</sup> -10 <sup>-1</sup> | r.o.o.g.;<br>25 ± 0.1 °C                                                            | [26]       |
| Ca <sup>2+</sup> -55 | <b>Ca<sup>2+</sup>-55 Ca<sup>2+</sup>-55</b> $(w = 6.3 \%)$ ,<br>oNPOE $(w = 63.2 \%)$ ,<br>PVC $(w = 30.5 \%)$                                      | $ \begin{array}{l} Li^+, -3.80; Na^+, -4.10; \\ K^+, -3.50; NH_4^+, -2.90; \\ Mg^{2+}, -2.10; Sr^{2+}, -1.60; \\ Ba^{2+}, -1.50; Co^{2+}, -0.88; \\ Cu^{2+}, +0.09; Zn^{2+}, -1.60 \end{array} $    | SSM    | I                           | I                                                 | 30.03                                         | 10 <sup>-4</sup> -10 <sup>-1</sup> | 25 ± 0.1 °C;<br>CWE;<br>τ = 90−120 d                                                | [27]       |
|                      | $Ca^{2+,5S}$ (w = 6.3 %),<br>TBEP* (w = 63.2 %),<br>PVC (w = 30.5 %)                                                                                 | $\begin{array}{l} Li^+, -2.80;  Na^+, -2.80; \\ K^+, -3.10;  NH_4^+, -2.20; \\ Mg^{2+}, -1.60;  Sr^{2+}, -1.70; \\ Ba^{2+}, -0.56;  Co^{2+}, -0.63; \\ Cu^{2+}, -0.43;  Zn^{2+}, -1.40 \end{array}$ | SSM    | 1                           | 1                                                 | 29.88                                         | 10-2 <sup>-1</sup> 0-1             | $25 \pm 0.1$ °C; [2<br>CWE;<br>$\tau = 90-120$ d<br>* tributoxy-<br>ethyl phosphate | [27]<br>te |
| Ca <sup>2+</sup> -56 | $Ca^{2+56}$ ( $w = 3.4 \%$ ),<br>DOPP ( $w = 73.4 \%$ ),<br>PVC ( $w = 23.0 \%$ )                                                                    | $\begin{array}{l} Mg^{2+},-2.35;Ba^{2+},-2.19;\\ Ni^{2+},-2.52;Cu^{2+},-1.37;\\ Zn^{2+},-1.15;Pb^{2+},-0.74; \end{array}$                                                                           | SSM    |                             | 10 <sup>-2</sup>                                  | 1                                             | I                                  | CWE                                                                                 | [28]       |
|                      | <b>Ca<sup>2+</sup>-56</b> ( <i>w</i> = 3.4 % <i>b</i> ),<br>DOPP ( <i>w</i> = 88.1 %),<br>ferrocene ( <i>w</i> = 0.8 %),<br>PVC ( <i>w</i> = 22.8 %) | $\begin{array}{l} Mg^{2+}, -1.72;  Ba^{2+}, -1.70;  SSM \\ Ni^{2+}, -2.03;  Cu^{2+}, -0.22; \\ Zn^{2+}, +0.49;  Pb^{2+}, +0.32 \end{array}$                                                         | SSM    | 10 <sup>-2</sup>            | $10^{-2}$                                         |                                               |                                    | CWE                                                                                 | [28]       |
| Ca <sup>2+</sup> -57 | <b>Ca<sup>2+</sup>-57</b> ( $w = 1.1$ %),<br>KTFPB ( $x_1 = 48.7$ %),<br>BEHS ( $w = 64.9$ %),<br>PVC ( $w = 33.0$ %)                                | Li <sup>+</sup> , +2.6; Na <sup>+</sup> , +3.0;<br>K <sup>+</sup> , +4.0; Rb <sup>+</sup> , +4.2;<br>Cs <sup>+</sup> , +4.3; NH <sub>4</sub> <sup>+</sup> , +3.9;<br>H <sup>+</sup> , +4.8          | SSM    | $10^{-1}$                   | $10^{-1}$                                         | 27.8 ± 0.1 10 <sup>-4</sup> -10 <sup>-1</sup> | _                                  | r.o.o.g.;<br>22 °C                                                                  | [26]       |
|                      | <b>Ca<sup>2+</sup>-57</b> ( $w = 1.1$ %),<br>KTFPB ( $x_i = 9.1$ %),<br>BEHS ( $w = 65.7$ %),<br>PVC ( $w = 33.0$ %)                                 | Li <sup>+</sup> , +0.3; Na <sup>+</sup> , +0.5;<br>K <sup>+</sup> , +1.4; Rb <sup>+</sup> , +1.9;<br>Cs <sup>+</sup> , +2.0; NH4 <sup>+</sup> , +1.4;<br>H <sup>+</sup> +2.1                        | SSM    | 10 <sup>-1</sup>            | 10 <sup>-1</sup>                                  | $30.0 \pm 0.2  10^{-4} - 10^{-1}$             |                                    | r.o.o.g.;<br>22 °C                                                                  | [26]       |
|                      | $Ca^{2+}-57 (w = 1.1 \%),$                                                                                                                           | Li <sup>+</sup> , -1.4; Na <sup>+</sup> -1.3;                                                                                                                                                       | SSM    | $10^{-1}$                   | $10^{-1}$                                         | $29.4 \pm 0.5  10^{-4} - 10^{-1}$             | $10^{-4}$ - $10^{-1}$              | r.o.o.g.;                                                                           | [26]       |


## Y. UMEZAWA et al.

| ionophore membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\lg K_{Ca^{2+},B^{n+}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | method                                                                                                                                                                                                                                                                                  | primary<br>ion conc.                                                                                                             | interfering slope<br>ion conc. (mV/                                                | g slope<br>(mV/                               | linear<br>range                   | remarks                            | ref.      |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|------------------------------------|-----------|------------------------|
| BEHS ( <i>w</i> = 65.9 %),<br>PVC ( <i>w</i> = 33.0 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K <sup>+</sup> , -0.7; Rb <sup>+</sup> , -0.6;<br>Cs <sup>+</sup> , -0.2; NH <sub>4</sub> <sup>+</sup> , -0.6;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         | (W)                                                                                                                              | (W)                                                                                | decade)                                       | (M)                               | 22 °C                              |           |                        |
| Ca <sup>2+</sup> -57 ( $w = 1.0$ %),<br>TDDMACI ( $x_i = 9.5$ %),<br>BEHS ( $w = 65.9$ %),<br>PVC ( $\omega = -3.0$ %),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H', $-1.3$<br>Li <sup>+</sup> , $-1.0$ ; Na <sup>+</sup> , $-0.8$ ;<br>K <sup>+</sup> , $-0.2$ ; Rb <sup>+</sup> , $-0.1$ ;<br>Cs <sup>+</sup> , 0.0; NH <sub>4</sub> <sup>+</sup> , $-0.1$ ;<br>H <sup>+</sup> , $10^{-1}$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SSM                                                                                                                                                                                                                                                                                     | $10^{-1}$                                                                                                                        | $10^{-1}$                                                                          | 29.1 ± 0.6                                    | $29.1 \pm 0.6  10^{-4} - 10^{-1}$ | r.o.o.g.;<br>22 °C                 | [26]      |                        |
| $Ca^{2+}-57 (w = 1.1\%)$<br>$Ca^{2+}-57 (w = 1.1\%)$ ,<br>TDDMACI (x <sub>1</sub> = 47.9\%),<br>BEHS(w = 65.4\%),<br>PVC (w = 33.0\%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Li <sup>+</sup> , -2.3; Na <sup>+</sup> -1.4;<br>Li <sup>+</sup> , -2.3; Na <sup>+</sup> -1.4;<br>K <sup>+</sup> , -1.0; Rb <sup>+</sup> , -1.0;<br>Cs <sup>+</sup> , -1.0; NH <sub>4</sub> <sup>+</sup> , -0.9;<br>H <sup>+</sup> , +1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSM                                                                                                                                                                                                                                                                                     | 10 <sup>-1</sup>                                                                                                                 | 10-1                                                                               | 29.2 ± 0.3                                    | $29.2 \pm 0.3  10^{-4} - 10^{-1}$ | r.o.o.g.;<br>22 °C                 | [26]      |                        |
| $Ca^{2+}.57$ (w = 1.0 %),<br>oNPOE (w = 66 %),<br>PVC (w = 33 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{l} Li^+, -1.3;  Na^+, -0.8; \\ K^+, +0.2;  Rb^+, +0.7; \\ Cs^+, +1.4;  Mg^{2+}, -0.4; \\ Sr^{2+}, +0.1;  Ba^{2+}, +0.4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SSM                                                                                                                                                                                                                                                                                     | $10^{-1}$                                                                                                                        | $10^{-1}$                                                                          | 24.8 ± 0.9                                    | $24.8 \pm 0.9  10^{-4} - 10^{-1}$ | 22 ± 1 °C;<br>τ> 30 d;<br>r.o.o.g. | [29]      |                        |
| <b>Ca<sup>2+</sup>-57</b> ( $w = 1.0 \%$ ),<br>TDDMACI ( $x_i = 9.1 \%$ ),<br>oNPOE ( $w = 65.9 \%$ ),<br>PVC ( $w = 33 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Li <sup>+</sup> , -1.5; Na <sup>+</sup> , -1.1;<br>K <sup>+</sup> , -0.6; Rb <sup>+</sup> , -0.4;<br>Cs <sup>+</sup> , -0.2; Mg <sup>2+</sup> , -0.5;<br>Sr <sup>2+</sup> , +0.2; Ba <sup>2+</sup> , +0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SSM                                                                                                                                                                                                                                                                                     | $10^{-1}$                                                                                                                        | 10 <sup>-1</sup>                                                                   | 28.2 ± 0.2                                    | $28.2 \pm 0.2  10^{-4} - 10^{-1}$ | 22 ± 1 °C;<br>τ> 30 d;<br>r.o.o.g. | [29]      |                        |
| <b>Ca<sup>2+</sup>-57</b> ( $w = 1.0$ %),<br>TDDMACI ( $x_i = 47.6$ %),<br>oNPOE ( $w = 65.4$ %),<br>PVC ( $w = 33$ %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} Li^+, -1.7;  Na^+, -1.4; \\ K^+, -1.1;  Rb^+, -0.9; \\ Cs^+, -0.7;  Mg^{2+}, -0.5; \\ Sr^{2+}, -0.1;  Ba^{2+}, +0.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SSM                                                                                                                                                                                                                                                                                     | 10 <sup>-1</sup>                                                                                                                 | 10 <sup>-1</sup>                                                                   | 28.6 ± 0.2                                    | $28.6 \pm 0.2  10^{-4} - 10^{-1}$ | 22 ± 1 °C;<br>τ> 30 d;<br>r.o.o.g. | [29]      |                        |
| <ol> <li>I.A. Mostert, P. Anker, H.B. Jenny, U. Oesch, W.E. Morf, D. Ammann, W. Simon, <i>Mikrochim. Acta</i>, <b>I</b>, 33–38 (1985)</li> <li>T. Sokalski, M. Maj-Zurawska, A. Hulanicki, <i>Mikrochim. Acta</i>, <b>I</b>, 285–291 (1991).</li> <li>J.P. Heidrich, K. Herna, M.M. Schindler, J.G. Schindler, <i>Fresenius' J. Anal. Chem.</i>, <b>347</b>, 299–302 (1993).</li> <li>B.K. Oh, C.Y. Kim, H.J. Lee, K.L. Rho, G.S. Cha, H. Nam, <i>Anal. Chem.</i>, <b>68</b>, 503–508 (1996).</li> <li>E. Dumschat, S. Alazard, S. Adam, M. Knoll, K. Cammann, <i>Anal. Chem.</i>, <b>68</b>, 503–508 (1996).</li> <li>C. Dumschat, S. Alazard, S. Adam, M. Knoll, K. Cammann, <i>Anal. Chem.</i>, <b>68</b>, 503–508 (1996).</li> <li>E. Malinowska, V. Oklejas, R.W. Hower, R.B. Brown, M.E. Meyerhoff, <i>Sens. Actuators</i>, <b>B</b>, <b>33</b>, 161–167 (1996).</li> <li>V.V. Cosofret, W.W. Olson, S.A.M. Marzouk, M.Erdösy, T.A. Johnson, R.P. Buck, <i>Anal. Lett.</i>, <b>29</b>, 725–743 (1996).</li> <li>D.Liu, R. Yuan, W.C. Chen, R.Q. Yu, <i>Anal. Lett.</i>, <b>27</b>, 1637–1646 (1994).</li> <li>M.B. Saleh, <i>Indian J. Chem.</i>, <b>30A</b>, 444 446 (1991).</li> <li>M.B. Saleh, <i>Indian J. Chem.</i>, <b>30A</b>, 444 446 (1991).</li> <li>M.B. Saleh, <i>Indian J. Chem.</i>, <b>30A</b>, 444 446 (1991).</li> <li>N. Sterova, Y.M. Polikarpov, M.I. Kabachnik, <i>Analyst</i>, <b>116</b>, 715–719 (1994).</li> <li>N. Nesterova, Y.M. Polikarpov, M.I. Kabachnik, <i>Analyst</i>, <b>116</b>, 715–719 (1994).</li> <li>N. Nishino, T. Shinoshi, T. Muraoka, T. Fujimoto, <i>Chem.</i>, <b>665</b>–6688 (1992).</li> <li>N. Nishino, T. Shinoshi, T. Huraoka, T. Fujimoto, <i>Chem.</i>, <b>665</b>–6688 (1992).</li> <li>N. Nishino, T. Shinoshi, T. Huraoka, T. Fujimoto, <i>Chem.</i>, <b>16</b>, 505–508 (1992).</li> <li>K. Toth, E. Lindner, M. Horvath, J. Jeney, E. Pungor, I. Bitter, B. Agai, L. Toke, <i>Electroanalysis</i>, <b>5</b>, 781–790 (1993)</li> </ol> | <ol> <li>U. Oesch, W.E. Morf, D. Ammann, W. Simon, <i>Mikrochim. Acta</i>, I, 33–38 (1985).</li> <li>Hulanicki, <i>Mikrochim. Acta</i>, I, 285–291 (1991).</li> <li>deler, J.G. Schindler, <i>Fresenius' J. Anal. Chem.</i>, <b>347</b>, 299–302 (1993).</li> <li>Rho, G.S. Cha, H. Nam, <i>Anal. Chem.</i>, <b>68</b>, 503–508 (1996).</li> <li>M. Knoll, K. Cammann, <i>Analyst</i>, <b>121</b>, 527–529 (1996).</li> <li>Marzouk, M. Erdösy, T.A. Johnson, R.P. Buck, <i>Anal. Lett.</i>, <b>29</b>, 725–743 (1996).</li> <li>M. Anal. <i>Lett.</i>, <b>27</b>, 1637–1646 (1994).</li> <li>H. Jand. <i>Lett.</i>, <b>27</b>, 1637–1646 (1994).</li> <li>H. Jand. <i>Lett.</i>, <b>27</b>, 1637–1646 (1994).</li> <li>M. Andly, <b>116</b>, 675–668 (1992).</li> <li>T. Fujimoto, <i>Chem.</i>, <b>B.</b> Agai, L. Toke, <i>Electroanalysis</i>, <b>5</b>, 781–790 (1993).</li> </ol> | <ul> <li>W. Simon, J.</li> <li>W. Simon, J.</li> <li>291 (1991).</li> <li>1044. Chem., 168, 503–529</li> <li>11, 527–529</li> <li>12, 704, 514</li> </ul> | Mikrochim. A<br><b>347</b> , 299–300<br>08 (1996).<br>(1996).<br><i>uors, B,</i> <b>33</b> , 1<br>, Anal. Lett.,<br>ogatinskaya. | ceta, I, 33-,<br>2 (1993).<br>161–167 (1)<br>29, 725–74<br>G.V. Bodr<br>,5, 781–79 | 38 (1985).<br>996).<br>3 (1996).<br>in, N. P. |                                   |                                    | continues | continues on next page |





- Kolycheva, H. Müller, Anal. Chim. Acta, 242, 65–72 (1991). żш
  - Bakker, Anal. Chem., 69, 1061–1069 (1997)
- M. Hartnett, D. Diamond, Anal. Chem., **69**, 1909–1918 (1997)
- K. Suzuki, K. Watanabe, Y. Matsumoto, M. Kobayashi, S. Sato, D. Siswanta, H. Hisamoto, Anal. Chem., 67, 324–334 (1995).
   R. Kataky, D. Parker, A. Teasdale, Anal. Chim. Acta, 276, 353–360 (1993).
   T. McKittrick, D. Diamond, D.J. Marrs, P. O'Hagan, M.A. McKervey, Talanta, 43, 1145–1148 (1996).
   B. Cathala, C. Picard, L. Cazaux, P. Tisnes, C. D'Silva, J. Chem. Soc., Perkin Trans., 2, 685–689 (1996).
- - - M. Nagele, E. Pretsch, Mikrochim. Acta, 121, 269–279 (1995).
- A.E.-Jammal, A.A. Bouklouze, G.J. Patriarche, G.D. Christian, Talanta, 38, 929-935 (1991).
- A.B.Kharitonov, V.Y. Nady, O.M. Petrukhin, B.Y. Spivakov, B.F. Myašoedov, R.V. Tal'rože, O.A. Otmakhova, N.A. Plate, J. Anal. Chem., 51, 704–707 (1996).
  - . Dimitrakopoulos, J.R. Farrell, P.J. Iles, Electroanalysis, 8, 391–395 (1996).
- K. Herna, M.M. Schindler, J.G. Schindler, Fresenius' J. Anal. Chem., 347, 299-302 (1993) Heidrich, Ē
  - J. Schaller, E. Bakker, E. Pretsch, Anal. Chem., 67, 3123–3132 (1995)
    - R.-M. Puac, M. Dimitrijevic, M. -S. Bosnar, Analyst, 117, 1323-1327 (1992).
      - D. Wijesuriya, D.P. Root, Anal. Chim. Acta, 236, 445-448 (1990).
- U. Schaller, E. Bakker, U.E. Spichiger, E. Pretsch, Anal. Chem., 66, 391–398 (1994).





Potentiometric selectivity coefficients of ion-selective electrodes





| ionophore           | membrane<br>composition                                                                                                                        | $\lg K_{Sr}^{2+}, B^{n+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M)                | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                 | remarks                                                                                                                                                           | ref.      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sr <sup>2+</sup> -1 | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                           | 4 Li <sup>+</sup> , -2.7; Na <sup>+</sup> , -2.7; K <sup>+</sup> , -2.1; S<br>Cs <sup>+</sup> , +2.3; NH4 <sup>+</sup> , -2.7; H <sup>+</sup> , -3.3;<br>Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -2.7; Al <sup>3+</sup> , -2.7;<br>Ba <sup>2+</sup> , +2.5; Mn <sup>2+</sup> , -3.2;<br>Fe <sup>2+</sup> , -3.1; Fe <sup>3+</sup> , -2.4; Co <sup>2+</sup> , -3.1;<br>Ni <sup>+</sup> , -3.0; Zn <sup>2+</sup> , -2.7;<br>(CH <sub>3</sub> ), N <sup>+</sup> > 3.0;<br>(CH <sub>3</sub> ), N <sup>+</sup> > 3.0; | SSM    | 0.1                         | 0.1                                                                  | 27                       | >10-5                                  | 23 °C;<br>4 < pH < 10                                                                                                                                             | Ξ         |
|                     |                                                                                                                                                | Ca <sup>2+</sup> , -2.1<br>Ca <sup>2+</sup> , -2.1<br>Ca <sup>2+</sup> , -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 0.01<br>0.001<br>0.0001     | 0.01<br>0.001<br>0.0001                                              |                          |                                        |                                                                                                                                                                   |           |
| Sr <sup>2+</sup> -2 | strontium doped<br>poly(dibenzo-18-crown-6) film<br>electrode                                                                                  | Li <sup>+</sup> , -2.38; Na <sup>+</sup> , -2.57; K <sup>+</sup> , -2.96; SSM<br>Rb <sup>+</sup> , -2.33; Cs <sup>+</sup> , -2.49;<br>NH <sub>4</sub> <sup>+</sup> , -1.63; Mg <sup>2+</sup> , -2.64;<br>Ca <sup>2+</sup> , -2.99; Ba <sup>2+</sup> , -0.32                                                                                                                                                                                                                                                          | SSM    | 0.01                        | 0.01                                                                 | 59                       | 10 <sup>-5</sup> -<br>10 <sup>-1</sup> | $25 \pm 0.5 \text{ °C;} [2]$ $t_{\text{resp}} = 25-30 \text{ s;}$ $c_{\text{ell}} = 2.9 \times 10^{-5} \text{ M;}$ $3.0 \text{ cpH} < 7.0;$ $\tau = 60 \text{ d}$ | ;<br>5 M; |
| Sr <sup>2+</sup> -3 | <b>Sr<sup>2+</sup>-3</b> ( <i>w</i> = 1.5 %),<br>oNPOE ( <i>w</i> =65 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> =21 %),<br>PVC ( <i>w</i> =33 %)  | Mg <sup>2+</sup> , -0.57;<br>Ca <sup>2+</sup> , -0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPM    |                             | Mg <sup>2+</sup> ,<br>0.05, 0.1;<br>Ca <sup>2+</sup> ,<br>0.005, 0.1 | 1                        |                                        | 140 mM NaCl [3]<br>background                                                                                                                                     | [3]       |
| Sr <sup>2+</sup> -4 | <b>Sr<sup>2+</sup>-4</b> ( <i>w</i> = 1.5 %),<br>oNPOE ( <i>w</i> =65 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> =23 %),<br>PVC ( <i>w</i> =33 %), | Mg <sup>2+</sup> , -1.07;<br>Ca <sup>2+</sup> , -0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAM    |                             | Mg <sup>2+</sup> ,<br>0.05, 0.1;<br>Ca <sup>2+</sup> ,<br>0.005, 0.1 | I                        |                                        | 140 mM NaCl [3]<br>background                                                                                                                                     | [3]       |
| Sr <sup>2+</sup> -5 | <b>Sr<sup>2+-5</sup></b> ( <i>w</i> =1.5 %),<br>oNPOE ( <i>w</i> =65 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> =24 %),<br>PVC ( <i>w</i> =33 %)   | Mg <sup>2+</sup> , -1.24;<br>Ca <sup>2+</sup> , -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPM    |                             | Mg <sup>2+</sup> ,<br>0.05, 0.1;<br>Ca <sup>2+</sup> ,<br>0.005, 0.1 | I                        |                                        | 140 mM NaCl [3]<br>background                                                                                                                                     | [3]       |
| Sr <sup>2+</sup> -6 | <b>Sr<sup>2+</sup>-6</b> ( <i>w</i> =1.5 %),<br>oNPOE ( <i>w</i> =65 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> =27 %),<br>PVC ( <i>w</i> =33 %)   | Mg <sup>2+</sup> , -2.43;<br>Ca <sup>2+</sup> , -2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPM    |                             | Mg <sup>2+</sup> ,<br>0.05, 0.1;<br>Ca <sup>2+</sup> ,<br>0.005, 0.1 | 1                        |                                        | 140 mM NaCl [3]<br>background                                                                                                                                     | [3]       |
| Sr <sup>2+</sup> -7 | <b>Sr<sup>2+</sup>-7</b> ( <i>w</i> =1.5 %),<br>oNPOE ( <i>w</i> =65 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> =30 %),<br>PVC ( <i>w</i> =33 %)   | $Mg^{2+}_{g^{2}+}, -2.51;$<br>$Ca^{2+}_{g^{2}+}, -2.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MPM    |                             | Mg <sup>2+</sup> ,<br>0.05, 0.1;<br>Ca <sup>2+</sup> ,<br>0.005, 0.1 | I                        |                                        | 140 mM NaCl [3]<br>background                                                                                                                                     | [3]       |
| Sr <sup>2+</sup> -8 | $Sr^{2+-8}(w=1.5\%)$ ,<br>oNPOE ( $w=65\%$ ),                                                                                                  | Mg <sup>2+</sup> , -2.80;<br>Ca <sup>2+</sup> , -1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPM    |                             | Mg <sup>2+</sup> ,<br>0.05, 0.1;                                     | ļ                        |                                        | 140 mM NaCl [3]<br>background                                                                                                                                     | [3]       |
|                     |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                             |                                                                      |                          |                                        |                                                                                                                                                                   |           |

 Table 10: Sr<sup>2+</sup>-Selective Electrodes

| Table 10: $Sr^{2+}$ -Selective Electrodes ( <i>Continued</i> )                                                                                                                                                  | les (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                             |                                                                          |        |                                |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|--------------------------------------------------------------------------|--------|--------------------------------|------|--|
| ionophore membrane<br>composition                                                                                                                                                                               | lgKSr²+,Bn+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | method     | primary<br>ion conc.<br>(M) | primary interfering slope<br>ion conc. ion conc. (mV/<br>(M) (M) decade) | -<br>- | linear remarks<br>range<br>(M) | ref. |  |
| KTpCIPB $(x_i = 33 \%)$ ,<br>PVC $(w = 33 \%)$                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                             | Ca <sup>2+</sup> ,<br>0.005, 0.1                                         |        |                                |      |  |
| <ol> <li>E.W. Baumann, <i>Anal. Chem.</i>, <b>47</b>, 959–961 (1975).</li> <li>N. Akmal, H. Zimmer, H.B. Mark, <i>Anal. Lett.</i>, <b>24</b>, (3) A.S. Attiyat, G.D. Christian, C.V. Cason, R.A. Bat</li> </ol> | E.W. Baumann, <i>Anal. Chem.</i> , <b>47</b> , 959–961 (1975).<br>N. Akmal, H. Zimmer, H.B. Mark, <i>Anal. Lett.</i> , <b>24</b> , 1431–1443 (1991).<br>A.S. Attiyat, G.D. Christian, C.V. Cason, R.A. Bartsch, <i>Electroanalysis</i> , <b>4</b> , 51–56 (1992).                                                                                                                                                                                                                                                           | 56 (1992). |                             |                                                                          |        |                                |      |  |
|                                                                                                                                                                                                                 | и <sup>2+-3</sup> (М, = 312.36): R = H<br>I <sup>2+-4</sup> (М, = 342.39): R = CH <sub>2</sub> OH<br>I <sup>2+-5</sup> (М, = 342.39): R = CH <sub>2</sub> OCH<br>I <sup>2+-5</sup> (М, = 356.41): R = CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub><br>I <sup>2+-6</sup> (М, = 440.47): R = CH <sub>2</sub> O(CH <sub>2</sub> CH <sub>2</sub> O) <sub>2</sub> CH <sub>3</sub><br>I <sup>2+-8</sup> (М, = 488.47): R = CH <sub>2</sub> O(CH <sub>2</sub> CH <sub>2</sub> O) <sub>3</sub> CH <sub>3</sub> |            |                             |                                                                          |        |                                |      |  |

| ,                   |                                                                                                                         |                                                                                                                                                                                     | ,      |                             | •                               | ,                        | ;                      | ,                  | 4    |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------|--------------------|------|
| ionophore           | membrane<br>composition                                                                                                 | lgK <sub>Ba</sub> 2+,Bn+                                                                                                                                                            | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks            | ref. |
| Ba <sup>2+</sup> -1 | <b>Ba<sup>2+</sup>-1</b> ( $w = 1.1 \%$ ),<br>oNPOE ( $w = 65.9 \%$ ),<br>PVC ( $w = 33.0 \%$ )                         | $\begin{array}{l} H^+, +1.4 ; Li^+, -3.0; \\ Na^+, -2.1 ; K^+, -1.0; \\ Rb^+, -1.3 ; Cs^+, -1.8; \\ NH_4^+, -1.8 ; Mg^{24}, -5.2; \\ Ca^{2+}, -3.8 ; Sr^{2+}, -1.6 \end{array}$     | SSM    | 0.1                         | 0.1                             | Nn                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
| Ba <sup>2+</sup> -2 | <b>Ba<sup>2+</sup>-2</b> ( $w = 1.1$ %),<br>oNPOE ( $w = 65.9$ %),<br>PVC ( $w = 33.0$ %)                               | $\begin{array}{l} H^+,+5.3\ Lit,-1.0;\\ Na^+,+0.5;\ K^+,-1.8;\\ Rb^+,+1.7;\ Cs^+,+1.6;\\ NH_4^+,+0.6;\ Mg^{2+},-2.2;\\ Ca^{2+},-1.3;\ Sr^{2+},-0.7.\\ \end{array}$                  | SSM    | 0.1                         | 0.1                             | Nn                       | I                      | 20 °C;<br>1.0.0.g. | Ξ    |
|                     | <b>Ba<sup>2+</sup>-2</b> ( $w = 1.1$ %),<br>oNPOE ( $w = 66.3$ %),<br>KTpCIPB ( $x_i = 66.\%$ ),<br>PVC ( $w = 32.1$ %) | $\begin{array}{l} H^+,-2.5;Li+,-3.0;\\ Na^+,-2.5;K^+,-1.8;\\ Rb^+,-1.6;Cs^+,-1.3;\\ NH_4^+,-2.4;Mg^{2+},-7.0;\\ Ca^{2+},-1.6;Sr^{2+},-0.4. \end{array}$                             | SSM    | 0.1                         | 0.1                             | Nn                       | I                      | 20 °C;<br>1.0.0.g. | Ξ    |
| Ba <sup>2+</sup> -3 | <b>Ba<sup>2+</sup>-3</b> ( $w = 1, 4$ %),<br>oNPOE ( $w = 65.5$ %),<br>PVC ( $w = 33.1$ %)                              | $\begin{array}{l} H^+, +6.5,  Li^+, -0.6; \\ Na^+, +2.0;  K^+, +3.3 \\ Rb^+, +3.5;  Cs^+, +3.7; \\ NH4^+, +2.2;  Mg^{2+}, -0.9; \\ Ca^{2+}, -0.8;  Sr^{2+}, -0.3 \end{array}$       | MSS    | 0.1                         | 0.1                             | Nn                       | I                      | 20 °C;<br>r.o.o.g. | []]  |
|                     | <b>Ba<sup>2+</sup>.3</b> ( $w = 1.4$ %),<br>oNPOE ( $w = 65.1$ %),<br>KTpCIPB ( $x_i = 75$ %),<br>PVC ( $w = 32.7$ %)   | $\begin{array}{l} H^+, -1.5, L1^+, -1.7;\\ Na^+, -1.5, K^+, -0.3;\\ Rb^+, -0.9; Cs^+, -0.4;\\ NH4^+, -1.3; Mg^{2+}, -4.3;\\ Ca^{2+}, -1.9; Sr^{2+}, -1.0\end{array}$                | SSM    | 0.1                         | 0.1                             | Nu                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
| Ba <sup>2+</sup> -4 | <b>Ba<sup>2+</sup>-4</b> ( $w = 1.2$ %),<br>oNPOE ( $w = 65.8$ %),<br>PVC ( $w = 33.0$ %)                               | $\begin{array}{l} H^+, +4.2 ; Ll^+, -1.6; \\ Na^+, -0.5 ; K^+, -0.7; \\ Rb^+, -0.9 ; Cs^+, -1.0; \\ NH4^+, -1.3 ; Mg^{2+}, -4.3; \\ Ca^{2+}, -1.8 ; Sr^{2+}, +0.2 \end{array}$      | SSM    | 0.1                         | 0.1                             | Nu                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
|                     | <b>Ba<sup>2+</sup>.4</b> ( $w = 1.2$ %),<br>oNPOE ( $w = 65.2$ %),<br>KTpCIPB ( $x_i = 65$ %),<br>PVC ( $w = 32.9$ %)   | $\begin{array}{l} H^+,-1.7;L1^+,-3.3;\\ Na^+,-2.7;K+,-2.7;\\ Rb^+,-2.9;Cs^+,-2.9;\\ NH4^+,-3.3;Mg^{2+},-7.8;\\ NH4^+,-3.3;Mg^{2+},-0.2.\\ Ca^{2+},-1.8;Sr^{2+},-0.2.\\ \end{array}$ | SSM    | 0.1                         | 0.1                             | Nu                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
| Ba <sup>2+-</sup> 5 | <b>Ba<sup>2+-5</sup></b> ( $w = 1.2 \%$ ),<br>oNPOE ( $w = 65.9 \%$ ),<br>PVC ( $w = 33.2 \%$ )                         | H+, +3.1 ; Li+, -2.7;<br>Na <sup>+</sup> ,+0.2; K <sup>+</sup> , +0.9 ;<br>Rb <sup>+</sup> , +0.2; Cs <sup>+</sup> , -0.6;                                                          | SSM    | 0.1                         | 0.1                             | Nu                       | 1                      | 20 °C;<br>r.o.o.g. | [1]  |
|                     |                                                                                                                         |                                                                                                                                                                                     |        |                             |                                 |                          |                        |                    |      |

Table 11: Ba<sup>2+</sup>-Selective Electrodes

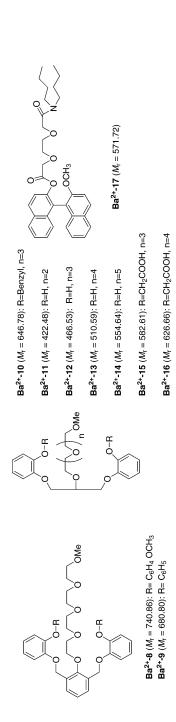
| ionophore            | ionophore membrane<br>composition                                                                                                 | lgK <sub>Ba</sub> 2+, <sub>B</sub> n+                                                                                                                                                                        | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks            | ref. |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------|------|
|                      |                                                                                                                                   | NH4 <sup>+</sup> , -0.8; Mg <sup>2+</sup> , -4.6;<br>Ca <sup>2+</sup> , -1.7; Sr <sup>2+</sup> , -0.3                                                                                                        |        |                             |                                                       |                          |                        |                    |      |
|                      | <b>Ba<sup>2+</sup>-5</b> ( $w = 1.2  \%$ ),<br>oNPOE ( $w = 65.0  \%$ ),<br>KTpCIPB ( $x_i = 67  \%$ ),<br>PVC ( $w = 33.1  \%$ ) | $\begin{array}{l} H^+,-2.7\ ;LJ^+,-3.3;\\ Na^+,-2.5;\ K^+,-2.7;\\ Rb^+,-2.9;\ Cs^+,-3.0;\\ NH_4^+,-3.3;\ Mg^{2+},-7.5;\\ Ca^{2+},-1.5;\ Sr^{2+},+0.3\end{array}$                                             | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
| Ba <sup>2+</sup> -6  | <b>Ba<sup>2+</sup>-6</b> ( $w = 1.2  \%$ ),<br>oNPOE ( $w = 65.6  \%$ ),<br>PVC ( $w = 33.2  \%$ )                                | $\begin{array}{l} H^+_{+}+3.0;Lj^+_{-}-2.4;\\ Na^+_{+}+0.2;K^+_{+}+1.8;\\ Rb^+_{+}+1.2;Cs^+_{+}+0.2;\\ NH_{4}^+_{-}-0.3;Mg^{2+}_{-}-4.5;\\ Ca^{2+}_{-}-1.9;Sr^{2+}_{-}+0.2\end{array}$                       | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | 20 °C;<br>r.o.o.g. | [1]  |
|                      | <b>Ba<sup>2+</sup>-6</b> ( $w = 1.7 \%$ ),<br>oNPOE ( $w = 64.8 \%$ ),<br>KTpCIPB ( $x_i = 63 \%$ ),<br>PVC ( $w = 32.6 \%$ )     | $\begin{array}{l} H^+,-3.0;LJ^+,-3.1;\\ Na^+,-2.7;K^+,-2.9;\\ Rb^+,-3.0;Cs^+,-2.9;\\ NH_4^+,-3.5;Mg^{2+},-4.8;\\ Ca^{2+},-1.5;Sr^{2+},+0.6\end{array}$                                                       | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
| Ba <sup>2+</sup> -7  | <b>Ba<sup>2+1</sup></b> ( $w = 1.0 \%$ ),<br>oNPOE ( $w = 66.2 \%$ ),<br>PVC ( $w = 32.8 \%$ )                                    | $\begin{array}{l} H^+_{1}, +3.6 ; Li^+, -1.9; \\ Na^+_{1}, -0.5 ; K^+, +1.3; \\ Rb^+_{1}, +0.7 ; Cs^+_{1}, +0.1; \\ NH_{4}^+, -0.1 ; Mg^{2+}_{2}, -4.3; \\ Ca^{2+}_{2}, -3.0; Sr^{2+}_{2}, -2.5 \end{array}$ | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
|                      | <b>Ba<sup>2+</sup>-7</b> ( $w = 1.2  \%$ ),<br>oNPOE ( $w = 65.0  \%$ ),<br>KTpCIPB ( $x_i = 64  \%$ ),<br>PVC ( $w = 33.1  \%$ ) | $\begin{array}{l} H^+,-3.0;Li+,-2.9;\\ Na^+,-1.9;K^+,-1.6;\\ Rb^+,-2.0;Cs^+,-2.5;\\ NH_4^+,-2.4;Mg^{2+},-7.5;\\ Ca^{2+},-3.3;Sr^{2+},-2.7\end{array}$                                                        | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | 20 °C;<br>r.o.o.g. | Ξ    |
| Ba <sup>2+</sup> -8  | <b>Ba<sup>2+</sup>-8</b> ( $w = 0.5$ %),<br>oNPPE ( $w = 67.6$ %),<br>PVC ( $w = 31.9$ %)                                         | Li+,-0.3; Na+, +0.7;<br>K+, +3; Mg <sup>2+</sup> ,-1.9;<br>Ca <sup>2+</sup> ,-1.6                                                                                                                            | SSM    | 10-2                        | 10-2                                                  | I                        | I                      | r.o.o.g.           | [2]  |
| Ba <sup>2+</sup> -9  | <b>Ba<sup>2</sup>+.9</b> ( $w = 0.5$ %),<br>oNPPE ( $w = 67.6$ %),<br>PVC ( $w = 31.9$ %)                                         | Li <sup>+</sup> ,-0.3; Na <sup>+</sup> , +4;<br>K <sup>+</sup> , +7; Mg <sup>2+</sup> , -1.6;<br>Ca <sup>2+</sup> , -1.9                                                                                     | SSM    | 10-2                        | 10-2                                                  | I                        | I                      | r.o.o.g.           | [2]  |
| Ba <sup>2+</sup> -10 | <b>Ba<sup>2+</sup>-10</b> ( $w = 0.5 \%$ ),<br>oNPPE ( $w = 67.6 \%$ ),<br>PVC ( $w = 31.9 \%$ )                                  | Li <sup>+</sup> ,+0.4; Na <sup>+</sup> , +1;<br>K <sup>+</sup> , +6; Mg <sup>2+</sup> , -1.9;<br>Ca <sup>2+</sup> , -1.3                                                                                     | SSM    | 10-2                        | 10-2                                                  | I                        | I                      | r.o.o.g.           | [2]  |

# Potentiometric selectivity coefficients of ion-selective electrodes

continues on next page

Table 11: Ba<sup>2+</sup>-Selective Electrodes (Continued)

| (Continued)                                      |  |
|--------------------------------------------------|--|
| Table 11: Ba <sup>2+</sup> -Selective Electrodes |  |


| ionophore            | membrane<br>composition                                                                                                            | $\lg K_{\mathrm{Ba}^{2+},\mathrm{B^{n+}}}$                                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                 | remarks                                                                                          | ref.               |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|
| Ba <sup>2+</sup> -11 | <b>Ba<sup>2+</sup>-11</b> ( $w = 0.5 \%$ ),<br>oNPPE ( $x_i = 67.6 \%$ ),<br>PVC ( $w = 31.9 \%$ )                                 | $\begin{array}{c} Li^+,+0.4;Na^+,+1.3;\\ K^+,+2.5;Mg^{2+},-1.0;\\ Ca^{2+},-0.7\end{array}$                                                                                                                             | MSS    | 10-2                        | 10-2                            | I                        | 1                                      | r.o.o.g.                                                                                         | [2]                |
| Ba <sup>2+</sup> -12 | <b>Ba<sup>2+</sup>-12</b> (0.5 %),<br>oNPPE ( <i>w</i> = 67.6 %),<br>PVC ( <i>w</i> = 31.9 %)                                      | Li <sup>+</sup> , -1.4; Na <sup>+</sup> , +0.2;<br>K <sup>+</sup> , +2.5; Mg <sup>2+</sup> , -3.7;<br>Ca <sup>2+</sup> , -3.2                                                                                          | SSM    | 10-2                        | 10-2                            | I                        | $2.6 \times 10^{-3}$<br>-4.3 × 10^{-2} | r.o.o.g.                                                                                         | [2]                |
| Ba <sup>2+</sup> -13 | <b>Ba<sup>2+</sup>-13</b> ( <i>w</i> = 0.5 %),<br>oNPPE ( <i>w</i> = 67.6 %),<br>PVC ( <i>w</i> = 31.9 %)                          | Li+, -1.5; Na+, +0.2;<br>K+, +2.2; Mg <sup>2+</sup> , -2.9<br>Ca <sup>2+</sup> , -2.5                                                                                                                                  | SSM    | 10-2                        | 10-2                            | I                        | 1                                      | r.o.o.g.                                                                                         | [2]                |
| Ba <sup>2+</sup> -14 | <b>Ba<sup>2+</sup>.14</b> ( $w = 0.5$ %),<br>oNPPE ( $w = 67.6$ %),<br>PVC ( $w = 31.9$ %)                                         | $\begin{array}{l} Li^+, +0.4;  Na^+, +0.5; \\ K^+, +2.7;  Rb^+, +2.1; \\ Cs^+, +1.8;  Mg^{2+}, -1.8; \\ Ca^{2+}, -1.2 \end{array}$                                                                                     | SSM    | 10-2                        | 10-2                            | I                        | I                                      | r.o.o.g.                                                                                         | [2]                |
| Ba <sup>2+</sup> -15 | <b>Ba<sup>2+</sup>·15</b> ( <i>w</i> = 0.5 %),<br>oNPPE ( <i>w</i> = 67.6 %),<br>PVC ( <i>w</i> = 31.9 %)                          | Li <sup>+</sup> , -0.4; Na <sup>+</sup> , +0.7;<br>K <sup>+</sup> , +1.4; $Mg^{2+}$ , -2.0;<br>Ca <sup>2+</sup> , -1.6                                                                                                 | SSM    | 10-2                        | 10-2                            | I                        | I                                      | I.0.0.g.                                                                                         | [2]                |
| Ba <sup>2+</sup> -16 | <b>Ba<sup>2+</sup>.16</b> ( $w = 0.5$ %),<br>oNPPE ( $w = 67.6$ %),<br>PVC ( $w = 31.9$ %)                                         | $\begin{array}{l} Li^+, +0.3;  Na^+, +0.5; \\ K^+, +1.6;  Rb^+, +1.5; \\ Cs^+, +1.5;  Mg^{2+}, -1.8; \\ Ca^{2+}, -1.3 \end{array}$                                                                                     | SSM    | 10-2                        | 10-2                            | I                        | I                                      | r.o.o.g.                                                                                         | [2]                |
| Ba <sup>2+</sup> -17 | <b>Ba<sup>2+.17</sup></b> (7 mg),<br>oNPOE (1 mL), poly(ethylene)–<br>poly(vinyl acetate) (30 mg),<br>NaTPB ( $x_i = 12-24 \ \%$ ) | $\begin{array}{l} Li^+, -3.6;  Na^+, -2.4; \\ K^+, -2.1;  Rb^+, -2.5; \\ Cs^+, -2.1;  NH_{4^+}, -2.4; \\ Mg^{2+}, -4.7;  Ca^{2+}, -2.5; \\ Sr^{2+}, -1.9;  Mn^{2+}, -4.7 \\ Cu^{2+}, -4.5;  Zn^{2+}, -4.5 \end{array}$ | SSM    | 0.1                         | 0.1                             | 30.0                     | $3 \times 10^{-6}$<br>-10^-1           | <b>r</b> > 150 d; [3<br>1.6 < pH < 8.1;<br>c <sub>dl</sub> = 2 × 10 <sup>-6</sup> M;<br>r.o.o.g. | [3]<br>1;<br>1, M; |
|                      |                                                                                                                                    | $\begin{array}{l} Li^+,-3.6;Na^+,-2.2;\\ K^+,-1.4;Rb^+,-2.0;\\ Cs^+,-2.1;NH_4^+,-2.1;\\ Mg^{2+},-4.6;Ca^{2+},-2.4;\\ Sr^{2+},-1.5;Mn^{2+},-4.6;\\ Cu^{2+},-4.5;Zn^{2+},-4.1\end{array}$                                | FIM    | I                           | I                               |                          |                                        | I.0.0.g                                                                                          | [3]                |
|                      | <b>Ba<sup>2+.17</sup></b> (3 mg),<br>oNPOE (1 mL),<br>ethylene-vinyl acetate (30 mg),<br>NaTPB ( $x_1 = 28-56  \%$ )               | Li <sup>+</sup> , -2.0; Na <sup>+</sup> , -1.1;<br>K <sup>+</sup> , -0.4; NH4 <sup>+</sup> , +0.0;<br>Ca <sup>2+</sup> , -0.9; Sr <sup>2+</sup> , -2.4;<br>Mn <sup>2+</sup> , -3.0                                     | SSM    | 0.1                         | 0.1                             | I                        | I                                      | r.o.o.g.                                                                                         | [3]                |

Y. UMEZAWA et al.

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| composition                                                                                                                                                                                                                                                                                                                                                                | d,                                                                                                                                       |                                                       | ion conc.<br>(M)                                           | ion conc.<br>(M)              | (mV/<br>decade)                                                          | range<br>(M)                                                                                                                                                                     |                                                                                                                          |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------|--|
| <b>Ba<sup>2+.17</sup></b> (7 mg?),<br>introbenzene (1 mL),<br>ethylene-vinyl acetate (30 mg),<br>NaTPB ( $x_i = 12-24$ %?)                                                                                                                                                                                                                                                 | $\begin{array}{l} Na^+, -1.6;  K^+, -1.4; \\ Rb^+, -1.8;  Ca^{2+}, -2.3; \\ Sr^{2+}, -1.3;  Mn^{2+}, -4.5 \end{array}$                   | SSM                                                   | 0.1                                                        | 0.1                           | I                                                                        | I                                                                                                                                                                                | short lifetime; [3]<br>r.o.o.g.                                                                                          | ; [3] |  |
| <b>Ba<sup>2+.17</sup></b> (7 mg?),<br>DOPP (1 mL),<br>ethylene-vinyl acetate (30 mg),<br>NaTPB ( $x_i = 12-24$ %?)                                                                                                                                                                                                                                                         | $\begin{array}{l} Li^+, +1.0;  Na^+, -0.6; \\ K^+, -0.4;  NH_{4^+}, 0.8; \\ Ca^{2+}, +0.2;  Sr^{2+}, +0.0; \\ Mn^{2+}, -1.6 \end{array}$ | SSM                                                   | 0.1                                                        | 0.1                           | I                                                                        | I                                                                                                                                                                                | f.o.o.g.                                                                                                                 | [3]   |  |
| <ol> <li>T.Kleiner, F. Bongardt, F. Vögtle, M.W. Läubli, O. Dinten, W. Simon, <i>Chem. Ber.</i>, <b>118</b>, 1071–1077 (1985).</li> <li>Y.P. Feng, G. Goodlet, N.K. Harris, M.M. Islam, G.J. Moody, J.D.R. Thomas, <i>Analyst</i>, <b>116</b>, 469–472 (1991).</li> <li>A.A. Bouklouze, JC. Viré, V. Cool, <i>Anal. Chem. Acta</i>, <b>273</b>, 153–163 (1993).</li> </ol> | Läubli, O. Dinten, W. Simon,<br>. Islam, G.J. Moody, J.D.R. T<br><i>l. Chem. Acta</i> , <b>273</b> , 153–163                             | <i>Chem. Ber.</i> ,<br>Thomas, <i>Anal</i><br>(1993). | <b>118,</b> 1071–<br><i>yst</i> , <b>116</b> , 46          | -1077 (1985).<br>9–472 (1991) |                                                                          |                                                                                                                                                                                  |                                                                                                                          |       |  |
| R<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                | 2-                                                                                                                                       |                                                       | $\langle \rangle$                                          |                               | Ĺ                                                                        | R<br>N-R                                                                                                                                                                         |                                                                                                                          |       |  |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                       |                                                            |                               |                                                                          | <u>_</u> 0                                                                                                                                                                       |                                                                                                                          |       |  |
|                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                       |                                                            |                               | 0                                                                        | o<br>Z<br>Z<br>O                                                                                                                                                                 |                                                                                                                          |       |  |
| $H = \frac{H}{R^{2+2}} = \frac{1}{2} (M_{f} = 648.76); R = C_{6}H_{5}, R' = CH_{2}C_{6}H_{5}$                                                                                                                                                                                                                                                                              | $= C_6H_5, R' = CH_2C_6H_5$                                                                                                              |                                                       | <u>\</u>                                                   |                               | Ba <sup>2+</sup> -5 ( <i>M</i> r =<br>Ba <sup>2+</sup> -6 ( <i>M</i> r = | <br>Ba <sup>2</sup> +-5 (M <sub>r</sub> = 600.72): R= C <sub>6</sub> H <sub>5</sub> , R'=<br>Ba <sup>2+</sup> -6 (M <sub>r</sub> = 572.62): R= R'= C <sub>6</sub> H <sub>5</sub> | <br>Ba²+5 (Mr = 600.72): R= C <sub>6</sub> H5, R'= CH₂C <sub>6</sub> H5<br>Ba²+6 (Mr = 572.62): R= R'= C <sub>6</sub> H5 | 2     |  |
| <b>Ba<sup>2+</sup>-3</b> ( <i>M</i> , = 620.71): R = R' = C <sub>6</sub> H <sub>5</sub><br><b>Ba<sup>2+</sup>-4</b> ( <i>M</i> , = 644.90): R = R' = cyclohexyl                                                                                                                                                                                                            | = R' = C <sub>6</sub> H <sub>5</sub><br>= R' = cyclohexyl                                                                                | Ba <sup>2+</sup> -7 ( <i>N</i>                        | <b>Ba<sup>2+</sup>-7</b> ( <i>M</i> <sub>r</sub> = 644.77) |                               |                                                                          |                                                                                                                                                                                  |                                                                                                                          |       |  |
| <b>Ba<sup>2+</sup>-1</b> ( <i>M</i> <sub>r</sub> = 524.62)                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                       |                                                            |                               |                                                                          |                                                                                                                                                                                  |                                                                                                                          |       |  |

2025



| ionophore           | membrane<br>composition                                                                                                                                                    | lgK <sub>Cu</sub> 2+,Bn+                                                                                                                                  | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                | remarks r                                                                     | ref. |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|---------------------------------------|-------------------------------------------------------------------------------|------|
| Cu <sup>2+</sup> -1 | $\begin{array}{l} \textbf{Cu}^{2+1} (w=1-4~\%), \\ \textbf{KTpCIPB} (x_i=70~\%), \\ \textbf{DDP} (w=66-69~\%), \\ \textbf{PVC} (w=30~\%) \end{array}$                      | Na <sup>+</sup> , +1.7; Co <sup>2+</sup> , +0.0;<br>Ni <sup>2+</sup> , +0.4; Zn <sup>2+</sup> , -2.2;<br>Cd <sup>2+</sup> , +0.6; Pb <sup>2+</sup> , +0.8 | FIM    | 1                           | 10-2                                                  | I                        | I                                     | 20 °C;<br>4.0 < pH < 5.0;<br>r.o.o.g.                                         | []   |
| Cu <sup>2+</sup> -2 | $Cu^{2+2}$ ( $w = 1-4$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>DDP ( $w = 66-69$ %),<br>PVC ( $w = 30$ %)                                                                       | Na <sup>+</sup> , -1.3; Co <sup>2+</sup> , -1.4;<br>Ni <sup>2+</sup> , -1.0; Zn <sup>2+</sup> , -1.5;<br>Cd <sup>2+</sup> , -1.5; Pb <sup>2+</sup> , -1.0 | FIM    | I                           | 10-2                                                  | 39.6                     | $10^{-5}$<br>-5 × 10^{-3}             | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | Ξ    |
| Cu <sup>2+</sup> -3 | <b>Cu<sup>2+.3</sup></b> ( $w = 1 - 4$ %),<br><b>KTpCIPB</b> ( $x_i = 70$ %),<br>DDP ( $w = 66-69$ %),<br>PVC ( $w = 30$ %)                                                | $\begin{array}{c} Co^{2+},-2.7;Ni^{2+},-2.1;\\ Zn^{2+},-3.4;Cd^{2+},-2.8;\\ Pb^{2+},-2.9\end{array}$                                                      | FIM    | I                           | 10-2                                                  | I                        | I                                     | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | [1]  |
| Cu <sup>2+</sup> -4 | $\begin{array}{l} \textbf{Cu}^{2+}\textbf{-4} \ (w=1-4\ \%),\\ \textbf{KTpCIPB} \ (x_i=70\ \%),\\ \textbf{DDP} \ (w=66-69\ \%),\\ \textbf{PVC} \ (w=30\ \%) \end{array}$   | $\begin{array}{c} Co^{2+},-2.0;Ni^{2+},-2.3;\\ Zn^{2+},-1.2;Cd^{2+},-1.2;\\ Pb^{2+},+2.1\end{array}$                                                      | FIM    | I                           | 10-2                                                  | 29.0                     | 10 <sup>-5</sup><br>-10 <sup>-2</sup> | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | [1]  |
| Cu <sup>2+-</sup> 5 | $\begin{array}{l} \textbf{Cu}^{2+.5} \ (w=1-4 \ \%), \\ \textbf{KTpCIPB} \ (x_i=70 \ \%), \\ \textbf{DDP} \ (w=66-69 \ \%), \\ \textbf{PVC} \ (w=30 \ \%) \end{array}$     | $\begin{array}{c} Co^{2+},-1.3;Ni^{2+},-1.7;\\ Zn^{2+},-1.3;Cd^{2+},+0.3;\\ Pb^{2+},+2.3\end{array}$                                                      | FIM    | I                           | 10-2                                                  | 30.0                     | 10 <sup>-6</sup><br>-10 <sup>-1</sup> | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | Ξ    |
| Cu <sup>2+-</sup> 6 | $\begin{array}{l} \textbf{Cu}^{2+-6} \ (w=1-4 \ \%), \\ \textbf{KTpCIPB} \ (v_i=70 \ \%), \\ \textbf{DDP} \ (w=66-69 \ \%), \\ \textbf{PVC} \ (w=30 \ \%) \end{array}$     | $\begin{split} & \text{Ni}^{2+}, -1.1; \text{ Co}^{2+}, -1.6; \\ & \text{Zn}^{2+}, -1.7; \text{ Cd}^{2+}, -1.7; \\ & \text{Pb}^{2+}, -1.0 \end{split}$    | FIM    | I                           | 10-2                                                  | I                        | $10^{-4}$<br>-5 × 10^{-2}             | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | [1]  |
|                     | $\begin{array}{l} \textbf{Cu}^{2+.6} \ (w=1-4\ \%),\\ \textbf{KTpCIPB} \ (x_i=70\ \%),\\ \textbf{DDP} \ (w=66-69\ \%),\\ \textbf{PVC} \ (w=30\ \%) \end{array}$            | $\begin{array}{l} Ni^{2+}, -0.2; \ Co^{2+}, -2.2; \\ Zn^{2+}, -1.0; \ Cd^{2+}, -0.9; \\ Pb^{2+}, +0.2 \end{array}$                                        | FIM    | I                           | 10-2                                                  | 17.5                     | 10 <sup>-5</sup><br>-10 <sup>-2</sup> | internal solution, [2]<br>10 <sup>-2</sup> M Cu(NO <sub>3</sub> )2;<br>pH = 4 |      |
| Cu <sup>2+</sup> -7 | $\begin{array}{l} \textbf{Cu}^{2+}\textbf{-f} \ (w=1-4\ \%),\\ \textbf{KTpCIPB} \ (v_i=70\ \%),\\ \textbf{DDP} \ (w=66-69\ \%),\\ \textbf{PVC} \ (w=30\ \%) \end{array}$   | Co <sup>2+</sup> , -1.4; Ni <sup>2+</sup> , -1.4;<br>Zn <sup>2+</sup> , -1.0; Cd <sup>2+</sup> , -0.4;<br>Pb <sup>2+</sup> , +1.9                         | FIM    | I                           | 10-2                                                  | 34.2                     | $10^{-4}$<br>-5 × 10^{-2}             | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | [1]  |
| Cu <sup>2+</sup> -8 | $\begin{array}{l} \textbf{Cu}^{2+\textbf{-8}} \ (w=1-4\ \%),\\ \textbf{KTpCIPB} \ (v_{i}=70\ \%),\\ \textbf{DDP} \ (w=66-69\ \%),\\ \textbf{PVC} \ (w=30\ \%) \end{array}$ | Co <sup>2+</sup> , -1.5; Ni <sup>2+</sup> , -1.5;<br>Zn <sup>2+</sup> , -1.0; Cd <sup>2+</sup> , -0.5;<br>Pb <sup>2+</sup> , +2.0                         | FIM    | I                           | 10-2                                                  | 33.6                     | $10^{-4}$<br>-5 × 10^{-2}             | 20 °C; [<br>4.0 < pH < 5.0;<br>r.o.o.g.                                       | [1]  |
|                     |                                                                                                                                                                            |                                                                                                                                                           |        |                             |                                                       |                          |                                       |                                                                               |      |

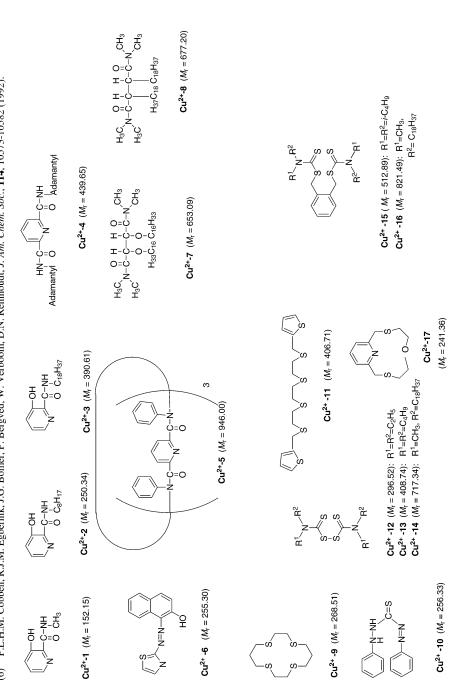
Potentiometric selectivity coefficients of ion-selective electrodes

continues on next page

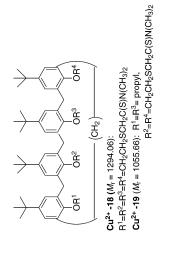
| ionophore            | ionophore membrane<br>composition                                                                                                                                                     | $\lg K_{\mathrm{Cu}^{2+},\mathrm{B}^{\mathrm{n+}}}$                                                                                                                                                             | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                | remarks ref.                                                                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cu <sup>2+</sup> -9  | $\begin{array}{l} \textbf{Cu}^{2+\bullet}\textbf{0} \ (w=1-4\ \%),\\ \textbf{KTp}\textbf{CPIB} \ (w=70\ \%),\\ \textbf{DDP} \ (w=66-69\ \%),\\ \textbf{PVC} \ (w=30\ \%) \end{array}$ | $\begin{array}{c} Co^{2+}, -1.0; \ Ni^{2+}, -1.4; \\ Zn^{2+}, -2.2; \ Cd^{2+}, -1.5; \\ Pb^{2+}, +0.1 \end{array}$                                                                                              | FIM    | I                           | 10-2                                                  | 22.3                     | 10 <sup>-5</sup><br>-10 <sup>-1</sup> | internal solution, [2]<br>10-2 M Cu(NO <sub>3</sub> ) <sub>2</sub> ;<br>pH = 4;<br>r.o.og                                                              |
| Cu <sup>2+</sup> -10 | <b>Cu<sup>2+</sup>-10</b> ( $w = 1$ %),<br><b>KTp</b> CIPB ( $x_i = 70$ %),<br>DDP ( $w = 67.7$ %),<br>PVC ( $w = 30$ %)                                                              | $\begin{array}{c} Co^{2+},-1.5;Ni^{2+},-1.5;\\ Zn^{2+},-1.3;Cd^{2+},-1.0;\\ Pb^{2+},-0.2\end{array}$                                                                                                            | FIM    | I                           | $10^{-2}$                                             | 25.1                     | 10 <sup>-6</sup><br>-10 <sup>-1</sup> | internal solution, [2]<br>$10^{-2} M Cu(NO_3)_2;$<br>pH = 4;<br>r.o.o.g.                                                                               |
|                      | <b>Cu<sup>2+</sup>-10</b> ( $w = 2$ %),<br><b>KTpCIPB</b> ( $x_i = 70$ %),<br>DDP ( $w = 65.3$ %),<br>PVC ( $w = 30$ %)                                                               | $\begin{array}{l} Co^{2+}, -2.0;  Ni^{2+}, -2.0; \\ Zn^{2+}, -1.8;  Cd^{2+}, -1.0; \\ Pb^{2+}, -0.2 \end{array}$                                                                                                | FIM    | I                           | 10-2                                                  | I                        | I                                     | internal solution, [2]<br>10-2 M Cu(NO <sub>3</sub> ) <sub>2</sub> ;<br>pH = 4;<br>r.o.o.g.                                                            |
|                      | <b>Cu<sup>2+</sup>-10</b> ( $w = 3$ %),<br><b>KTp</b> CIPB ( $x_i = 70$ %),<br>DDP ( $w = 63$ %),<br>PVC ( $w = 30$ %)                                                                | $\begin{array}{l} Co^{2+}, -0.7;  Ni^{2+}, -2.0; \\ Zn^{2+}, -3.1;  Cd^{2+}, -2.0; \\ Pb^{2+}, -1.2 \end{array}$                                                                                                | FIM    | I                           | $10^{-2}$                                             | 29.6                     | 10 <sup>-5</sup><br>-10 <sup>-2</sup> | internal solution, [2]<br>$10^{-2} M Cu(NO_3)_2;$<br>pH = 4;<br>r.o.o.g.                                                                               |
|                      | <b>Cu<sup>2+</sup>-10</b> ( $w = 4$ %),<br><b>KTpCIPB</b> ( $x_i = 70$ %),<br><b>DDP</b> ( $w = 60.6$ %),<br><b>PVC</b> ( $w = 30$ %)                                                 | $\begin{array}{l} Co^{2+}, -3.1;  Ni^{2+}, -3.0; \\ Zn^{2+}, -2.9;  Cd^{2+}, -1.8; \\ Pb^{2+}, -0.8 \end{array}$                                                                                                | FIM    | 1                           | 10-2                                                  | I                        | I                                     | internal solution, [2]<br>$10^{-2} M Cu(NO_3)_2;$<br>pH = 4;<br>r.o.o.g.                                                                               |
| Cu <sup>2+</sup> -11 | <b>Cu<sup>2+</sup>-11</b> ( $w = 1-4$ %),<br><b>KTp</b> CIPB ( $x_i = 70$ %),<br>DDP ( $w = 66-69$ %),<br>PVC ( $w = 30$ %)                                                           | Co <sup>2+</sup> , -4.8; Ni <sup>2+</sup> , -4.8;<br>Zn <sup>2+</sup> , -5.3; Cd <sup>2+</sup> , -4.7;<br>Pb <sup>2+</sup> , +3.5                                                                               | FIM    | I                           | $10^{-2}$                                             | 33.2                     | 10 <sup>-6</sup><br>-10 <sup>-2</sup> | internal solution, [2]<br>$10^{-2} M Cu(NO_3)_2;$<br>pH = 4;<br>r.o.o.g.                                                                               |
| Cu <sup>2+</sup> -12 | <b>Cu<sup>2</sup>+-12</b> ( $w = 4.1$ %),<br>oNPOE ( $w = 54.8$ %),<br>PVC ( $w = 41.1$ %)                                                                                            | $\begin{array}{l} Na^+, -3.7;  K^+, -3.7; \\ Ca^2+, -1.9;  Mg^2+, -4.0; \\ Sr^2+, -4.0;  Mn^2+, -3.7; \\ Ni^2+, -3.8;  Co^2+, -3.8; \\ Zn^2+, -3.9;  Cd^2+, -4.4; \\ Pb^2+, -1.8\end{array}$                    | MSM    | I                           | I                                                     | 30                       | I                                     | $25.0 \pm 0.1 \text{ °C; } [3]$<br>$t_{\text{resp}} = 27 \text{ s;}$<br>3.2 < pH < 5.4;<br>$c_{\text{dl}} = 2.0 \times 10^{-8} \text{ M;}$<br>r.o.o.g. |
| Cu <sup>2+</sup> -13 | <b>Cu<sup>2</sup>+-13</b> ( $w = 5.4$ %),<br>oNPOE ( $w = 54.1$ %),<br>PVC ( $w = 40.5$ %)                                                                                            | $\begin{array}{l} Na^+, -3.8;  K^+, -3.8; \\ Mg^{2+}, -2.3;  Ca^{2+}, -2.6; \\ Sr^{2+}, -2.8;  Mn^{2+}, -3.1; \\ Ni^{2+}, -2.6;  Co^{2+}, -3.6; \\ Zn^{2+}, -1.5;  Cd^{2+}, -2.6; \\ Pb^{2+}, -3.4 \end{array}$ | MSM    | I                           | 1                                                     | 31                       | I                                     | 25.0±0.1°C; [3]<br>cdl=1.0×10 <sup>-8</sup> M;<br><i>t</i> resp=10 s;<br>3.0 < pH < 6.5;<br>r.o.o.g.                                                   |
| Cu <sup>2+</sup> -14 | <b>Cu<sup>2+</sup>-14</b> ( $w = 5.4 \ \%$ ),<br>oNPOE ( $w = 54.1 \ \%$ ),                                                                                                           | Na <sup>+</sup> , -1.5; K <sup>+</sup> , -0.8;<br>Mg <sup>2+</sup> , -2.6; Ca <sup>2+</sup> , -3.2;                                                                                                             | MSM    | I                           | I                                                     | 31                       | I                                     | $25.0 \pm 0.1$ °C; [3]<br>cdl = $4.0 \times 10^{-7}$ M;                                                                                                |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

### Y. UMEZAWA et al.


| ionophore                                        | membrane<br>composition                                                                                                                                                                                                                                                                 | $\lg K_{\mathrm{Cu}^{2+},\mathrm{B^{n+}}}$                                                                                                                                                                                                                                                    | method            | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M)                                          | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                                                    |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|------------------------------------------------------------------------------------------------|--------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                  | PVC $(w = 40.5 \%)$                                                                                                                                                                                                                                                                     | Sr <sup>2+</sup> , -2.7; Mn <sup>2+</sup> , -2.5;<br>Ni <sup>2+</sup> , -2.3; Co <sup>2+</sup> , -2.8;<br>Zn <sup>2+</sup> , -1.0; Cd <sup>2+</sup> , -4.3;<br>Pb <sup>2+</sup> , -0.9                                                                                                        |                   |                             |                                                                                                |                          |                        | <i>t</i> <sub>resp</sub> = 6 s;<br>3.7 < pH < 6.3;<br>r.o.o.g.                                                                  |
| Cu <sup>2+</sup> -15                             | <b>Cu<sup>2+-15</sup></b> ( $w = 6.9 \%$ ),<br>oNPOE ( $w = 34.3 \%$ ),<br>KTpCIPB ( $x_1 = 24 \%$ ),<br>PVC ( $w = 57.2 \%$ )                                                                                                                                                          | Na <sup>+</sup> , -2.7; K <sup>+</sup> , -2.3;<br>Mg <sup>2+</sup> , -3.6; Ca <sup>2+</sup> , -3.6;<br>Sr <sup>2+</sup> , -3.7; Mn <sup>2+</sup> , -2.5;<br>Ni <sup>2+</sup> , -3.2; Co <sup>2+</sup> , -4.0;<br>Zn <sup>2+</sup> , -2.2; Cd <sup>2+</sup> , -4.4;<br>Pb <sup>2+</sup> , -0.7 | FIM               | I                           | 10 <sup>-1</sup> (Na <sup>+</sup> ,<br>K <sup>+</sup> )<br>10 <sup>-2</sup> (other<br>cations) | 29                       | I                      | 25.0 $\pm$ 0.1 °C; [4]<br>$c_{\rm dl} = 4.0 \times 10^{-7}$ M;<br>$t_{\rm resp} = 9$ s;<br>3.2 $<$ pH $<$ 5.5;<br>r.o.o.g.      |
| Cu <sup>2+</sup> -16                             | <b>Cu<sup>2+-16</sup></b> ( $w = 5.8 \%$ ),<br>oNPOE ( $w = 46.6 \%$ ),<br>PVC ( $w = 41.7 \%$ ),<br>NaTFPB ( $x_i = 14 \%$ )                                                                                                                                                           | Na <sup>+</sup> , -2.5; K <sup>+</sup> , -2.0;<br>Mg <sup>2+</sup> , -2.7; Ca <sup>2+</sup> , -3.0;<br>Sr <sup>2+</sup> , -2.8; Mn <sup>2+</sup> , -2.4;<br>Ni <sup>2+</sup> , -3.2; Co <sup>2+</sup> , -3.2;<br>Zn <sup>2+</sup> , -2.3; Cd <sup>2+</sup> , -2.8;<br>Pb <sup>2+</sup> , -0.9 | FIM               | I                           | 10 <sup>-1</sup> (Na <sup>+</sup> ,<br>K <sup>+</sup> )<br>10 <sup>-2</sup> (other<br>cations) | 28                       | I                      | 25.0 $\pm$ 0.1 °C; [4]<br>$c_{\rm dl} = 3.9 \times 10^{-7}$ M;<br>$t_{\rm resp} = 3.1$ s;<br>$3.4 < \rm pH < 6.1$ ;<br>r.o.e.g. |
|                                                  | <b>Cu<sup>2+16</sup></b> ( $w = 5.4 \%$ ),<br>oNPOE ( $w = 54.1 \%$ ),<br>PVC ( $w = 40.5 \%$ )                                                                                                                                                                                         | Mg <sup>2+</sup> , -2.8; Ca <sup>2+</sup> , -3.3;<br>Mn <sup>2+</sup> , -2.4; Ni <sup>2+</sup> , -3.0;<br>Co <sup>2+</sup> , -1.9;<br>Cd <sup>2+</sup> , -2.1                                                                                                                                 | FIM               | I                           | 10-2                                                                                           | 29                       | I                      | 25.0 $\pm$ 0.1 °C; [4]<br>cdl = 4.0 $\times$ 10 <sup>-7</sup> M;<br>$t_{resp} = 20$ s;<br>3.4 $\leq$ pH $\leq$ 6.1;<br>r.o.o.g. |
| Cu <sup>2+</sup> -17                             | <b>Cu<sup>2+1</sup>7</b> ( $w = 7$ %),<br>DOP ( $w = 31$ %),<br>PVC ( $w = 62$ %),                                                                                                                                                                                                      | Ni <sup>2+</sup> , -1.0; Co <sup>2+</sup> , -1.0                                                                                                                                                                                                                                              | I                 | I                           | I                                                                                              | 28                       | I                      | $t_{\text{resp}} < 10 \text{ s};$ [5]<br>$c_{\text{dl}} = 10^{-6} \text{ M};$                                                   |
| Cu <sup>2+</sup> -18                             | <b>Cu<sup>2+</sup>-18</b> ( $w = 2.6 \%$ ),<br>DOP ( $w = 64 \%$ ),<br>KTpCIPB ( $x_1 = 128 \%$ ),<br>PVC ( $w = 32 \%$ )                                                                                                                                                               | K <sup>+</sup> , interferes;<br>Ca <sup>2+</sup> , -1.7; Cd <sup>2+</sup> , -2.0;<br>Pb <sup>2+</sup> , -1.6                                                                                                                                                                                  | FIM               | I                           | 0.1<br>0.01                                                                                    | 31                       | I                      | [9]                                                                                                                             |
| Cu <sup>2+</sup> -19                             | $Cu^{2+1}Ig (w = 9.2 \%),$<br>DOP (w = 60 %),<br>KTpCIPB (x = 19 %),<br>PVC (w = 30 %)                                                                                                                                                                                                  | K+, interferes<br>Ca <sup>2+</sup> , -1.9; Cd <sup>2+</sup> , -2.1;<br>Pb <sup>2+</sup> , -1.7                                                                                                                                                                                                | FIM               | I                           | 0.1<br>0.01                                                                                    | 54-59                    | 1                      | [6]                                                                                                                             |
| (1) Z. Br<br>(2) Z. Br<br>(3) S. Ka<br>(4) S. Ka | Z. Brzózka, Analyst, <b>113</b> , 891-893 (1988).<br>Z. Brzózka, Analyst, <b>113</b> , 1803-1805 (1988).<br>S. Kamata, A. Bhale, Y. Fukunaga, H. Murata, Anal. Chem., <b>60</b> , 2464-2467 (1988).<br>S. Kamata, Y. Kubo, H. Murata, A. Bhale, Analyst, <b>114</b> , 1029-1031 (1989). | Anal. Chem., <b>60</b> , 2464-24<br>dyst, <b>114</b> , 1029-1031 (198                                                                                                                                                                                                                         | 67 (1988).<br>9). |                             |                                                                                                |                          |                        |                                                                                                                                 |

2029


continues on next page



J. Casabó, L. Escriche, S. Algret, C. Jaime, C. Pérez-Jiménez, L. Mestres, J. Rius, E. Molins, C. Miravitlles, F. Teixidor, *Inorg. Chem.*, **30**, 1893-1898 (1991).
 P.L.H.M. Cobben, R.J.M. Egberink, J.G. Bomer, P. Bergved, W. Verboon, D.N. Reinhoudt, *J. Am. Chem. Soc.*, **114**, 105773-10582 (1992).



© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082



Potentiometric selectivity coefficients of ion-selective electrodes

| Table 13: | Table 13: Ag <sup>+</sup> -Selective Electrodes                                                                                                             |                                                                                                                                                                                                                                                                                                 |        |              |                                                                                                                        |               |                                    |                                                    |      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|----------------------------------------------------|------|
| ionophore | ionophore membrane<br>composition                                                                                                                           | $\lg K_{\mathrm{Ag^+,B^{n+}}}$                                                                                                                                                                                                                                                                  | method | ary<br>conc. | 60                                                                                                                     | slope<br>(mV/ | linear<br>range                    | remarks                                            | ref. |
|           |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                 |        | (W)          | (W)                                                                                                                    | decade)       | (W)                                |                                                    |      |
| Ag+.1     | <b>Ag</b> <sup>+</sup> <b>1</b> ( $w = 2.8$ %),<br>dipicrylamine sodium salt<br>( $x_i = 16$ %),<br>PVC ( $w = 27.6$ %),<br>DOP ( $w = 69.1$ %)             | $\begin{array}{l} Li+,-4.3;Na+,-4.0;\\ K+,-4.5;NH_{4}+,-4.3;\\ Mg^{2+},-4.9;Ca^{2+},-4.7;\\ Fe^{3+},-3.7;Ni^{2+},-4.4;\\ Cu^{2+},-4.2;Zn^{2+},-4.1;\\ Cd^{2+},-4.6;Hg^{2+},-1.8;\\ Tl^+,-3.4\end{array}$                                                                                        | FIM    | 1            | I                                                                                                                      | 59            | 10-5-10-2                          | t <sub>resp</sub> < 30 s;<br>7 > 90 d;<br>1.0.0.g. | Ξ    |
|           | Ag+1 (Ag+-complex, $w = 3.3$ %),<br>dipicrylamine sodium salt<br>$(x_i = 10 \%)$ ,<br>PVC $(w = 27.5 \%)$ ,<br>DOP $(w = 68.9 \%)$                          | $\begin{array}{l} Li^+, -4.7;  Na^+, -4.9; \\ K^+, -4.6;  NH4^+, -4.6; \\ H^+, -3.6;  Mg^2+, -4.8; \\ Ca^2+, -4.6;  Fe^{3+}, -3.8; \\ Ca^2+, -4.1;  Ni^{2+}, -4.0; \\ Cu^{2+}, -3.9;  Zn^{2+}, -3.5; \\ Cd^{2+}, -4.2;  Hg^{2+}, -2.0; \\ Tl^+, -3.3;  Pb^{2+}, -3.7 \end{array}$               | FIM    | I            | Hg <sup>2+</sup> ,<br>5 × 10 <sup>-5</sup> ;<br>H <sup>+</sup> and<br>heavy metal<br>ions, 0.05;<br>other ions,<br>0.5 | z _           | 10-5-10-2                          | 25 °C;<br>1.0.0.g.                                 | [2]  |
|           | Ag+1 (Ag+-complex, $w = 3.3$ %),<br>dipicrylamic sodium salt<br>$(x_i = 10 \%)$ ,<br>PVC $(w = 27.5 \%)$ ,<br>BEHS $(w = 68.9 \%)$                          | $\begin{array}{c} Li^+, -4.4; Na^+, -4.4;\\ K^+, -4.7; NH4^+, -4.2;\\ H^+, -3.2; Mg^2+, -4.8;\\ Ca^2+, -4.8; Fe^{3+}, -3.8;\\ Ca^2+, -4.2; Ni^{2+}, -3.5;\\ Cu^{2+}, -4.2; Ni^{2+}, -3.5;\\ Cu^{2+}, -4.4; Hg^{2+}, -2.1;\\ Tl^+, -3.4; Pb^{2+}, -2.1;\\ Tl^+, -3.4; Pb^{2+}, -4.2 \end{array}$ | FIM    | I            | Hg <sup>2+</sup> ,<br>5 × 10 <sup>-5</sup> ;<br>H <sup>+</sup> and<br>heavy metal<br>ions, 0.05;<br>other ions,<br>0.5 | 59            | 10-5-10-2                          | 25 °C;<br>ℓresp < 30 s;<br>r.o.o.g.                | [3]  |
|           | Ag+1 (Ag+-complex, $w = 3.3$ %),<br>dipicrylamine sodium salt<br>$(x_i = 10 \%)$ ,<br>PVC $(w = 27.5 \%)$ ,<br>DOP $(w = 68.9 \%)$                          | $\begin{array}{l} Li^+, -4.7; Na^+, -4.9;\\ K^+, -4.6; NH4^+, -4.6;\\ H^+, -3.6; Mg^{2+}, -4.8;\\ Ca^{2+}, -4.7; Fe^{3+}, -3.8;\\ Ca^{2+}, -4.1; Ni^{2+}, -4.0;\\ Cu^{2+}, -3.9; Zn^{2+}, -3.5;\\ Cd^{2+}, -4.2; Hg^{2+}, -2.1;\\ Tl^+, -3.3; Pb^{2+}, -3.7\end{array}$                         | FIM    | I            | $Hg^{2+}$ ,<br>5 × 10 <sup>-5</sup> ;<br>H <sup>+</sup> and<br>heavy metal<br>ions, 0.05;<br>other ions,<br>0.5        | 59            | 10-5-10-2                          | 25 °C;<br>ℓresp < 30 s;<br>r.o.o.g.                | [3]  |
|           | <b>Ag+1</b> (Ag <sup>+</sup> -complex, $w = 3.3$ %),<br>dipicrylamine sodium salt<br>$(x_i = 10 \%)$ ,<br>PVC ( $w = 27.5 \%$ ),<br>oNPOE ( $w = 68.9 \%$ ) | $\begin{array}{l} Li^+, -4.4; Na^+, -4.8;\\ K^+, -4.2; NH_4^+, -4.5;\\ H^+, -3.2; Mg^{2+}, -4.7;\\ Ca^{2+}, -4.7; Fe^{3+}, -3.8;\\ Co^{2+}, -4.0; Ni^{2+}, -3.8;\\ Cu^{2+}, -3.9; Zn^{2+}, -3.3;\\ \end{array}$                                                                                 | FIM    | I            | $Hg^{2+}$ ,<br>5 × 10 <sup>-5</sup> ;<br>$H^+$ and<br>heavy metal<br>ions, 0.05;<br>other ions,                        | 59            | 10 <sup>-5</sup> -10 <sup>-2</sup> | 25 °C;<br>t <sub>resp</sub> < 30 s;<br>r.o.o.g.    | [3]  |

Y. UMEZAWA et al.

| ionophore | ionophore membrane<br>composition                                                                                                                                | $\lg K_{\mathrm{Ag^+,Bn^+}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | method | primary interferiu<br>ion conc. ion conc. | 50                                                                                                                   | slope<br>(mV/ | linear<br>range                    | remarks            | ref.                          | 1        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|--------------------|-------------------------------|----------|
|           |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | (W)                                       | (M)                                                                                                                  | decade)       | (M)                                |                    |                               |          |
|           |                                                                                                                                                                  | Cd <sup>2+</sup> , -4.2; Hg <sup>2+</sup> , -2.5;<br>Tl+, -3.4; Pb <sup>2+</sup> , -4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                           | 0.5                                                                                                                  |               |                                    |                    |                               |          |
|           | <b>Ag+-1</b> (Ag+-complex, $w = 3.3$ %),                                                                                                                         | Li+, -3.5; Na+, -3.9;<br>V+ 4.3: MH + 2.5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FIM    | I                                         | $Hg^{2+}$ ,<br>5 $\sim$ 10–5.                                                                                        | 59            | $10^{-5} - 10^{-2}$                | 25 °C;             | [3]                           |          |
|           | apperyramme south sate<br>( $x_1 = 10\%$ ),<br>PVC ( $w = 27.5\%$ ),<br>TEHP ( $w = 68.9\%$ )                                                                    | $\begin{array}{c} \mathbf{K}^{1}, -4.5, \mathbf{M}^{2}, \mathbf{K}^{1}, -5.5, \\ \mathbf{H}^{1}, -1.6, \mathbf{M}^{2}, +4.3; \\ \mathbf{C}^{2}, -4.0, \mathbf{F}^{3}, -2.8; \\ \mathbf{C}^{2}, -4.2, \mathbf{N}^{2}, +3.3; \\ \mathbf{C}^{2}, -3.3; \\ \mathbf{C}^{2}, -3.5; \mathbf{Z}^{2}, -3.3; \\ \mathbf{C}^{2}, -4.0; \mathbf{H}^{2}, -2.4; \\ \mathbf{T}^{2}, -1.0; \mathbf{H}^{2}, -2.4; \\ \mathbf{T}^{2}, -1.0; \mathbf{T}^{2}, -3.4; \\ \mathbf{T}^{2}, -1.0; \mathbf{T}^{2}, -2.4; \\ \mathbf{T}^{2}, -2.$ |        |                                           | $5 \times 10^{-5}$<br>H <sup>+</sup> and<br>heavy metal<br>ions, 0.05;<br>other ions,<br>0.5                         |               |                                    | r.o.o.g.           |                               |          |
| Ag+-2     | <b>Ag+-2</b> (Ag+-complex, $w = 3.3$ %),<br>dipicrylamine sodium salt<br>( $x_i = 10$ %),<br>PVC ( $w = 27.5$ %),<br>DOP ( $w = 68.9$ %)                         | L1, $-3.1$ , $\Gamma 0^{-7}$ , $-4.0$<br>L1, $-4.8$ , Na <sup>+</sup> , $-5.1$ ;<br>K <sup>+</sup> , $-4.7$ , NH4 <sup>+</sup> , $-4.9$ ;<br>H <sup>+</sup> , $-3.6$ , Mg <sup>2+</sup> , $-4.9$ ;<br>Ca <sup>2+</sup> , $-4.6$ ; Fe <sup>3+</sup> , $-3.9$ ;<br>Ca <sup>2+</sup> , $-4.1$ ; Ni <sup>2+</sup> , $-3.3$ ;<br>Cu <sup>2+</sup> , $-4.2$ ; Zu <sup>2+</sup> , $-3.3$ ;<br>Cd <sup>2+</sup> , $-4.4$ ; Hg <sup>2+</sup> , $-2.3$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIM    | I                                         | $Hg^{2+}$ , $5 \times 10^{-5}$ ; $H^+$ and heavy metal ions, 0.05; other ions, 0.5                                   | Z             | 10 <sup>-5</sup> -10 <sup>-2</sup> | 25 °C;<br>1.0.0.g. | [2]                           |          |
| Ag+-3     | <b>Ag<sup>+</sup>-3</b> (Ag <sup>+</sup> -complex, $w = 3.3$ %),<br>dipicrylamic sodium salt<br>( $x_i = 10$ %),<br>PVC ( $w = 27.5$ %),<br>DOP ( $w = 68.9$ %)  | $\begin{array}{l} Tl+, -3.9; Pb^{2+}, -3.8\\ Li^+, -4.8; Na^+, -5.0;\\ K^+, -4.8; NH4^+, -4.8;\\ H^+, -3.2; Mg^{2+}, -4.7;\\ Ca^{2+}, -4.8; Fe^{3+}, -3.6;\\ Co^{2+}, -4.4; Ni^{2+}, -3.2;\\ Cu^{2+}, -4.4; Ni^{2+}, -3.2;\\ Cu^{2+}, -4.4; Ni^{2+}, -1.5;\\ Cd^{2+}, -4.4; Ho^{2+}, -1.5;\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIM    | I                                         | Hg <sup>2+</sup> ,<br>$5 \times 10^{-5}$ ;<br>H <sup>+</sup> and<br>heavy metal<br>ions, 0.05;<br>other ions,<br>0.5 | z             | 10-5-10-2                          | 25 °C;<br>I.o.o.g. | [2]                           |          |
| Ag+-4     | <b>Ag<sup>+</sup>-4</b> (Ag <sup>+</sup> -complex, $w = 3.3$ %),<br>dipicrylamine sodium salt<br>( $x_i = 10$ %),<br>PVC ( $w = 27.5$ %),<br>DOP ( $w = 68.9$ %) | T1+, $-3.8$ ; $Pb^{2+}$ , $-3.9$<br>L1+, $-4.8$ ; $Na^{+}$ , $-4.9$ ;<br>K+, $-4.8$ ; $Nl4^{+}$ , $-4.7$ ;<br>H+, $-3.5$ ; $Mg^{2+}$ , $-4.9$ ;<br>Ca <sup>2+</sup> , $-4.6$ ; $Fe^{3+}$ , $-3.7$ ;<br>Ca <sup>2+</sup> , $-4.1$ ; $Nl^{2+}$ , $-4.0$ ;<br>Cu <sup>2+</sup> , $-4.0$ ; $Zn^{2+}$ , $-3.3$ ;<br>Cu <sup>2+</sup> , $-4.0$ ; $Zn^{2+}$ , $-4.0$ ;<br>Cu <sup>2+</sup> , $-4.0$ ; $Zn^{2+}$ , $-1.8$ ;<br>Cu <sup>2+</sup> , $-4.0$ ; $Zn^{2+}$ , $-1.8$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIM    | I.                                        | ${ m Hg}^{2+},$<br>5 × 10 <sup>-5</sup> ;<br>H <sup>+</sup> and<br>heavy metal<br>ions, 0.05;<br>other ions,<br>0.5  | N             | 10-5-10-2                          | 25 °C;<br>I.o.o.g. | [2]                           |          |
| Ag+-5     | <b>Ag+5</b> (Ag+-complex, $w = 3.3$ %), dipicrylamine sodium salt                                                                                                | TI <sup>+</sup> , -3.6; Pb <sup>2+</sup> , -3.8<br>Li <sup>+</sup> , -5.0; Na <sup>+</sup> , -4.7;<br>K <sup>+</sup> , -4.9; NH <sub>4</sub> <sup>+</sup> , -4.5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIM    | I                                         | $Hg^{2+}, 5 \times 10^{-5};$                                                                                         | Z             | 10-5-10-2                          | 25 °C;<br>r.o.o.g. | [2]<br>continues on next page | ext page |

| ionophore          | ionophore membrane                              | ${ m lg}K_{ m Ag^+,B^{n+}}$                                                                                       | method | primary   | interfering         | slope   | linear                | remarks                                      | ref.               |
|--------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------------|---------|-----------------------|----------------------------------------------|--------------------|
|                    | composition                                     |                                                                                                                   |        | ion conc. | ion conc. ion conc. | (mV/    | range                 |                                              |                    |
|                    |                                                 |                                                                                                                   |        | (W)       | (W)                 | decade) | (W)                   |                                              |                    |
|                    | $(x_{\rm i} = 10 \ \%),$                        | H <sup>+</sup> , -3.4; Mg <sup>2+</sup> , -4.8;                                                                   |        |           | H <sup>+</sup> and  |         |                       |                                              |                    |
|                    | PVC ( $w = 27.5\%$ ),                           | Ca <sup>2+</sup> , -4.6; Fe <sup>3+</sup> , -3.7;                                                                 |        |           | heavy metal         | l       |                       |                                              |                    |
|                    | DOP $(w = 68.9 \%)$                             | Co <sup>2+</sup> , -4.1; Ni <sup>2+</sup> , -4.1;                                                                 |        |           | ions, 0.05;         |         |                       |                                              |                    |
|                    |                                                 | Cu <sup>2+</sup> , -4.1; Zn <sup>2+</sup> , -3.4;                                                                 |        |           | other ions,         |         |                       |                                              |                    |
|                    |                                                 | Cd <sup>2+</sup> , -4.6; Hg <sup>2+</sup> , -1.6;<br>Tl+, -3.6; Pb <sup>2+</sup> , -3.8                           |        |           | 0.5                 |         |                       |                                              |                    |
| Ag+-6              | <b>Ag</b> <sup>+</sup> - <b>6</b> ( $w = 7$ %), | Na <sup>+</sup> , -4.89; K <sup>+</sup> , -4.77;                                                                  | FIM    | I         | Hg <sup>2+</sup> .  | 59      | $10^{-6} - 10^{-1}$   | 25.0                                         | [4]                |
| D                  | DOP(w = 31%),                                   | Mg <sup>2+</sup> , -5.31; Ca <sup>2+</sup> , -4.96;                                                               |        |           | 10-5;               |         |                       | ± 0.1 °C;                                    |                    |
|                    | PVC $(w = 62\%)$                                | Sr <sup>2+</sup> , -5.00; Co <sup>2+</sup> , -5.60;                                                               |        |           | other ions,         |         |                       | $t_{\rm resp} < 10 \ {\rm s};$               |                    |
|                    |                                                 | Ni <sup>2+</sup> , -4.35; Cu <sup>2+</sup> , -4.89;                                                               |        |           | 0.1                 |         |                       | $c_{\rm dl} = 3 \times 10^{-7} \rm M;$       | ' M;               |
|                    |                                                 | Zn <sup>2+</sup> , -5.57; Cd <sup>2+</sup> , -5.41;<br>H <sup>o<sup>2+</sup>, -2.30; Ph<sup>2+</sup>, -4.92</sup> |        |           |                     |         |                       | τ>120 d                                      |                    |
|                    |                                                 | $N_{3} + 4 80 \cdot K + 4 77$                                                                                     | FIM    | 1         | I                   | 50      | $10^{-7}$             | 25.0                                         | [5]                |
|                    |                                                 | $M_{0}^{2+} = 531 \cdot C_{3}^{2+} = 496$                                                                         |        |           |                     | 6       | 01- 01                | + 0.1 °C:                                    | [2]                |
|                    |                                                 | $Sr^{2+}$ , -5.00; $Co^{2+}$ , -5.60;                                                                             |        |           |                     |         |                       | $\frac{1}{t_{resn}} < 5$ s:                  |                    |
|                    |                                                 | Ni <sup>2+</sup> , -5.74; Cu <sup>2+</sup> , -5.10;                                                               |        |           |                     |         |                       | $c_{\rm cdl} = 3.0 \times 10^{-7} {\rm M}$ : | ⊢ <sup>7</sup> M:  |
|                    |                                                 | Zn <sup>2+</sup> , -5.57: Cd <sup>2+</sup> , -4.41:                                                               |        |           |                     |         |                       | $\tau > 390  d$ :                            | ×                  |
|                    |                                                 | Hg <sup>2+</sup> , -2.30; Tl+, -4.89;                                                                             |        |           |                     |         |                       | 2.5 < pH < 8.5                               | 5                  |
|                    |                                                 | Pb <sup>2+</sup> , –4.92                                                                                          |        |           |                     |         |                       |                                              |                    |
| Ag+-7              | $\mathbf{Ag^{+}}\mathbf{-7} \ (w = 7 \ \%),$    | Na+, -4.89; K+, -4.24;                                                                                            | FIM    | I         | I                   | 59      | $10^{-7}$ - $10^{-2}$ | 25.0                                         | [5]                |
|                    | DOP ( $w = 31$ %),                              | Mg <sup>2+</sup> , -5.26; Ca <sup>2+</sup> , -4.74;                                                               |        |           |                     |         |                       | ± 0.1 °C;                                    |                    |
|                    | PVC ( $w = 62 \ \%$ )                           | Sr <sup>2+</sup> , -4.80; Co <sup>2+</sup> , -4.82;                                                               |        |           |                     |         |                       | $t_{\rm resp} < 10 \ {\rm s};$               |                    |
|                    |                                                 | Ni <sup>2+</sup> , -5.01; Cu <sup>2+</sup> , -4.51;                                                               |        |           |                     |         |                       | $c_{\rm dl} = 1.4 \times 10^{-6} \rm M;$     | г <sup>-6</sup> М; |
|                    |                                                 | Zn <sup>2+</sup> , -5.92; Cd <sup>2+</sup> , -4.26;                                                               |        |           |                     |         |                       | τ> 240 d;                                    |                    |
|                    |                                                 | Hg <sup>2+</sup> , -2.10; Tl <sup>+</sup> , -3.85;<br>Pb <sup>2+</sup> , -5.10                                    |        |           |                     |         |                       | 2.5 < pH < 8.3                               | 9                  |
| Ag <sup>+</sup> -8 | $Ag^{+}-8 (w = 7 \%),$                          | Na <sup>+</sup> , -5.13; K <sup>+</sup> , -4.92;                                                                  | FIM    | I         | I                   | 56      | $10^{-7}$ -10^{-2}    | 25.0                                         | [5]                |
|                    | DOP ( $w = 31 \%$ ),                            | Mg <sup>2+</sup> , -5.36; Ca <sup>2+</sup> , -5.44;                                                               |        |           |                     |         |                       | ± 0.1 °C;                                    |                    |
|                    | PVC ( $w = 62\%$ )                              | $Sr^{2+}$ , -5.34; $Co^{2+}$ , -4.85;                                                                             |        |           |                     |         |                       | $t_{\text{resp}} < 5 \text{ s};$             | ľ                  |
|                    |                                                 | N1 <sup>2+</sup> , -5.31; Cu <sup>2+</sup> , -5.05;                                                               |        |           |                     |         |                       | $c_{\rm dl} = 6.7 \times 10^{-7} \rm M;$     | ⊤′ M;              |
|                    |                                                 | Zn <sup>2+</sup> , -5.41; Cd <sup>2+</sup> , -5.03;                                                               |        |           |                     |         |                       | $\tau > 270 \text{ d};$                      |                    |
|                    |                                                 | Hg <sup>2+</sup> , –2.64; Tl <sup>+</sup> , –4.35;<br>Pb <sup>2+</sup> , –5.20                                    |        |           |                     |         |                       | 1.8 < pH < 8.5                               | 5                  |
|                    | $Ag^{+}-8 (w = 7 \%),$                          | Na <sup>+</sup> , -5.1; Ca <sup>2+</sup> , -5.4;                                                                  | FIM    | I         | 0.1                 | 56      | I                     | $t_{\rm resn} < 5 {\rm s};$                  | [6]                |
|                    | DOP $(w = 62 \%)$ ,                             | Co <sup>2+</sup> , -4.9; Ni <sup>2+</sup> , -5.3;                                                                 |        |           |                     |         |                       | $c_{\rm dl} = 6.7 \times 10^{-7} {\rm M};$   | ⊢ <sup>7</sup> M;  |
|                    | PVC ( $w = 31 \ \%$ )                           | Cu <sup>2+</sup> , -5.0; Zn <sup>2+</sup> , -5.4;                                                                 |        |           |                     |         |                       | $\tau > 270 \text{ d};$                      |                    |
|                    |                                                 | Cd <sup>2+</sup> , -5.0; Pb <sup>2+</sup> , -5.2                                                                  |        |           |                     |         |                       | 1.8 < pH < 8.5                               | 5                  |

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

## Y. UMEZAWA et al.

| ionophore | ionophore membrane                                                                                                                                    | $\lg K_{\mathrm{Ag^+,Bn^+}}$                                                                                                                                                                                         | method | primary             | primary interfering | slope | linear        | remarks 1                                                                            | ref.                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|---------------------|-------|---------------|--------------------------------------------------------------------------------------|-------------------------------|
|           | composition                                                                                                                                           |                                                                                                                                                                                                                      |        | ion conc. ion conc. | ion conc.           | (mV/  | range         |                                                                                      |                               |
| Ag+-9     | <b>Ag<sup>+,9</sup></b> ( $w = 0.66 \%$ ),<br><b>KTpCIPB</b> ( $x_1 = 72 \%$ ),<br><b>onPote</b> ( $w = 65.84 \%$ ),<br><b>DVC</b> ( $w = 33.33 \%$ ) | Na <sup>+</sup> , +0.06; K <sup>+</sup> , -1.95;<br>Co <sup>2+</sup> , -3.10; Ni <sup>2+</sup> , -3.72;<br>Cu <sup>2+</sup> , -3.38; Hg <sup>2+</sup> , +0.39;<br>Ph <sup>2+</sup> , -0.55                           | SSM    | 0.1                 | 0.1                 | 38.26 | 10-3.8-10-1.8 | 25 °C;<br>c <sub>dl</sub> = 10 <sup>-3.8</sup><br>-10 <sup>-4</sup> M                | [7, 8]                        |
| Ag+-10    | <b>Ag<sup>+</sup>-10</b> ( $w = 0.66 \%$ ),<br><b>KTpCIPB</b> ( $w = 0.66 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>PVC ( $w = 33.33 \%$ )               | Na <sup>+</sup> , +0.27; K <sup>+</sup> , -1.97;<br>Co <sup>2+</sup> , -2.84; Ni <sup>2+</sup> , -3.25;<br>Cu <sup>2+</sup> , -2.80; Hg <sup>2+</sup> , +1.65;<br>Pb <sup>2+</sup> , -1.68                           | SSM    | 0.1                 | 0.1                 | 45.67 | 10-3.8_10-1.0 | 25 °C;<br>cdl = 10 <sup>-3.8</sup><br>-10 <sup>-4</sup> M;                           | [7, 8]                        |
| Ag+-11    | <b>Ag+-11</b> ( <i>w</i> = 0.66 %),<br>KTpCIPB ( <i>x</i> = 55 %),<br>oNPOE ( <i>w</i> = 65.84 %),<br>PVC ( <i>w</i> = 33.33 %)                       | Na <sup>+</sup> , +0.73; K <sup>+</sup> , -2.29;<br>Co <sup>2+</sup> , -3.58; Ni <sup>2+</sup> , -3.36;<br>Cu <sup>2+</sup> , -3.67; Cd <sup>2+</sup> , -3.29;<br>Hg <sup>2+</sup> , +0.62; Pb <sup>2+</sup> , -3.19 | SSM    | 0.1                 | 0.1                 | 47.64 | 10-4.0_10-1.0 | 25 °C;<br>cdl = 10 <sup>-3.8</sup><br>-10 <sup>-4</sup> M;                           | [7, 8]                        |
| Ag+-12    | <b>Ag<sup>+</sup>-12</b> ( $w = 0.66 \%$ ),<br>KTpCIPB ( $x_1 = 61 \%$ ),<br>oNPOE ( $w = 65.84 \%$ ),<br>PVC ( $w = 33.33 \%$ )                      | Na <sup>+</sup> , -1.16; K <sup>+</sup> , -2.01;<br>Co <sup>2+</sup> , -3.08; Ni <sup>2+</sup> , -3.08;<br>Cu <sup>2+</sup> , -3.3; Cd <sup>2+</sup> , -2.57;<br>Hg <sup>2+</sup> , +1.93; Pb <sup>2+</sup> , -1.81  | SSM    | 0.1                 | 0.1                 | 50.01 | 10-4.0_10-1.0 | 25 °C;<br>$c_{\rm dl} = 10^{-4}$ M;<br>$t_{\rm resp} = 3$ s                          | [7, 8]                        |
|           |                                                                                                                                                       | Na <sup>+</sup> , -1.21; K <sup>+</sup> , -2.14;<br>Co <sup>2+</sup> , -3.02; Ni <sup>2+</sup> , -3.02;<br>Cu <sup>2+</sup> , -2.59; Hg <sup>2+</sup> , -1.79;<br>Pb <sup>2+</sup> , -1.86                           | SSM    | 0.1                 | 0.1                 | 51.74 | I             | 25 °C; [7]<br>$c_{\rm dl} = 10^{-4}$ M;<br>$t_{\rm resp} = 2$ s;<br>on glassy carbon | [7]<br>oon                    |
| Ag+-13    | <b>Ag<sup>+</sup>-13</b> ( $w = 2$ %),<br><b>KTpcIPB</b> ( $x_1 = 10$ %),<br>oNPOE ( $w = 65$ %),<br><b>PVC</b> ( $w = 33$ %)                         | $\begin{array}{c} K^+, -2.2;  Ca^{2+}, -3.5; \\ Cu^{2+}, -3.2;  Cd^{2+}, -3.2; \\ Pb^{2+}, -3.2\end{array}$                                                                                                          | FIM    | I                   | 0.01                | I     |               | CHEMFET; [9]<br>r.o.o.g.                                                             | [6]                           |
|           | <b>Ag<sup>+</sup>13</b> ( $w = 2$ %),<br>KTpCIPB ( $x_1 = 50$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 32$ %)                                        | $\begin{array}{c} K^+, -2.6; \ Ca^{2+}, -3.4; \\ Cu^{2+}, -3.9; \ Cd^{2+}, -3.7; \\ Hg^{2+}, -1.0; \ Pb^{2+}, -3.6 \end{array}$                                                                                      | FIM    | I                   | 0.01                | I     | I             | CHEMFET;<br>r.o.o.g.                                                                 | [6]                           |
| Ag+-14    | <b>Ag<sup>+</sup>-14</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                                                   | K+, -2.0; Ca <sup>2+</sup> , -2.8;<br>Cu <sup>2+</sup> , -3.2; Cd <sup>2+</sup> , -3.1;<br>Pb <sup>2+</sup> , -3.0                                                                                                   | FIM    | I                   | 0.01                | I     | I             | CHEMFET;<br>r.o.o.g.                                                                 | [6]                           |
|           | <b>Ag<sup>+</sup>-14</b> ( $w = 2$ %),<br>KTpCIPB ( $x_1 = 10$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                                       | K+, -2.3; Ca <sup>2+</sup> , -4.6;<br>Cu <sup>2+</sup> , -3.6; Cd <sup>2+</sup> , -3.6;<br>Pb <sup>2+</sup> , -3.8                                                                                                   | FIM    | I                   | 0.01                | I     | I             | CHEMFET;<br>r.o.o.g.                                                                 | [6]                           |
|           | $Ag^{+}.14 (w = 2 \%),$<br>KTpCIPB $(x_i = 50 \%),$                                                                                                   | K+, -2.9; Ca <sup>2+</sup> , -4.4;<br>Cu <sup>2+</sup> , -4.1; Cd <sup>2+</sup> , -4.5;                                                                                                                              | FIM    | I                   | 0.01                | I     | I             | CHEMFET; [9]<br>r.o.o.g.                                                             | [9]<br>continues on next page |

| on on one | incurbers membrane                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             | mathod              | 1 Pro Contractor    | intoufoning | clono -       | lincor                             |                                                                                                                    |                            |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------|---------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|
| nonopiior |                                                                                                                                     | ığı Ag <sup>+</sup> ,Bu+                                                                                                                                                                                                                                                                                                                                                    |                     | ion conc. ion conc. | ion conc.   | (mV/          | range                              | IVIIIALINS                                                                                                         | 141.                       |
|           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             |                     | (M)                 | (M)         | decade)       | (M)                                |                                                                                                                    |                            |
|           | oNPOE ( $w = 64 \%$ ),<br>PVC ( $w = 32 \%$ )                                                                                       | Pb <sup>2+</sup> , -4.5                                                                                                                                                                                                                                                                                                                                                     |                     |                     |             |               |                                    |                                                                                                                    |                            |
|           | <b>Ag<sup>+</sup>-14</b> ( $w = 1.9$ %),<br><b>KTp</b> CIPB ( $r_i = 100$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 32$ %)          | $\begin{array}{c} K^+,-3.0; Ca^{2+},-4.3;\\ Cu^{2+},-4.0; Cd^{2+},-4.3;\\ Pb^{2+},-4.3\end{array}$                                                                                                                                                                                                                                                                          | FIM                 | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>1.0.0.g.                                                                                           | [6]                        |
| Ag+-15    | <b>Ag<sup>+</sup>-15</b> ( $w = 2$ %),<br><b>KTpCIPB</b> ( $x_i = 50$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 32$ %)              | K <sup>+</sup> , -3.2; Ca <sup>2+</sup> , -4.5;<br>Cu <sup>2+</sup> , -4.8; Cd <sup>2+</sup> , -4.8;<br>Pb <sup>2+</sup> , -4.7                                                                                                                                                                                                                                             | FIM                 | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>r.o.o.g.                                                                                           | [6]                        |
| Ag+-16    | <b>Ag<sup>+</sup>-16</b> ( $w = 2$ %),<br><b>KTpCIPB</b> ( $x_i = 50$ %),<br>oNPOE ( $w = 64$ %),<br>PVC ( $w = 32$ %)              | K <sup>+</sup> , -2.8; Ca <sup>2+</sup> , -4.1 (-4.2) FIM<br>Cu <sup>2+</sup> , -4.1; Cd <sup>2+</sup> , -4.1 (-4.2)<br>Pb <sup>2+</sup> , -4.1                                                                                                                                                                                                                             | ) FIM<br>.2)        | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>1.0.0.g.                                                                                           | [6]                        |
| Ag+-17    | <b>Ag<sup>+</sup>17</b> ( $w = 2$ %),<br><b>KTpCIPB</b> ( $x_i = 10$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)               | K <sup>+</sup> , -2.9; Ca <sup>2+</sup> , -4.1<br>Cu <sup>2+</sup> , -4.3; Cd <sup>2+</sup> , -4.0;<br>Hg <sup>2+</sup> , -1.8; Pb <sup>2+</sup> , -4.2                                                                                                                                                                                                                     | FIM                 | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>1.0.0.g.                                                                                           | [6]                        |
|           | Ag <sup>+</sup> 17 ( $w = 2$ %),<br>KTpCIPB ( $x_i = 50$ %),<br>oNPOE ( $w = 63$ %),<br>PVC ( $w = 33$ %)                           | K <sup>+</sup> , -3.1; Ca <sup>2+</sup> , -4.1<br>Cu <sup>2+</sup> , -4.3; Cd <sup>2+</sup> , -4.1;<br>Hg <sup>2+</sup> , -1.3; Pb <sup>2+</sup> , -4.2                                                                                                                                                                                                                     | FIM                 | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>r.o.o.g.                                                                                           | [6]                        |
| Ag+-18    | $\begin{array}{l} Ag^{+}18 \ (w=2 \ \%), \\ KTpCIPB \ (r_{i}=50 \ \%), \\ oNPOE \ (w=64 \ \%), \\ PVC \ (w=33 \ \%). \end{array}$   | $\begin{array}{c} K^{+},-3.0;Ca^{2+},-4.0\\ Cu^{2+},-4.1;Cd^{2+},-4.3;\\ Pb^{2+},-4.3\end{array}$                                                                                                                                                                                                                                                                           | FIM                 | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>1.0.0.g.                                                                                           | [6]                        |
| Ag+-19    | <b>Ag<sup>+</sup>19</b> ( $w = 2$ %),<br><b>KTpCIPB</b> ( $x_i = 50$ %),<br><b>oNPOE</b> ( $w = 64$ %),<br><b>PVC</b> ( $w = 32$ %) | K <sup>+</sup> , -2.8; Ca <sup>2+</sup> , -3.3<br>Cu <sup>2+</sup> , -3.9; Cd <sup>2+</sup> , -3.8;<br>Pb <sup>2+</sup> , -4.1                                                                                                                                                                                                                                              | FIM                 | I                   | 0.01        | I             | I                                  | CHEMFET; [9]<br>1.0.0.g.                                                                                           | [6]                        |
| Ag+-20    | <b>Ag<sup>+</sup>-20</b> ( $w = 7$ %),<br>DOP ( $w = 62$ %),<br>PVC ( $w = 31$ %)                                                   | Na <sup>+</sup> , -4.721; K <sup>+</sup> , -4.770;<br>Mg <sup>2+</sup> , -5.553;<br>Ca <sup>2+</sup> , -5.094; Sr <sup>2+</sup> , -5.387;<br>Co <sup>2+</sup> , -5.004; Ni <sup>2+</sup> , -5.602;<br>Cu <sup>2+</sup> , -4.770; Zn <sup>2+</sup> , -5.114;<br>Cu <sup>2+</sup> , -5.155; Hg <sup>2+</sup> , -5.013;<br>Tl <sup>+</sup> , -4.959; Pb <sup>2+</sup> , -5.056 | FIM<br>2; ;<br>3; ; | I                   | I           | 59.1<br>± 0.7 | 10 <sup>-7</sup> -10 <sup>-2</sup> | $25.0 \pm 0.1$ °C; [10]<br>$f_{\text{resp}} < 5$ s;<br>$c_{\text{cdl}} = 5.60 \times 10^{-7}$ M;<br>$\tau > 270$ d | [10]<br>0 <sup>-7</sup> M; |

#### Y. UMEZAWA et al.

| Table 13: | Table 13: Ag <sup>+</sup> -Selective Electrodes (Continued)                                                   |                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                                            |                 |                                    |                                                                                                                                                   |  |
|-----------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|--------------------------------------------|-----------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ionophore | ionophore membrane                                                                                            | lgK <sub>Ag</sub> +,Bn+ 1                                                                                                                                                                                                                                                                                                                                                     | method    | primary          | primary interfering slope                  | slope           | linear                             | remarks ref.                                                                                                                                      |  |
|           | composition                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                               |           | ion conc.<br>(M) | ion conc. ion conc.<br>(M) (M)             | (mV/<br>decade) | range<br>(M)                       |                                                                                                                                                   |  |
| Ag+-21    | <b>Ag'-21</b> ( $w = 7$ %),<br>DOP ( $w = 62$ %),<br>PVC ( $w = 31$ %)                                        | Na <sup>+</sup> , -4.833; K <sup>+</sup> , -4.983; 1<br>Mg <sup>2+</sup> , -5.458;<br>Ca <sup>2+</sup> , -5.344; Sr <sup>2+</sup> , -5.389;<br>Co <sup>2+</sup> , -5.259; Ni <sup>2+</sup> , -5.658;<br>Cu <sup>2+</sup> , -5.055; Zn <sup>2+</sup> , -5.412;<br>Cd <sup>2+</sup> , -5.556; Hg <sup>2+</sup> , -2.983;<br>Tl <sup>+</sup> , -4.845; Pb <sup>2+</sup> , -5.453 | FIM       | 1                | 1                                          | 59.5<br>± 0.1   | 10-/-10-2                          | $25.0 \pm 0.1 \text{ 'C: } [10]$ $t_{\text{resp}} < 4 \text{ s;}$ $c_{\text{cl}} = 7 \times 10^{-7} \text{ M;}$ $\tau > 210 \text{ d}$            |  |
| Ag+-22    | $Ag^+-22 (w = 7 %),$<br>DOP (w = 62 %),<br>PVC (w = 31 %)                                                     | $\begin{array}{l} Na^+, -4.921; K^+, -4.886;\\ Mg^{2*}, -5.260;\\ Ca^{2+}, -5.347; Co^{2+}, -5.009;\\ Ni^{2+}, -5.367; Cu^{2+}, -4.959;\\ Ni^{2+}, -5.367; Cd^{2+}, -4.959;\\ Hg^{2+}, -2.745; Tl^+, -4.638;\\ Pb^{2+}, -4.237\end{array}$                                                                                                                                    | FIM       | I                | I                                          | 60.5<br>± 0.5   | 10 <sup>-7</sup> -10 <sup>-2</sup> | $25.0 \pm 0.1 \text{ °C; [10]}$<br>$t_{\text{resp}} < 5 \text{ s;}$<br>$c_{\text{cd}} = 1.26 \times 10^{-6} \text{ M;}$<br>$\tau > 210 \text{ d}$ |  |
| Ag+-23    | $Ag^{+}-23 (w = 7 \%),$<br>DOP (w = 62 %),<br>PVC (w = 31 %)                                                  | $\begin{split} Na^+, -4.585; K^+, -4.319; \\ Mg^{2+}, -5.161; \\ Ca^{2+}, -5.041; Co^{2+}, -4.854; \\ Ni^{2+}, -5.409; Cu^{2+}, -5.056; \\ Zn^{2+}, -4.770; Cd^{2+}, -4.921; \\ Hg^{2+}, -2.796; Tl^+, -4.244; \\ Pb^{2+}, -5.004 \end{split}$                                                                                                                                | HIM       | I                | I                                          | 57.9<br>± 0.5   | 10 <sup>-7</sup> -10 <sup>-2</sup> | $25.0 \pm 0.1 ^{\circ}C; [10]$<br>$t_{resp} < 10 s;$<br>$c_{d1} = 1.58 \times 10^{-6} M;$<br>$\tau > 120 ^{\circ}d$                               |  |
| Ag+-24    | $Ag^{+}-24$ ( $w = 1\%$ ),<br>KTpCIPB ( $x_i = 75\%$ ),<br>BBPA ( $w = 65-66\%$ ),<br>PVC ( $w = 33\%$ )      | $ \begin{array}{ll} Li^+,-5.0; Na^+,-5.0; & FI\\ K^+,-4.8; NH_4^+,-5.0;\\ Mg^{2+},-5.4; Ca^{2+},-5.4;\\ Ba^{2+},-5.4; Co^{2+},-5.4;\\ Ba^{2+},-5.4; Cu^{2+},-5.2;\\ Ni^{2+},-5.4; Cu^{2+},-5.2;\\ Mg^{2+},-2.2, (pH2); Pb^{2+},-4.7\\ Hg^{2+},-2.2 (pH2); Pb^{2+},-4.7\\ \end{array}$                                                                                         | FIM<br>.7 | I                | 0.1<br>Hg <sup>2+</sup> , 10 <sup>-4</sup> | 54.7            | < 10 <sup>-3</sup>                 | 20 °C; [11]<br>195 < 15 s;<br>cal = 10-5.5 M;<br>pH > 3;<br>drift of -0.02<br>mV/day                                                              |  |
| Ag+-25    | Ag <sup>+</sup> -25 ( $w = 1$ %),<br>KTpCIPB ( $x_i = 75$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %) | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                         | FIM<br>.6 | I                | 0.1<br>Hg <sup>2+</sup> , 10 <sup>-4</sup> | 53.7            | < 10 <sup>-2.5</sup>               | 20 °C; [11]<br>$t_{95} < 10 s;$<br>$c_{d1} = 10^{-6.0} M;$<br>pH > 2.5;<br>drift of -1.0<br>mV/day                                                |  |

# Potentiometric selectivity coefficients of ion-selective electrodes

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| Table 13: | Table 13: Ag <sup>+</sup> -Selective Electrodes (Continued)                                                |                                                                                                               |        |                  |                                                           |                 |                      |                                            |                    |  |
|-----------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------|------------------|-----------------------------------------------------------|-----------------|----------------------|--------------------------------------------|--------------------|--|
| ionophore |                                                                                                            | $lgK_{Ag^+,Bn^+}$                                                                                             | method | primary          | 60                                                        | slope           | linear               | remarks                                    | ref.               |  |
|           | composition                                                                                                |                                                                                                               |        | ion conc.<br>(M) | 10n conc. 10n conc.<br>(M) (M)                            | (mV/<br>decade) | range<br>(M)         |                                            |                    |  |
|           | <b>Ag+-25</b> ( $w = 1$ %),<br><b>KTnCIDB</b> ( $v = -75$ %)                                               | Li+, -5.3; Na+, -5.0;<br>k+ _4 6: NH + _5 3:                                                                  | FIM    | I                | 0.1<br>Ha2+ 10-4                                          | 56.7            | < 10 <sup>-1.0</sup> | 20 °C;<br>*** < 10 :-                      | [11]               |  |
|           | <b>BBPA</b> ( $w = 65-66\%$ ),                                                                             | $Mg^{2+}$ , -5.5; $Ca^{2+}$ , -5.5;                                                                           |        |                  | . or ' _SII                                               |                 |                      | $c_{\rm dl} = 10^{-5.4}  {\rm M};$         | M;                 |  |
|           | PVC $(w = 33\%)$                                                                                           | Ba <sup>2+</sup> , -5.5; Co <sup>2+</sup> , -5.5;<br>Ni2+ -5.0: Cu2+ -5.3:                                    |        |                  |                                                           |                 |                      | pH > 2.5;<br>drift of =0.36                |                    |  |
|           |                                                                                                            | +                                                                                                             | -4.6   |                  |                                                           |                 |                      | mV/day                                     | 0                  |  |
|           | Ag <sup>+</sup> -25 ( $w = 1.9 \%$ ),<br>VTEDB ( $w = 50\%$ ) molecularized                                | $K^+, -4.7; H^+, -2.5; C_{0.2+}, -4.3; C_{0.2+}, -4.3; C_{0.2+}, -4.4;$                                       | FIM    | I                | 0.1<br>V+ 1                                               | I               | I                    | CHEMFET                                    | [12]               |  |
|           | functionalized with 10 % $(w = 96.9 \text{ km})$                                                           | Cd <sup>2+</sup> , -4.0; Hg <sup>2+</sup> , -2.4                                                              |        |                  | H <sup>+</sup> , 10 <sup>-2.5</sup>                       |                 |                      |                                            |                    |  |
|           | $Ag^{+}-25 (w = 1.9 \%),$                                                                                  | K <sup>+</sup> , -3.8; H <sup>+</sup> , -2.5;                                                                 | FIM    | I                | 0.1                                                       | I               | I                    | CHEMFET                                    | [12]               |  |
|           | <b>KTFPB</b> ( $x_i = 50 \%$ ), polysiloxane functionalized with 10 %                                      | Ca <sup>2+</sup> , -4.2; Cu <sup>2+</sup> , -4.4;<br>Cd <sup>2+</sup> , -4.0; Hg <sup>2+</sup> , -2.0         |        |                  | K <sup>+</sup> , 1<br>H <sup>+</sup> , 10 <sup>-2.5</sup> |                 |                      |                                            |                    |  |
|           | 3-( $p$ -acetylphenoxy)propyl group<br>( $w = 96.9$ %), dimethoxy-2-phenyl-<br>acetophenone ( $w = 0.5$ %) | )                                                                                                             |        |                  | Hg <sup>2+</sup> , 10 <sup>-4</sup>                       |                 |                      |                                            |                    |  |
|           | $Ag^{+}-25 (w = 1.9 \%),$                                                                                  | K+, -5.3; H+, -2.3;                                                                                           | FIM    | I                | 0.1                                                       | I               | I                    | CHEMFET                                    | [12]               |  |
|           | KTFPB ( $x_i = 50 \%$ ), polysiloxane functionalized with 10 %                                             | Ca <sup>2+</sup> , -3.9; Cu <sup>2+</sup> , -4.4;<br>Cd <sup>2+</sup> -3 θ· H <sub>α</sub> <sup>2+</sup> -2 1 |        |                  | K+, 1<br>H+ 10-2.5                                        |                 |                      |                                            |                    |  |
|           | 3-acetoxypropyl group ( $w = 96.9$ %), dimethoxy-2-phenylacetophenone ( $w = 0.5$ %)                       | Hg <sup>2+</sup> , 10 <sup>-4</sup>                                                                           |        |                  |                                                           |                 |                      |                                            |                    |  |
| Ag+-26    | <b>Ag</b> <sup>+</sup> -26 ( $w = 7$ %),                                                                   | Na <sup>+</sup> , -4.8; Ca <sup>2+</sup> , -5.4;                                                              | FIM    | I                | 0.1                                                       | 62              | I                    | $t_{\rm resp} < 10 { m s};$                | [9]                |  |
|           | DOP ( $w = 62 \%$ ),                                                                                       | Co <sup>2+</sup> , -5.6; Ni <sup>2+</sup> , -5.5;                                                             |        |                  |                                                           |                 |                      | $c_{\rm dl} = 6.6 \times 10^{-7} {\rm M};$ | 0 <sup>-7</sup> M; |  |
|           | PVC $(w = 31 \%)$                                                                                          | Cu <sup>2+</sup> , -5.0; Zn <sup>2+</sup> , -5.7;<br>Cd <sup>2+</sup> , -5.6; Pb <sup>2+</sup> , -5.4         |        |                  |                                                           |                 |                      | τ>270 d                                    |                    |  |
| Ag+-27    | $Ag^{+}-27 (w = 7 \%),$                                                                                    | Na+, -4.9; Ca <sup>2+</sup> , -5.4;                                                                           | FIM    | I                | 0.1                                                       | 62              | I                    | $t_{\text{resp}} < 5 \text{ s};$           | [9]                |  |
|           | DOP ( $w = 62 \ \%$ ),                                                                                     | Co <sup>2+</sup> , -5.9; Ni <sup>2+</sup> , -5.6;                                                             |        |                  |                                                           |                 |                      | $c_{\rm dl} = 4.0 \times 10^{-7} \rm M;$   | $0^{-7}$ M;        |  |
|           | PVC ( $w = 31\%$ )                                                                                         | Cu <sup>2+</sup> , -4.2; Zn <sup>2+</sup> , -5.5;<br>Cd <sup>2+</sup> , -5.6; Pb <sup>2+</sup> , -6.0         |        |                  |                                                           |                 |                      | τ>270 d                                    |                    |  |
| Ag+-28    | $Ag^{+}-28 (w = 7 \%),$                                                                                    | Na+, -4.9; Ca <sup>2+</sup> , -5.3;                                                                           | FIM    | I                | 0.1                                                       | 62              | I                    | $t_{\text{resp}} < 6 \text{ s};$           | [9]                |  |
|           | DOP ( $w = 62 \%$ ),                                                                                       | Co <sup>2+</sup> , -5.9; Ni <sup>2+</sup> , -5.5;                                                             |        |                  |                                                           |                 |                      | $c_{\rm dl} = 4.6 \times 10^{-7} \rm M;$   | 0 <sup>-7</sup> M; |  |
|           | PVC ( $w = 31\%$ )                                                                                         | Cu <sup>2+</sup> , -4.2; Zn <sup>2+</sup> , -5.4;<br>Cd <sup>2+</sup> , -5.5; Pb <sup>2+</sup> , -5.8         |        |                  |                                                           |                 |                      | $\tau > 270 \text{ d}$                     |                    |  |
|           |                                                                                                            | Na <sup>+</sup> , -4.6; Ca <sup>2+</sup> , -4.5;                                                              | FIM    | I                | 0.1; Hg <sup>2+</sup> ,                                   | 56-62           | I                    | CHEMFET; [13]                              | [13]               |  |
|           |                                                                                                            | Hg <sup>2+</sup> , –1.9; Tl+, –4.5;                                                                           |        |                  | 0.001                                                     |                 |                      | <b>τ</b> > 42 d                            |                    |  |

| ionophore | ionophore membrane                                                                                           | $\lg K_{\mathrm{Ag^+,Bn^+}}$                                                                                                                                                                                                                                                                                                                                                                                               | method | primary            | primary interfering | slope<br>(V/       | linear       | remarks                                                                       | ref.           |
|-----------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|---------------------|--------------------|--------------|-------------------------------------------------------------------------------|----------------|
|           | composition                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |        | IOII COIIC.<br>(M) | (M)                 | (III V)<br>decade) | range<br>(M) |                                                                               |                |
| Ag+-29    | $Ag^{+}-29$ (w = 1 %),<br>KTpCIPB (x <sub>1</sub> = 20 %),<br>DBS (w = 66 %),<br>PVC (w = 33 %)              | $ \begin{array}{l} L_1^+, -2.6; Na^+, -2.5; \\ K^+, -2.1; Rb^+, -2.0; \\ Cs^+, -1.9; NH_4^+, -2.2; \\ H^+, -2.1; Mg^{2+}, -4.8; \\ Ca^{2+}, -4.4; Sr^{2+}, -4.2; \\ Ba^{2+}, -4.4; Sh^{2+}, -3.5; \\ Ca^{2+}, -4.4; Ca^{2+}, -4.1; \\ Ni^{2+}, -3.4; CO^{2+}, -4.1; \\ Ni^{2+}, -4.2; Cu^{2+}, -3.2; \\ Ni^{2+}, -4.4; Cd^{2+}, -3.6; \\ Tl^+, -0.9; Pb^{2+}, -3.2; \end{array} $                                          | SSM    | 10.0               | 10.0                | 5659               | 1            | r.o.o.g; [14<br>fresp of a few sec;<br>c <sub>dl</sub> = 10-4.5<br>-10-5.3 M; | [14]<br>v sec: |
|           | $Ag^{+}-29 (w = 1 \%),$<br>$KTpCIPB (x_{1} = 40 \%),$<br>DBS (w = 65 %),<br>PVC (w = 33 %)                   | $ \begin{array}{l} Li^+, -3.1;  Na^+, -2.9; \\ K^+, -2.7;  Rb^+, -2.6; \\ Cs^+, -2.5;  NH4^+, -2.7; \\ H^+, -1.8;  Mg^{2+}, -4.4; \\ Ca^{2+}, -3.9;  Sr^{2+}, -3.8; \\ Ba^{2+}, -4.0;  Al^{3+}, -3.1; \\ Ba^{2+}, -3.3;  Co^{2+}, -4.0; \\ Fa^{3+}, -3.3;  Co^{2+}, -3.0; \\ Fa^{3+}, -3.3;  Co^{2+}, -3.0; \\ Ni^{2+}, -4.2;  Cd^{2+}, -3.4; \\ Tl^+, -1.2;  Pb^{2+}, -3.1 \\ Tl^+, -1.2;  Pb^{2+}, -3.1 \\ \end{array} $ | SSM    | 0.01               | 10.0                | 5659               | 1            | r.o.o.g.; [14<br>fresp of a few sec;<br>c <sub>dl</sub> = 10-4.5<br>-10-5.3 M | [14]<br>v sec; |
| Ag+-30    | Ag <sup>+</sup> -30 ( $w = 2$ %),<br>KTpCIPB ( $x_i = 14$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %) | $\begin{array}{l} Li^+,-2.5;Na^+,-2.2;\\ K^+,-2.5;NH_4^+,-2.5;\\ Mg^{2+},-2.5;Ca^{2+},-2.5;\\ Sr^{2+},-2.7;Ba^{2+},-2.7;\\ Mn^{2+},-2.5;Fe^{3+},-2.7;\\ Co^{2+},-2.5;Ni^{2+},-2.5;\\ Cu^{2+},-2.5;Ni^{2+},-2.8;\\ Cu^{2+},-2.5;Pb^{2+},-2.7 \end{array}$                                                                                                                                                                   | MSM    | 0.001              | 0.1                 | 58.0               | 10-5-10-1    | r.o.o.g.;<br>t <sub>resp</sub> < 10 s                                         | [15]           |
| Ag+-31    | $Ag^+$ -31 (w = 2 %),<br>KTpCIPB (x <sub>1</sub> = 14 %),<br>oNPOE (w = 63.5 %),<br>PVC (w = 34 %)           | $\begin{array}{l} Li^+,-3.0;Na^+,-3.0;\\ K^+,-3.0;NH4^+,-3.5;\\ Mg^{2+},-4.0;S1^{2+},-4.0;\\ Ba^{2+},-4.0;A1^{3+},-4.7;\\ Cr^{3+},-4.0;N1^{2+},-4.0;\\ Cu^{2+},-4.0;N1^{2+},-4.0;\\ Cu^{2+},-5.0\\ Cd^{2+},-5.0\\ \end{array}$                                                                                                                                                                                             | MSM    | 00.0               | 0.1                 | 55.0               | 10-4-10-2    | I.0.0.g.                                                                      | [15]           |

Potentiometric selectivity coefficients of ion-selective electrodes

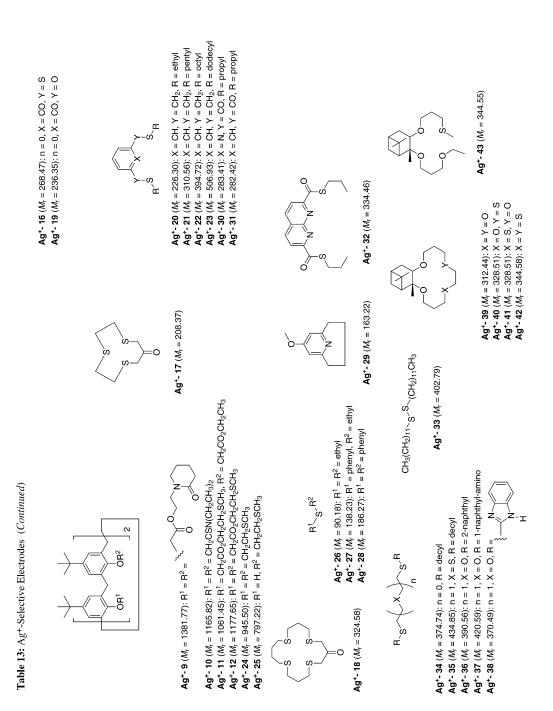
2039

continues on next page

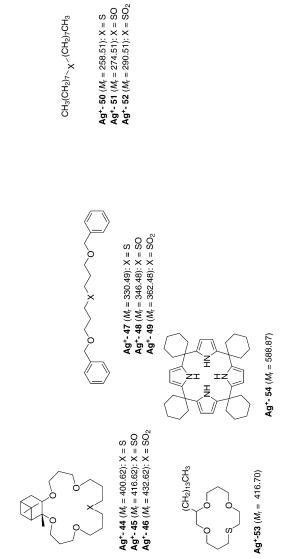
| ionophore           | ionophore membrane<br>composition                                                                                          | $\lg K_{\operatorname{Ag}^+,\operatorname{Bn}^+}$                                                                                                                                                                                                                      | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                           | ref.   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------------------|-----------------------------------|--------|
| Ag+-32              | <b>Agt-32</b> ( $w = 2\%$ ),<br><b>KTpCIPB</b> ( $x_i = 17\%$ ),<br>oNPOE ( $w = 63.5\%$ ),<br>PVC ( $w = 34\%$ )          | $\begin{array}{l} Li^+,-2.7;Na^+,-2.7;\\ K^+,-2.7;NH4^+,-3.0;\\ Mg^{2+},-2.7;Sr^{2+},-2.7;\\ Ba^{2+},-3.0;Mn^{2+},-2.7;\\ Fe^{3+},-3.4;Co^{2+},-2.7;\\ Fe^{3+},-3.2;Cd^{2+},-2.7;\\ Ni^{2+},-2.7;Cu^{2+},-2.5;\\ Zn^{2+},-3.2;Cd^{2+},-2.7;\\ Pb^{2+},-2.9\end{array}$ | MSM    | 0.001                       | 0.1                                                   | 49                       | 10 <sup>-4</sup> -10 <sup>-1</sup> | г.о.о. <del>.</del><br>е.         | [15]   |
| Ag <sup>+</sup> -33 | <b>Ag<sup>+</sup>-33</b> ( $w = 1$ %),<br><b>KTpCIPB</b> ( $x_1 = 50$ %),<br>DOP ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)    | K <sup>+</sup> , -2.8; Ca <sup>2+</sup> , -3.9;<br>Cu <sup>2+</sup> , -3.9; Cd <sup>2+</sup> , -3.8;<br>Hg <sup>2+</sup> , -2.6; Pb <sup>2+</sup> , -3.8                                                                                                               | FIM    | I                           | 0.01 (pH 4,<br>pH 3 for<br>Hg <sup>2+)</sup>          | I.                       | I                                  | r.o.o.g.;<br>20 °C                | [16]   |
| Ag+-34              | Ag <sup>+</sup> -34 ( $w = 1$ %),<br>KTpCIPB ( $x_i = 50$ %),<br>DOP ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)                | K <sup>+</sup> , -2.8; Ca <sup>2+</sup> , -4.3;<br>Cu <sup>2+</sup> , -3.9; Cd <sup>2+</sup> , -3.8;<br>Hg <sup>2+</sup> , -2.4; Pb <sup>2+</sup> , -3.9                                                                                                               | FIM    | 1                           | 0.01 (pH 4,<br>pH 3 for<br>Hg <sup>2+</sup> )         | I.                       | I                                  | r.o.o.g.;<br>20 °C                | [16]   |
| Ag <sup>+</sup> -35 | Ag <sup>+</sup> .35 ( $w = 1$ %),<br>KTpCIPB ( $x_i = 50$ %),<br>DOP ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)                | K <sup>+</sup> , -2.6; Ca <sup>2+</sup> , -3.3;<br>Cu <sup>2+</sup> , -3.6; Cd <sup>2+</sup> , -3.5;<br>Hg <sup>2+</sup> , -1.0; Pb <sup>2+</sup> , -3.5                                                                                                               | FIM    | I                           | 0.01 (pH 4,<br>pH 3 for<br>Hg <sup>2+</sup> )         | I                        | I                                  | r.o.o.g.;<br>20 °C                | [16]   |
| Ag+-36              | <b>Ag<sup>+.36</sup></b> ( $w = 1$ %),<br><b>KTpCIPB</b> ( $x_i = 75$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %), | $K^+$ , -5.4; $Ca^{2+}$ , -6.0;<br>$Cu^{2+}$ , -6.3; $Cd^{2+}$ , -6.6;<br>$Hg^{2+}$ , -2.5; $Pb^{2+}$ , -6.0                                                                                                                                                           | SSM    | I                           | 0.01 (pH 4,<br>pH 3 for<br>Hg <sup>2+</sup> )         | I                        | I                                  | r.o.o.g.;<br>t95 < 10 s;<br>20 °C | [16]   |
| Ag <sup>+</sup> -37 | <b>Ag<sup>+</sup>-37</b> ( $w = 1$ %),<br><b>KTpCIPB</b> ( $x_i = 75$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)  | $K^+$ , -3.6; $Ca^{2+}$ , -4.5;<br>$Cu^{2+}$ , -4.3; $Cd^{2+}$ , -4.5;<br>$Hg^{2+}$ , -1.9; $Pb^{2+}$ , -4.0                                                                                                                                                           | SSM    | I                           | 0.01 (pH 4,<br>pH 3 for<br>Hg <sup>2+</sup> )         | I                        | I                                  | r.o.o.g.;<br>20 °C;<br>4 < pH < 8 | [16]   |
| Ag+-38              | <b>Ag+.38</b> ( $w = 1$ %),<br><b>KTpCIPB</b> ( $x_i = 75$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %)             | K <sup>+</sup> , -3.0; Ca <sup>2+</sup> , -3.8;<br>Cu <sup>2+</sup> , -3.8; Cd <sup>2+</sup> , -3.2;<br>Hg <sup>2+</sup> , -2.0; Pb <sup>2+</sup> , -3.5                                                                                                               | SSM    | I                           | 0.01 (pH 4,<br>pH 3 for<br>Hg <sup>2+</sup> )         | I                        | I                                  | r.o.o.g.;<br>20 °C                | [16]   |
| Ag+-39              | <b>Ag+.39</b> ( $w = 3$ %),<br><b>KTpCIPB</b> ( $x_i = 21$ %),<br><b>BBPA</b> ( $w = 67$ %),<br><b>PVC</b> ( $w = 29$ %)   | $\begin{array}{l} Li^+, +0.7;  Na^+, -1.5; \\ K^+, -2.1;  Mg^{2+}, -5.7; \\ Ca^{2+}, -4.6;  Cr^{3+}, -5.4; \\ Mn^{2+}, -5.1;  Fe^{3+}, -5.2; \\ Cn^{2+}, -4.8;  Cu^{2+}, -4.6; \\ Zn^{2+}, -4.7;  Cd^{2+}, -4.3; \\ Hg^{2+}, -1.2 \end{array}$                         | SSM    | 0.001                       | 100.0                                                 | I                        | I                                  | 25 ± 0.5 °C;<br>r.o.o.g.          | ; [17] |

| Table 13: | Table 13: Ag <sup>+</sup> -Selective Electrodes (Continued)                                                                         |                                                                                                                                                                                                                                          |        |                  |                  |                 |              |                                                                                                                                                              |        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ionophore |                                                                                                                                     | $\lg K_{\mathrm{Ag^+,Bn^+}}$                                                                                                                                                                                                             | method | primary          | interfering      | slope           | linear       | remarks ref.                                                                                                                                                 | 1      |
|           | composition                                                                                                                         |                                                                                                                                                                                                                                          |        | ion conc.<br>(M) | ion conc.<br>(M) | (mV/<br>decade) | range<br>(M) |                                                                                                                                                              |        |
| Ag+-40    | $Ag^{+}-40 (w = 3 \%),$<br>$KTpCIPB (x_{1} = 22 \%),$<br>BBPA (w = 67 %),<br>PVC (w = 29 %)                                         | $\begin{array}{l} Li^+,-3.6;Na^+,-3.8;\\ K^+,-3.5;Mg^{2+},-5.4;\\ Ca^{2+},-5.3;Cr^{3+},-5.2;\\ Min^{2+},-5.2;Fe^{3+},-5.2;\\ Co^{2+},-5.5;Cu^{2+},-4.9;\\ Zn^{2+},-5.4;Cd^{2+},-5.1;\\ Hg^{2+},-2.1\end{array}$                          | SSM    | 0.001            | 0.001            | 1               | 1            | 25±0.5 °C; [17]<br>r.o.o.g.                                                                                                                                  |        |
| Ag+-41    | <b>Ag<sup>+</sup>-41</b> ( $w = 3$ %),<br><b>KTpCIPB</b> ( $x_i = 22$ %),<br><b>BBPA</b> ( $w = 67$ %),<br><b>PVC</b> ( $w = 29$ %) | $\begin{array}{l} Li^+, -4.0; Na^+, -4.4; \\ K^+, -4.2; Mg^{2+}, -6.2; \\ Ca^{2+}, -6.4; Cr^{3+}, -5.8; \\ Mn^{2+}, -6.2; Fe^{3+}, -5.4; \\ Cu^{2+}, -6.4; Cu^{2+}, -5.6; \\ Zn^{2+}, -6.2; Cd^{2+}, -5.9; \\ Hg^{2+}, -1.5 \end{array}$ | SSM    | 0.001            | 100.0            | Z               | 10-6-10-2    | $25 \pm 0.5 \text{ °C; } [17]$<br>r.o.o.g.;<br>195 < 8 s<br>$(10^{-2} - 10^{-6} \text{ M})$ ;<br>$f_{\text{resp}} = 60$ s<br>$(10^{-2} - 10^{-6} \text{ M})$ |        |
| Ag+-42    | $Ag^{+}-42$ (w = 3 %),<br>KTpCIPB (x <sub>1</sub> = 23 %),<br>BBPA (w = 67 %),<br>PVC (w = 29 %)                                    | $\begin{array}{l} Li^+, -9.1;  Na^+, -9.0; \\ K^+, -8.6;  Cr^{3+}, -11.2; \\ Mn^{2+}, -11.6;  Fe^{3+}, -10.2; \\ Co^{2+}, -11.5;  Cu^{2+}, -9.6; \\ Zn^{2+}, -11.2;  Cd^{2+}, -11.1; \\ Hg^{2+}, -1.8 \end{array}$                       | SSM    | 0.001            | 100.0            | I               | 1            | 25 ± 0.5 °C; [17]<br>r.o.o.g.;<br>irreversible<br>response to Ag <sup>+</sup>                                                                                |        |
| Ag+-43    | $Ag^{+}-43 (w = 3 \%),$<br>KTpCIPB ( $x_{1} = 23 \%$ ),<br>BBPA ( $w = 67 \%$ ),<br>PVC ( $w = 29 \%$ )                             | $\begin{array}{l} Li^+,-2.9;Na^+,-2.9;\\ K^+,-2.9;Mg^{2+},-4.3;\\ Ca^{2+},-4.4;Cr^{3+},-4.1;\\ Mn^{2+},-4.0;Fe^{3+},-4.5;\\ Co^{2+},-4.2;Cu^{2+},-4.1;\\ Zn^{2+},-4.2;Cd^{2+},-4.3;\\ Hg^{2+},-1.3;Pb^{2+},-4.2;\\ \end{array}$          | SSM    | 0.001            | 0.001            | I               | 1            | 25±0.5 °C; [17]<br>r.o.o.g.                                                                                                                                  |        |
| Ag+-44    | $Ag^{+}-44$ (w = 3 %),<br>KTpCIPB (x <sub>i</sub> = 27 %),<br>BBPA (w = 67 %),<br>PVC (w = 29 %)                                    | $\begin{array}{l} Li^{+},-3.2;Na^{+},-3.4;\\ K^{+},-3.4;Mg^{2+},-5.1;\\ Ca^{2+},-4.9;Cr^{3+},-4.5;\\ Mn^{2+},-5.3;Fe^{3+},-5.2;\\ Co^{2+},-5.2;Cu^{2+},-4.8;\\ Zn^{2+},-5.3;Cd^{2+},-5.2;\\ Hg^{2+},-0.6;Pb^{2+},-4.8;\\ \end{array}$    | SSM    | 0.001            | 0.001            | 1               | 1            | 25±0.5°C; [17]<br>r.o.o.g.                                                                                                                                   |        |
| Ag+-45    | $Ag^{+}-45$ (w = 3 %),<br>KTpCIPB (x; = 28 %),<br>BBPA (w = 67 %),<br>PVC (w = 29 %)                                                | $\begin{array}{l} Li^+,-1.8;Na^+,-1.9;\\ K^+,-1.6;Rb^+,-1.6;\\ Cs^+,-1.6;NH4^+,-1.6;\\ Mg^{2+},-4.3;Ca^{2+},-4.2;\\ \end{array}$                                                                                                         | SSM    | 0.001            | 0.001            | I               | 1            | 25 ± 0.5 °C; [17]<br>r.o.o.g.<br>continues on next page                                                                                                      | t page |

Potentiometric selectivity coefficients of ion-selective electrodes


© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

| Table 13:           | Table 13: Ag <sup>+</sup> -Selective Electrodes (Continued)                                                                         |                                                                                                                                                                                                                                                                                              |        |                             |                                                       |                          |                        |                            |      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|----------------------------|------|
| ionophore           | ionophore membrane<br>composition                                                                                                   | lgKAg⁺,B <sup>n+</sup>                                                                                                                                                                                                                                                                       | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.               | f    |
|                     |                                                                                                                                     | $\begin{array}{l} Cr^{3+},-3.3;Mn^{2+},-3.8;\\ Fe^{3+},-2.6;Co^{2+},-3.9;\\ Cu^{2+},-3.5;Zn^{2+},-4.0;\\ Cd^{2+},-3.9;Hg^{2+},+0.1;\\ Pb^{2+},-2.8\end{array}$                                                                                                                               |        |                             |                                                       |                          |                        |                            |      |
| Ag+-46              | Ag <sup>+</sup> -46 ( $w = 3$ %),<br>KTpCIPB ( $x_1 = 29$ %),<br>BBPA ( $w = 67$ %),<br>PVC ( $w = 29$ %)                           | $\begin{array}{l} L_1+, -1.2; Na^+, -1.3; \\ K^+, -0.9; Rb^+, -0.9; \\ Cs^+, -0.7; NH_4+, -0.9; \\ Mg^2+, -3.6; Ca^2+, -3.5; \\ Cr^3+, -2.8; Mn^{2+}, -3.3; \\ Fe^{3+}, -2.1; Co^{2+}, -3.3; \\ Cu^{2+}, -2.9; Zn^{2+}, -3.5; \\ Cd^{2+}, -3.4; Hg^{2+}, -0.5; \\ Pb^{2+}, -2.2 \end{array}$ | SSM    | 0.001                       | 0.001                                                 | 1                        | 1                      | 25 ± 0.5 °C; [<br>r.o.o.g. | [7]  |
| Ag+-47              | Ag <sup>+</sup> -47 (w = 3 %),<br>KTpCIPB (x <sub>i</sub> = 22 %),<br>BBPA (w = 67 %),<br>PVC (w = 29 %)                            | $\begin{array}{l} Li^+,-2.1;Na^+,-2.3;\\ K^+,-2.3;Rb^+,-2.3;\\ Cs^+,-2.3;NH_4^+,-2.4;\\ Mg^{2+},-3.9;Ca^{2+},-4.0;\\ Cr^{3+},-3.4;Mn^{2+},-3.4;\\ Fe^{3+},-3.7;Co^{2+},-3.6;\\ Cu^{2+},-3.6;Hg^{2+},-2.1;\\ Pb^{2+},-3.4;Mg^{2+},-2.1;\\ Pb^{2+},-3.4;Hg^{2+},-2.1;\\ \end{array}$           | SSM    | 00.0                        | 100.0                                                 | 1                        | 1                      | 25 ± 0.5 °C; [<br>r.o.o.g. | [1]  |
| Ag <sup>+</sup> -48 | <b>Ag<sup>+</sup>-48</b> ( $w = 3$ %),<br><b>KTpCIPB</b> ( $x_i = 23$ %),<br><b>BBPA</b> ( $w = 67$ %),<br><b>PVC</b> ( $w = 29$ %) | $\begin{array}{l} Li^+, -1.5; Na^+, -1.6;\\ K^+, -1.3; Rb^+, -1.3;\\ Cs^+, -1.3; Nh4^+, -1.3;\\ Mg^{2+}, -3.7; Ca^{2+}, -3.7;\\ Cr^{3+}, -2.9; Mn^{2+}, -3.3;\\ Fe^{3+}, -2.3; Co^{2+}, -3.5;\\ Cu^{2+}, -3.1; Zn^{2+}, +0.7;\\ Pb^{2+}, -1.9\end{array}$                                    | SSM    | 0.001                       | 0.001                                                 | I                        | I                      | 25 ± 0.5 °C; [<br>r.o.o.g. | [71] |
| Ag+-49              | <b>Ag<sup>+</sup>-49</b> (w = 3 %),<br>KTpCIPB (x <sub>i</sub> = 24 %),<br>BBPA (w = 67 %),<br>PVC (w = 29 %)                       | $\begin{array}{l} Li^+, -0.8;  Na^+, -0.8; \\ K^+, -0.4;  Rb^+, -0.4; \\ Cs^+, -0.3;  NH_{4}^+, -0.5; \\ Mg^2t, -2.9;  Ca^{2+}, -2.8; \\ Ca^{3+}, -2.5;  Mn^{2+}, -2.7; \\ Fe^{3+}, -1.6;  Co^{2+}, -2.8; \\ Cu^{2+}, -2.4;  Zn^{2+}, -2.8; \end{array}$                                     | SSM    | 0.001                       | 100.0                                                 | I                        | 1                      | 25 ± 0.5 °C; [<br>1.0.0.8. | [21] |


|                                                             | j                                                |                                |                                                                              | ٢                                                                                                                                                                                                                            | [17]                                                                                                                                                                                                                                                                                                        | [11]                                                                                                                                                                                                                                                                                       | ۲] .                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------|--------------------------------------------------|--------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | remarks ref.                                     |                                |                                                                              | 25±0.5°C; [17]<br>r.o.o.g.                                                                                                                                                                                                   | 25 ± 0.5 °C; [1<br>1.0.0.g.                                                                                                                                                                                                                                                                                 | 25 ± 0.5 °C; [1<br>r.o.o.g.                                                                                                                                                                                                                                                                | 25±0.5 °C; [17]<br>r.o.o.g.                                                                                                                                                                                                                                                                                  |
|                                                             | linear                                           | range<br>(M)                   |                                                                              | 1                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                          | I                                                                                                                                                                                                                                                                                                            |
|                                                             |                                                  | (mV/<br>decade)                |                                                                              | 1                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                          | I                                                                                                                                                                                                                                                                                                            |
|                                                             | interfering                                      | ion conc. ion conc.<br>(M) (M) |                                                                              | 0.001                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                        |
|                                                             | primary                                          | ion conc.<br>(M)               |                                                                              | 0.001                                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                        |
|                                                             | method                                           |                                |                                                                              | SSM                                                                                                                                                                                                                          | WSS                                                                                                                                                                                                                                                                                                         | SSM                                                                                                                                                                                                                                                                                        | SSM                                                                                                                                                                                                                                                                                                          |
|                                                             | $\lg K_{\mathrm{Ag}^+,\mathrm{B}^{\mathrm{h}+}}$ |                                | Cd <sup>2+</sup> , -2.7; Hg <sup>2+</sup> , -0.8;<br>Pb <sup>2+</sup> , -1.7 | $\begin{array}{l} Li^+,-2.7;Na^+,-3.0;\\ K^+,-3.0;Rb^+,-3.1;\\ Cs^+,-2.9;NH_4^+,-2.8;\\ Mg^2+,-4.5;Ca^2+,-4.4;\\ Cr^3+,-4.2;Mn^{2+},-4.6;\\ Fe^3+,-3.7;Co^{2+},-4.6;\\ Fe^{3+},-3.6;Rg^{2+},-0.2;\\ Pb^{2+},-2.4\end{array}$ | $\begin{array}{l} Li^+, -1.3;  Na^+, -1.6; \\ K^+, -1.6;  Rb^+, -1.6; \\ Cs^+, -1.6;  NH_{d}^+, -1.2; \\ Mg^2+, -3.3;  Ca^{2+}, -3.0; \\ Ci^{3+}, -2.5;  Mn^{2+}, -3.3; \\ Fe^{3+}, -1.6;  Co^{2+}, -3.3; \\ Fe^{3+}, -1.6;  Co^{2+}, -3.4; \\ Cu^{2+}, -2.2;  Zn^{2+}, -3.0; \\ Pb^{2+}, -0.6 \end{array}$ | $\begin{array}{l} Li^+, -1.1;  Na^+, -1.1; \\ K^+, -0.7;  Rb^+, -0.7; \\ Cs^+, -0.6;  NH_{d^+}, -0.7; \\ Cs^+, -3.4;  Ca^2+, -3.0; \\ Mg^2+, -3.4;  Ca^2+, -3.1; \\ rb^3+, -2.1;  Mn^2+, -3.2; \\ rb^3+, -2.2;  Co^2+, -3.1; \\ Cu^2+, -2.0;  Hg^{2+}, -0.5; \\ Pb^{2+}, -1.9 \end{array}$ | $ \begin{array}{l} Li^+, -2.6;  Na^+, -2.6; \\ K^+, -2.7;  Rb^+, -2.7; \\ Cs^+, -2.9;  NH4^+, -2.6; \\ Mg^{2+}, -4.2;  Ca^{2+}, -4.3; \\ Cr^{3+}, -4.4;  Mn^{2+}, -4.2; \\ Fe^{3+}, -4.6;  Co^{2+}, -4.2; \\ Cu^{2+}, -3.9;  Zn^{2+}, -4.0; \\ Cd^{2+}, -3.6;  Hg^{2+}, -1.9; \\ Pb^{2+}, -3.8 \end{array} $ |
| Table 13: Ag <sup>+</sup> -Selective Electrodes (Continued) | ionophore membrane                               | composition                    |                                                                              | <b>Ag+-50 Ag+-50</b> $(w = 3\%)$ ,<br><b>KTpCIPB</b> $(x_1 = 17\%)$ ,<br><b>BBPA</b> $(w = 67\%)$ ,<br><b>PVC</b> $(w = 29\%)$                                                                                               | <b>Ag+-51 Ag+-51</b> $(w = 3 \%)$ ,<br><b>KTpCIPB</b> $(i_1 = 18 \%)$ ,<br><b>BBPA</b> $(w = 67 \%)$ ,<br>PVC $(w = 29 \%)$                                                                                                                                                                                 | <b>Ag+-52 Ag+-52</b> $(w = 3 \%)$ ,<br><b>KTpCIPB</b> $(x_1 = 20 \%)$ ,<br><b>BBPA</b> $(w = 67 \%)$ ,<br><b>PVC</b> $(w = 29 \%)$                                                                                                                                                         | <b>Ag+-53 Ag+-53</b> $(w = 3\%)$ ,<br><b>KTpCIPB</b> $(x_1 = 28\%)$ ,<br><b>BBPA</b> $(w = 67\%)$ ,<br><b>PVC</b> $(w = 29\%)$                                                                                                                                                                               |

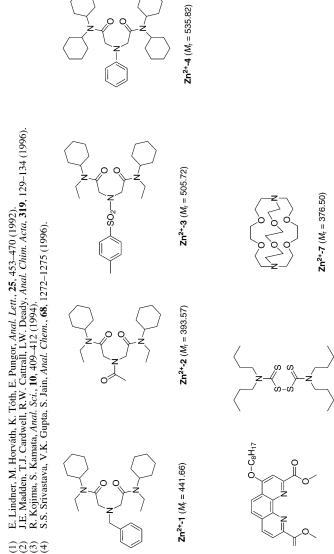
continues on next page

| Table 13: Ag <sup>+</sup> -Selective Electrodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | des (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                    |                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|--|
| ionophore membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\lg K_{\mathrm{Ag}^+,\mathrm{Bn}^+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | interfering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | slope                                                                                                                                | linear                                                                                                                                                                                                                                                                                    | remarks                                                                                            | ref.                      |  |
| composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ion conc.<br>(M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion conc. ion conc.<br>(M) (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (mV/<br>decade)                                                                                                                      | range<br>(M)                                                                                                                                                                                                                                                                              |                                                                                                    |                           |  |
| <b>Ag<sup>+</sup>-54 Ag<sup>+</sup>-54</b> ( $w = 1.5 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 40 \%$ ),<br>oNPPE ( $w = 65 \%$ ),<br><b>PVC</b> ( $w = 33 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Na <sup>+</sup> , -4.080; K <sup>+</sup> , -4.080;<br>H <sup>+</sup> , -1.569; Mg <sup>2+</sup> , -5.040;<br>Ca <sup>2+</sup> , -4.719; Fe <sup>3+</sup> , -4.070;<br>Co <sup>2+</sup> , -5.140; La <sup>3+</sup> , -3.220;<br>Hg <sup>2+</sup> , -1.879; Pb <sup>2+</sup> , -5.125;<br>UO <sub>2</sub> <sup>2+</sup> , -3.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.080; SSM<br>2+, -5.040;<br>5 <sup>3+</sup> , -4.070;<br>a <sup>3+</sup> , -3.220;<br>b <sup>2+</sup> , -5.125;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.7                                                                                                                                 | 10-5-10-2                                                                                                                                                                                                                                                                                 | 25 °C; [18]<br>$t_{resp} = 30 s;$ cdl = 1.0 × 10-5 M                                               | [18]<br>0 <sup>-5</sup> M |  |
| <b>Ag<sup>+</sup>-54</b> ( $w = 1.5 \%$ ),<br>KTpCIPB ( $x_1 = 40 \%$ ),<br>DOA ( $w = 65 \%$ ),<br>PVC ( $w = 33 \%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} Na^{+}, -3.340; K^{+}, -3.010; S\\ Mg^{2+}, -5.170; Ca^{2+}, -5.070; \\ Fe^{3+}, -2.921; Co^{2+}, -5.150; \\ Hg^{2+}, -0.710; Pb^{2+}, -4.200 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , -3.010; SSM<br>2a <sup>2+</sup> , -5.070;<br>0 <sup>2+</sup> , -5.150;<br>b <sup>2+</sup> , -4.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54.0                                                                                                                                 | 10 <sup>-5</sup> -10 <sup>-2</sup>                                                                                                                                                                                                                                                        | 25 °C; [18]<br>$t_{\text{resp}} = 50 \text{ s};$<br>$c_{\text{dl}} = 1.0 \times 10^{-5} \text{ M}$ | [18]<br>0 <sup>-5</sup> M |  |
| <ol> <li>M. Oue, K. Kimura, K. Akama, K. Kimu (2)</li> <li>M. Oue, K. Akama, K. Kimu (3)</li> <li>M. Oue, K. Akama, K. Kimura, J. Casabó, C. Pérez-Jiménez, (4)</li> <li>Casabó, L. Mestres, L. Esc (5)</li> <li>T. Casabó, L. Mestres, L. Esc (6)</li> <li>F. Teixidor, M.A. Flores, L. J (7)</li> <li>K.M. O'Connor, G. Svehla, S (8)</li> <li>K.M. O'Connor, G. Svehla, S (9)</li> <li>Z. Brzozka, P.L.H.M. Cobbe (11)</li> <li>K.M. O'Connor, G. Svehla, S (9)</li> <li>Z. Brzozka, P.L.H.M. Cobbe (11)</li> <li>R.J. Lugtenberg, M.M.G. (11)</li> <li>R.J. W. Lugtenberg, M.M.G. (12)</li> <li>R.J. W. Lugtenberg, M.M.G. (13)</li> <li>M. R.M. Bates, T.J. Cardwel (16)</li> <li>W. Wroblewski, Z. Brzoźka, F.J. Cardwel (17)</li> <li>D. Siswanta, K. Nagatsuka, F (17)</li> </ol> | <ul> <li>M. Oue, K. Kimura, K. Akama, M. Tanaka, T. Shono, <i>Chem. Lett.</i>, 409–410 (1988).</li> <li>M. Oue, K. Akama, K. Kimura, M. Tanaka, T. Shono, <i>J. Chem. Soc., Perkin Trans.</i> 1, 1675–1678 (1989).</li> <li>J. Casabó, C. Pérez-Jiménez, L. Escriche, S. Alegret, E. Martinez, E. (<i>Scinator, Chem. Lett.</i>, 1107–1108 (1990).</li> <li>J. Casabó, C. Pérez-Jiménez, L. Escriche, S. Alegret, E. Martinez, <i>J. Chem. Soc., Dalton Trans.</i>, 1965–1971 (1991).</li> <li>J. Casabó, L. Mestres, L. Escriche, F. Texidor, C. Pérez-Jiménez, <i>J. Chem. Soc., Dalton Trans.</i>, 1965–1971 (1991).</li> <li>J. Casabó, L. Mestres, L. Escriche, S. Alegret, E. Martinez, <i>J. Chem. Soc., Dalton Trans.</i>, 1965–1971 (1991).</li> <li>J. Casabó, L. Mestres, L. Escriche, S. Alegret, J. Chem. Soc., Dalton Trans., 1965–1971 (1991).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 39</i>, 1549–1554 (1992).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 39</i>, 1549–1554 (1992).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 20</i>, 137–139 (1993).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 20</i>, 137–139 (1993).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 20</i>, 137–139 (1993).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 20</i>, 137–139 (1993).</li> <li>K.M. OConnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 20</i>, 137–139 (1993).</li> <li>K.M. Oconnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Talanta, 20</i>, 137–139 (1994).</li> <li>K.M. Oconnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Anal. Proc.</i>, <b>30</b>, 137–139 (1993).</li> <li>K.M. Oconnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Anal. Proc.</i>, <b>30</b>, 137–139 (1995).</li> <li>K.M. Oconnor, G. Svehla, S.J. Harris, M.A. McKervey, <i>Anal. Chen.</i>, <b>50</b>, 137–139 (1994).</li> <li>K.M. Datser, T.J. Cardwell, R.W. Caman, J.H. Berne, J. Casabó, C. Jiménez, J. Batroli, <i>Sans. Actuators B</i>, <b>26–27</b>, 321–324 (1995).</li> <li>M. Hasse, T.J. Cardwell, R.W. Kumakura, H. Hisamot</li></ul> | <ul> <li><i>Lett.</i>, 409–410 (1988)</li> <li><i>em. Soc., Perkin Tram.</i><br/><i>Sci.,</i> 5, 165–169 (1988)</li> <li><i>tinez-Fabregas, F. Tei</i><br/><i>Enez, J. Chem. Soc., Lett.</i><br/><i>Chem.</i> 39, 1549–1554</li> <li><i>al. Proc.</i>, 30, 137–135</li> <li><i>al. Proc.</i>, 30, 1549–1554</li> <li><i>al. Proc.</i>, 30, 1549–1554</li> <li><i>al. Proc.</i>, 30, 137–135</li> <li><i>al. Proc.</i>, 30, 137–135</li> <li><i>al. Proc.</i>, 30, 1549–1554</li> <li><i>al. Proc.</i>, 30, 1549–1554</li> <li><i>al. Proc.</i>, 30, 1549–1554</li> <li><i>al. Proc.</i>, 30, 1549–1554</li> <li><i>ens. Anal.</i></li> <li><i>al. Proc.</i>, 17, 405–407</li> <li><i>s</i></li> <li< td=""><td>8).<br/>8. 1, 1675–1<br/>9).<br/>20100 Tran.<br/>20100 T</td><td><ul> <li>1678 (1989).</li> <li>m. Lett., 110'</li> <li>s., 1969–197</li> <li>63–964 (1996)</li> <li>63–964 (1994).</li> <li>238, 245–25.</li> <li>238, 245–24.</li> <li>238, 245</li></ul></td><td>7–1108 (19).<br/>14).<br/>73, 139–144.<br/>73, 139–144.<br/>73, 139–144.<br/>73, 139–144.<br/>73, 139–144.<br/>73, 139–144.<br/>73, 139–144.</td><td>90).<br/>4 (1993).<br/><i>uns.</i> 2, 1937–194<br/><i>Actuators B</i>, <b>26</b>,<br/><b>68</b>, 4166–4172</td><td>1 (1996).<br/>-<b>27</b>, 321-324 (<br/>(1996).</td><td>1995).</td><td></td></li<></ul> | 8).<br>8. 1, 1675–1<br>9).<br>20100 Tran.<br>20100 T | <ul> <li>1678 (1989).</li> <li>m. Lett., 110'</li> <li>s., 1969–197</li> <li>63–964 (1996)</li> <li>63–964 (1994).</li> <li>238, 245–25.</li> <li>238, 245–24.</li> <li>238, 245</li></ul> | 7–1108 (19).<br>14).<br>73, 139–144.<br>73, 139–144.<br>73, 139–144.<br>73, 139–144.<br>73, 139–144.<br>73, 139–144.<br>73, 139–144. | 90).<br>4 (1993).<br><i>uns.</i> 2, 1937–194<br><i>Actuators B</i> , <b>26</b> ,<br><b>68</b> , 4166–4172                                                                                                                                                                                 | 1 (1996).<br>- <b>27</b> , 321-324 (<br>(1996).                                                    | 1995).                    |  |
| <b>Ag</b> <sup>+</sup> -1 ( <i>M</i> <sub>1</sub> = 418.67): X = S, Y = Z = O<br><b>Ag</b> <sup>+</sup> -2 ( <i>M</i> <sub>1</sub> = 434.74): X = Z = O, Y = S<br><b>Ag</b> <sup>+</sup> -3 ( <i>M</i> <sub>1</sub> = 434.74): X = Y = O, Z = S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / /n<br>Ag⁺-4 (M <sub>r</sub> = 464.72): n = 1<br>Ag⁺-5 (M <sub>r</sub> = 528.78): n = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Ag<sup>+</sup>-6</b> ( <i>M</i> <sub>f</sub> = 240.39): X = O<br><b>Ag<sup>+</sup>-7</b> ( <i>M</i> <sub>f</sub> = 256.45): X = S<br><b>Ag<sup>+</sup>-8</b> ( <i>M</i> <sub>f</sub> = 238.41): X = CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ): X = O<br>): X = S<br>): X = CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ag⁺- 1<br>Ag⁺- 1<br>Ag⁺- 1<br>Y = S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>13</b> ( <i>M</i> <sub>r</sub> = 282<br><b>14</b> ( <i>M</i> <sub>r</sub> = 268<br><b>15</b> ( <i>M</i> <sub>r</sub> = 280        | <b>Ag<sup>+</sup>-13</b> ( <i>M</i> <sub>1</sub> = 282.51): n = 1, X = CO, Y = S<br><b>Ag<sup>+</sup>-14</b> ( <i>M</i> <sub>1</sub> = 268.53): n = 1, X = CH <sub>2</sub> , Y = S<br><b>Ag<sup>+</sup>-15</b> ( <i>M</i> <sub>1</sub> = 280.54): n = 1, X = C CH <sub>2</sub> ,<br>Y = S | ), Y = S<br>I <sub>2</sub> , Y = S<br>CH <sub>2</sub> ,                                            |                           |  |








| ionophore           | ionophore membrane<br>composition                                                                               | $\lg K_{\mathrm{Zn}^{2+},\mathrm{Bn+}}$                                                                                                                                                                                                                                    | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                           | ref.                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-------------------------------------------------------------------|------------------------------|
| Zn <sup>2+</sup> -1 | <b>Zn<sup>2+-1</sup></b> ( $w = 2$ %),<br>NaTPB ( $x_i = 70$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)   | Li+, -2.6; Na+, -2.1;<br>K+, -1.7; NH4+, +0.3;<br>H+, +1.5; Mg <sup>2+</sup> , -1.5;<br>Ca <sup>2+</sup> , -2.4; Cd <sup>2+</sup> , -0.8;<br>Cu <sup>2+</sup> , +0.3; Pb <sup>2+</sup> , 0.0                                                                               | SSM    | 0.1                         | 0.1                                                   | Nu                       | 1                      | lg <i>P</i> TLC = 8;<br>pH ≥ 6;<br>r.o.o.g.                       | Ξ                            |
|                     | <b>Zn<sup>2+</sup>-1</b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %), PVC ( $w = 33$ %)                                | $\begin{array}{l} Li+,-1.0;  Na+,-0.5; \\ K+,-2.0;  NH_{4}+,-0.1; \\ Mg^{2+},-1.0;  Ca^{2+},-1.6 \end{array}$                                                                                                                                                              | SSM    | 0.1                         | 0.1                                                   | Nu                       | I                      | pH ≥ 6;<br>r.o.o.g.                                               | Ξ                            |
|                     | <b>Zn<sup>2+-1</sup></b> ( $w = 2$ %),<br>KTpCIPB ( $x_i = 30$ %),<br>oNPOE ( $w = 65$ %), PVC ( $w = 33$ %)    | Li <sup>+</sup> , -2.4; Na <sup>+</sup> , -2.1;<br>K <sup>+</sup> , -1.5; NH <sub>4</sub> <sup>+</sup> , +0.8;<br>Mg <sup>2+</sup> , -1.3; Ca <sup>2+</sup> , -1.3                                                                                                         | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | pH≥6;<br>r.o.o.g.                                                 | [1]                          |
|                     | $Z_n^{2+-1}$ ( $w = 2$ %),<br>KTpCIPB ( $x_i = 45$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)             | Li+, -2.2; Na+, -2.3;<br>K+, -2.0; NH4+, -1.2;<br>Mg <sup>2+</sup> , -3.5; Ca <sup>2+</sup> , -2.3                                                                                                                                                                         | SSM    | 0.1                         | 0.1                                                   | 29.5                     | $10^{-5}$ - $10^{-1}$  | pH ≥ 6; [<br>c <sub>dl</sub> = 10-5.5 M;<br>pH = 6.0;<br>r.o.o.g. | 1:                           |
|                     | <b>Zn<sup>2+</sup>-1</b> ( $w = 2$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %) | Li <sup>+</sup> , -2.6; Na <sup>+</sup> , -2.7;<br>K <sup>+</sup> , -2.5; NH <sub>4</sub> <sup>+</sup> , +3.0;<br>H <sup>+</sup> , +0.6; Mg <sup>2+</sup> , -3.5;<br>Ca <sup>2+</sup> , -2.9; Cd <sup>2+</sup> , -3.6;<br>Cu <sup>2+</sup> , +0.2; Pb <sup>2+</sup> , -2.0 | SSM    | 0.1                         | 0.1                                                   | Nu                       | I                      | pH ≥ 6;<br>r.o.o.g.                                               | Ξ                            |
|                     | <b>Zn<sup>2+-1</sup></b> ( $w = 2$ %),<br>KTpCIPB ( $x_i = 162$ %),<br>oNPOE ( $w = 65$ %), PVC ( $w = 33$ %)   | $\begin{split} Na^+, -0.9;  K^+, -1.2; \\ NH_4^+, -1.4;  Mg^{2+}, -2.7; \\ Ca^{2+}, -2.5 \end{split}$                                                                                                                                                                      | SSM    | 0.1                         | 0.1                                                   | Nn                       | I                      | pH ≥ 6;[1]<br>r.o.o.g.                                            |                              |
| Zn <sup>2+</sup> -2 | <b>Zn<sup>2+.2</sup></b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 70$ %) | $ \begin{array}{l} Li^+, -1.34;  Na^+, -1.7; \\ K^+, +0.05;  NH4^+, -0.05; \\ H^+, +8;  Mg^{2+}, -1.7; \\ Ca^{2+}, +0.5;  Cd^{2+}, -0.6; \\ Cu^{2+}, +2.5;  Pb^{2+}, +0.5 \end{array} $                                                                                    | SSM    | 0.1                         | 0.1                                                   | Nu                       | 1                      | pH ≥ 6;<br>lg <i>P</i> TLC = 3.0<br>r.o.o.g.                      | Ξ                            |
| Zn <sup>2+</sup> -3 | <b>Zn<sup>2+.3</sup></b> ( $w = 2$ %),<br>KTpCIPB ( $x_i = 70$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %) | Li <sup>+</sup> , -1.2; Na <sup>+</sup> , -1.7;<br>K <sup>+</sup> , -0.9; NH <sub>4</sub> <sup>+</sup> , -1.4;<br>H <sup>+</sup> , +6; Mg <sup>2+</sup> , -2.6;<br>Ca <sup>2+</sup> , 0.0; Cd <sup>2+</sup> , -0.5;<br>Cu <sup>2+</sup> , +2.3; Pb <sup>2+</sup> , +2.3    | SSM    | 0.1                         | 0.1                                                   | Nu                       | I                      | pH 6; [1]<br>lg <i>P</i> TLC = 4.6;<br>r.o.o.g.                   |                              |
| Zn <sup>2+</sup> -4 | <b>Zn<sup>2+.4</sup></b> ( $w = 2$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                             | Li <sup>+</sup> , -1.0; Na <sup>+</sup> , -1.0;<br>K <sup>+</sup> , -0.4; NH <sub>4</sub> <sup>+</sup> , -1.7;<br>H <sup>+</sup> , +2.7; Mg <sup>2+</sup> , -2.0;                                                                                                          | SSM    | 0.1                         | 0.1                                                   | Nu                       | I                      | pH ≥ 6;[1]<br>lg <i>P</i> TLC = 7.0;<br>r.o.o.g.                  | );<br>continues on next page |

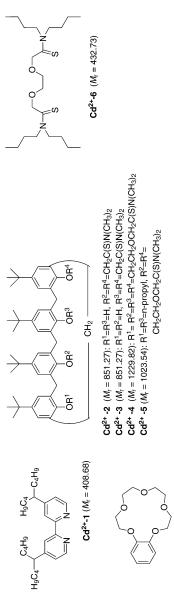
| ionophore           | e membrane                                                                                                                           | $\lg K_{7n}^{2+}$ But                                                                                                                                                                                                                                                                                                                                      | method | primary          | interfering                    | slope           | linear                                             | remarks ref.                                                                                                           | 1 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|--------------------------------|-----------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---|
|                     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                            |        | ion conc.<br>(M) | ion conc. ion conc.<br>(M) (M) | (mV/<br>decade) | range<br>(M)                                       |                                                                                                                        |   |
|                     |                                                                                                                                      | Ca <sup>2+</sup> , -1.9                                                                                                                                                                                                                                                                                                                                    |        |                  |                                |                 |                                                    |                                                                                                                        |   |
|                     | <b>Zn<sup>2+</sup>-4</b> ( $w = 2$ %),<br>KTpCIPB ( $x_i = 30$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %)                      | Li+, -2.4; Na+, -2.8;<br>K+, -2.0; NH4+, -3.3;<br>Mg <sup>2+</sup> , -4.3; Ca <sup>2+</sup> , -3.6                                                                                                                                                                                                                                                         | SSM    | 0.1              | 0.1                            | Nu              | I                                                  | pH≥6; [1]<br>r.o.o.g.                                                                                                  |   |
|                     | <b>Zn<sup>2</sup>+.4</b> ( $w = 2$ %),<br><b>KTpCIPB</b> ( $x_i = 70$ %),<br><b>oNPOE</b> ( $w = 65$ %),<br><b>PVC</b> ( $w = 33$ %) | $\begin{array}{l} Li^+, -3.0; Na^+, -3.4; \\ K^+, -3.2; NH4^+, -3.6; \\ H^+, +2.7; Mg^{2+}, -4.9; \\ Ca^{2+}, -4.2; Cd^{2+}, -0.5; \\ Cu^{2+}, +1.5; Pb^{2+}, 0.0 \end{array}$                                                                                                                                                                             | SSM    | 0.1              | 0.1                            | 29.5            | 10-5-10-1                                          | pH ≥ 6; [1]<br>c <sub>dl</sub> = 10 <sup>-5,5</sup> M;<br>pH = 6.0; r.o.o.g.                                           |   |
| Zn <sup>2+-</sup> 5 | <b>Zn<sup>2+-5</sup></b> ( $w = 2$ %),<br>NaTPB ( $x_i = 31$ %),<br>oNPOE ( $w = 63.5$ %),<br>PVC ( $w = 34$ %)                      | $\begin{array}{l} Li^+, -1.5; Na^+, -0.1\\ Cs^+, -0.6; NH_{4^+}, -0.6;\\ Mg^{2+}, -2.8; Ca^{2+}, -1.1;\\ Sr^{2+}, -0.4; Ba^{2+}, +1.3;\\ Mn^{2+}, -0.3; Fe^{2+}, -0.2;\\ Fe^{3+}, -0.7; Co^{2+}, +0.0;\\ Ni^{2+}, -1.2; Cu^{2+}, +0.2;\\ Zn^{2+}, -0.7\end{array}$                                                                                         | TSM    | 10-3             | 10-1                           | 26              | 10 <sup>-3</sup> -10 <sup>-1</sup>                 | r.o.o.g.; [2]<br>K was obtained<br>as lgK <sub>K</sub> +, <sub>B<sup>n+</sup>.</sub>                                   |   |
| Zn <sup>2+-6</sup>  | <b>Zn<sup>2+-6</sup></b> ( $w = 5.4 \%$ ),<br><b>KTpCIPB</b> ( $x_i = 12 \%$ ),<br>oNPOE ( $w = 53.6 \%$ ),<br>PVC ( $w = 40.2 \%$ ) | Na <sup>+</sup> , -3.28; K <sup>+</sup> , -3.77<br>NH4 <sup>+</sup> , -3.27; Mg <sup>2+</sup> , -3.14;<br>Ca <sup>2+</sup> , -28.2; Mm <sup>2+</sup> , -2.08;<br>Co <sup>2+</sup> , -1.48; Ni <sup>2+</sup> , -1.42;<br>Cu <sup>2+</sup> , +0.96; Pb <sup>2+</sup> , +0.79;<br>Fe <sup>3+</sup> , -2.42;<br>Hg <sup>2+</sup> , Ag <sup>+</sup> , interfere | SSM    | I                | 1                              | 28.0            | 10-6-10-1                                          | $25 \pm 1 \text{ °C; } [3]$<br>$c_{d1} = 4.2 \times 10^{-7} \text{ M;}$<br>$t_{tesp} = 2 \text{ s;}$<br>3.5 < pH < 6.5 |   |
| Zn <sup>2+</sup> -7 | <b>Zn<sup>2+-7</sup></b> ( $w = 5.6\%$ ),<br>DBP ( $w = 11.1.\%$ ),<br>PVC ( $w = 83.3.\%$ )                                         | $\begin{array}{l} Li^+, +1.2;  Na^+, +1.2; \\ K^+, +1.3;  NH4^+, +1.3; \\ Mg^{2+}, -0.8;  Ca^{2+}, -0.65; \\ Ba^{2+}, -0.9;  Cr^{3+}, -1.3; \\ Fe^{3+}, -1.25;  Cu^{2+}, -0.75; \\ Pb^{2+}, -0.75 \end{array}$                                                                                                                                             | FIM    | I                | 0.0                            | 22.0            | $1.58 \times 10^{-4}$<br>-1.00<br>$\times 10^{-1}$ | t <sub>resp</sub> < 10 s; [3]<br>2.8 < pH < 7.0;<br>τ > 90 d                                                           |   |
|                     |                                                                                                                                      | $\begin{array}{l} Li^+, -0.75;  Na^+, -0.75; \\ K^+, -0.7;  NH_4^+, -0.7; \\ Mg^{2+}, -0.8;  Ca^{2+}, -0.65; \\ Ba^{2+}, -0.9;  Cr^{3+}, -0.6; \\ Fe^{3+}, -0.85;  Cu^{2+}, -0.75; \\ Pb^{2+}, -0.75 \end{array}$                                                                                                                                          | FIM    | I                | 0.01                           |                 |                                                    | K was<br>recalculated by<br>omitting charge<br>numbers of the<br>ions.                                                 |   |

 Table 14: Zn<sup>2+</sup>-Selective Electrodes
 (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

#### Y. UMEZAWA et al.




**Zn<sup>2+</sup>-6** (*M*<sub>r</sub> = 408.74)

**Zn<sup>2+</sup>-5** (*M*<sub>r</sub> = 424.50)

| Electrodes   |  |
|--------------|--|
| 2+-Selective |  |
| Table 15: Cd |  |

| ionophore           | ionophore membrane<br>composition                                                                                                                                      | lgK <sub>Cd</sub> ²+, <sub>B</sub> n+                                                                                                                                                                                                                                                                       | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M)                                        | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                             | remarks                                                                                                            | ref.                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|------------------------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Cd <sup>2+</sup> -1 | Cd <sup>2+</sup> 1 ( $w = 5$ %),<br>NaTPB ( $x_i = 63$ %),<br>DOP ( $w = 45$ %),<br>DVC ( $w = 47$ 5 %),                                                               | Co <sup>2+</sup> , -0.97; Ni <sup>2+</sup> , -2.40;<br>Cu <sup>2+</sup> , +5.77; Zn <sup>2+</sup> , +0.85                                                                                                                                                                                                   | SSM    | 0.1                         | 0.1                                                                    | 30                       | 10-5.4-10-3                                        | CWE;<br>$c_{\rm dl} = 10^{-6} \mathrm{M}$                                                                          | [1]                                               |
| Cd <sup>2+</sup> -2 | Cd <sup>2+</sup> +2 (w = 2.1 %),<br>KTpCIPB (x = 63 %),<br>DOP, PVC (weight ratio not given)                                                                           | K <sup>+</sup> , interferes; Ca <sup>2+</sup> , -3.2; FIM<br>Cu <sup>2+</sup> , -0.6; Pb <sup>2+</sup> , interferes                                                                                                                                                                                         | FIM    | I                           | 0.1<br>0.01                                                            | 30                       | I                                                  | ISFET                                                                                                              | [2]                                               |
| Cd <sup>2+</sup> -3 | Cd <sup>2+</sup> - 3 ( <i>w</i> = 2.3 %),<br>KTpCIPB ( <i>x</i> i = 63 %),<br>DOP, PVC (weight ratio not given)                                                        | K <sup>+</sup> , interferes; Ca <sup>2+</sup> , -2.3; FIM<br>Cu <sup>2+</sup> , Pb <sup>2+</sup> , interfere                                                                                                                                                                                                | FIM    | I                           | 0.1<br>0.01                                                            | 30                       | I                                                  |                                                                                                                    | [2]                                               |
| Cd <sup>2+</sup> -4 | $\begin{array}{l} \textbf{Cd}^{2+}\textbf{-4} \ (w=2.8\ \%),\\ \textbf{KTpCIPB} \ (x_i=63\ \%),\\ \textbf{DOP}, \ \textbf{PVC} \ (weight ratio not given) \end{array}$ | K+, -2.5; Ca <sup>2+</sup> , -3.9;<br>Cu <sup>2+</sup> , Pb <sup>2+</sup> , interfere                                                                                                                                                                                                                       | FIM    | I                           | 0.1<br>0.01                                                            | 30                       | I                                                  |                                                                                                                    | [2]                                               |
|                     | $\begin{array}{l} \textbf{Cd}^{2+}\textbf{-4} \ (w=3 \ \%), \\ \textbf{KTpCIPB} \ (x_i=63 \ \%), \\ \textbf{DOP}, \textbf{PVC} \ (weight ratio not given) \end{array}$ | K <sup>+</sup> , :-2.6, Ca <sup>2+</sup> , -3.8;<br>Cu <sup>2+</sup> , Pb <sup>2+</sup> , interfere                                                                                                                                                                                                         | FIM    | 1                           | 0.1<br>0.01                                                            | 29                       | I                                                  |                                                                                                                    | [2]                                               |
| Cd <sup>2+-5</sup>  | $Cd^{2+.5} (w = 2.1 \%),$<br>KTpCIPB ( $x_i = 63 \%$ ),<br>DOP, PVC (weight ratio not given)                                                                           | K <sup>+</sup> , interferes; Ca <sup>2+</sup> , -3.2; FIM<br>Cu <sup>2+</sup> , Pb <sup>2+</sup> , interfere                                                                                                                                                                                                | FIM    | I                           | 0.1<br>0.01                                                            | 30                       | I                                                  |                                                                                                                    | [2]                                               |
| Cd <sup>2+-6</sup>  | <b>Cd<sup>2+</sup>6</b> ( $w = 5$ %),<br>BEHS ( $w = 62$ %),<br>PVC-PVA-PVAc ( $w = 33$ %)<br>PVA, poly(vinyl alcohol);<br>PVA, poly(vinyl alcohol);                   | $\begin{array}{l} K^{+},-3.11;\\ A1^{3+},-3.68;Hg^{2+},+3.03;\\ Fe^{2+},-2.83;Cu^{2+},+1.24;\\ Pb^{2+},-0.11;\\ \end{array}$                                                                                                                                                                                | FIM    | I                           | 0.1<br>0.01<br>0.001<br>5 x 10 <sup>-5</sup>                           | 31.9                     | $10^{-6}$ -8.4 × $10^{-3}$                         | 25 °C; ionic [3]<br>strength of $10^{-3}$ M<br>NaClO <sub>4</sub> ; $\tau = 210$ d;<br>$t_{resp} = 20$ s           | [3]<br>3 M<br>10 d;                               |
|                     | <b>Cd<sup>2+</sup>-6</b> ( $w = 5$ %),<br>BEHS ( $w = 62$ %),<br>PVC-PVA-PVAc ( $w = 33$ %)<br>PVA, poly(vinyl alcohol);<br>PVAc, poly(vinyl acetate)                  | $\begin{array}{c} K^+, -5.04;\\ Al^{3+}, -4.19;\\ Fe^{2+}, -2.36;\\ Cu^{2+}, +1.60;\\ Pb^{2+}, +0.45;\\ Hg^{2+}, +3.47\end{array}$                                                                                                                                                                          | FIM    | I                           | $\begin{array}{c} 1.0\\ 0.02\\ 0.01\\ 0.00\\ 10^{-4}\\ 0.1\end{array}$ | 31.9                     | $10^{-6}$ -8.4 × 10 <sup>-3</sup>                  | 25 °C; ionic [3]<br>strength of $10^{-3}$ M<br>NaClO4; $\tau = 70$ d;<br>$t_{resp} = 20$ s;<br>coated carbon elec. | <sup>3</sup> M<br><sup>3</sup> M<br>) d;<br>elec. |
| Cd <sup>2+</sup> -7 | <b>Cd<sup>2+</sup>7</b> ( $w = 7$ %),<br>DBP ( $w = 13$ %),<br>PVC ( $w = 80$ %)                                                                                       | $\begin{array}{l} Li^+, -1.10;  Na^+, -0.9; \\ K^+, -1.05;  Rb^+, -1.05; \\ NH_4^+, -1.10;  Mg^{24}, -0.75; \\ Ca^{2+}, -0.65;  Ca^{3+}, -0.63; \\ Fe^{3+}, -0.76;  Ca^{2+}, -0.63; \\ Fe^{3+}, -0.75;  Pb^{2+}, -0.95; \\ Cu^{2+}, -0.75;  Pb^{2+}, -0.75; \\ Hg^{2+}, -1.00;  Zn^{2+}, -1.00 \end{array}$ | FIM    | 1                           | 1.0 x 10 <sup>-2</sup>                                                 | 20.0                     | $5.00 \times 10^{-3}$<br>-1.00<br>$\times 10^{-1}$ | $25 \pm 1$ °C; [4]<br>3.8 < pH < 7.0;<br>$c_{dl} = 3.16 \times 10^{-5} M;$<br>$\tau = 60 d;$<br>$t_{resp} < 30 s$  | -5 M;                                             |

- A.C. Stevens, H. Freiser, Anal. Chim. Acta, 248, 315–321 (1991).
   P.L.H.M. Cobben, R.J.M. Egberink, J.G. Bomer, P. Bergved, W. Verboom, D.N. Reinhoudt, J. Am. Chem. Soc., 114, 10573–10582 (1992).
   A. Borraccino, L. Campanella, M.P. Sammartino, M. Tomassetti, M. Battiilotti, Sens. Actuators, B7, 535–539 (1992).
   S.K. Srivasasta, V.K. Gupta, S. Jain, Electroanalysis, 8, 938–940 (1996). -0.04



 $Cd^{2+-7}$  ( $M_r = 268.31$ )

| ionombono mombuono                                                                                                                             | 1~V 2                                                                                                                                                               | mathad | 1 THO CHI IN CALL           | intoutoning                     |                          | linger       |                                                                                                                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| composition                                                                                                                                    | 1gAHg2+,Bn+                                                                                                                                                         | nomenn | prunary<br>ion conc.<br>(M) | intertering<br>ion conc.<br>(M) | stope<br>(mV/<br>decade) | range<br>(M) | lenarys let.                                                                                                                                                                                                                    |  |
| <b>Hg<sup>2+1</sup></b> ( $w = 1-4$ %),<br>DDP ( $w = 66-69$ %),<br>PVC ( $w = 30$ %)                                                          | $\begin{array}{l} Ca^{2+},-1.8;\ Co^{2+},-1.0;\\ Ni^{2+},-0.7;\ Zn^{2+},-1.1;\\ Cd^{2+},-1.4;\ Pb^{2+},-1.3;\\ Hg^{2+},+1.0\end{array}$                             | FIM    | 1                           | 0.01                            | 1                        | 1            | <i>K</i> was obtained [1]<br>as $lgK_{Cu}^{2+}$ , $gn+$ ;<br>conditioned<br>overnight in 10 <sup>-3</sup> M<br>CuCl <sub>2</sub> , $pH = 3$ ;<br>internal electrolyte,<br>10 <sup>-2</sup> M CuCl <sub>2</sub> , $pH = 3$       |  |
|                                                                                                                                                | $\begin{array}{c} Ca^{2+}, -1.6; \ Co^{2+}, -0.5; \\ Ni^{2+}, -0.5; \ Zn^{2+}, -1.1; \\ Cd^{2+}, -0.8; \ Pb^{2+}, 0.0; \\ Hg^{2+}, +1.0 \end{array}$                | FIM    | I                           | 0.01                            | I                        | I            | K was obtained<br>as $\lg K_{Cu}^{2+}$ , $\lg n+$ ;<br>conditioned for 3 d<br>in 10 <sup>-3</sup> M Cu(NO <sub>3</sub> ) <sub>2</sub> ;<br>pH = 4;<br>internal electrolyte,<br>10 <sup>-2</sup> M CuCl <sub>2</sub> ,<br>pH = 3 |  |
|                                                                                                                                                | $\begin{array}{l} Ca^{2+}, -1.1; \ Co^{2+}, -0.7; \\ Ni^{2+}, -0.3; \ Zn^{2+}, -1.1; \\ Cd^{2+}, -0.7; \ Pb^{2+}, 0.0; \\ Hg^{2+}, +3.6 \end{array}$                | FIM    | 1                           | 0.01                            | I                        | I            | <i>K</i> was obtained<br>as $lgK_{Cu}^{2+}$ , $gh+$ ;<br>conditioned for 2<br>weeks in $10^{-3}$ M<br>Cu(NO <sub>3</sub> ) <sub>2</sub> , $pH = 4$ ;<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> , $pH = 3$       |  |
| <b>Hg<sup>2+</sup>-1</b> ( <i>w</i> = 1–4 %),<br>DDP ( <i>w</i> = 66–69 %), PVC ( <i>w</i> = 30 %),<br>KTpCIPB ( <i>x</i> <sub>1</sub> = 70 %) | $\begin{array}{l} Ca^{2+}, -0.2; \ Co^{2+}, -0.7; \\ (w=30\ \%), \ Ni^{2+}, -0.3; \ Zn^{2+}, -0.8; \\ Cd^{2+}, +0.3; \ Pb^{2+}, +0.6; \\ Hg^{2+}, +7.8 \end{array}$ | FIM    | 1                           | 0.01                            | T                        | T            | <i>K</i> was obtained [1]<br>as $lgK_{Cu}^{2+}B^{n+}$ ;<br>conditioned<br>overnight in $10^{-3}$ M<br>CuCl <sub>2</sub> , pH = 3;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3                            |  |
|                                                                                                                                                | $\begin{array}{c} Ca^{2+}, -0.3; \ Co^{2+}, -0.7; \\ Ni^{2+}, -0.3; \ Cd^{2+}, -0.8; \\ Pb^{2+}, +0.2; \ Hg^{2+}, +6.0 \end{array}$                                 | FIM    | 1                           | 10.0                            | I                        | I            | K was obtained<br>as $lgK_{Cu}^{2+}$ , $gn+$ ;<br>conditioned for 3 d<br>in 10 <sup>-3</sup> M Cu(NO <sub>3</sub> ) <sub>2</sub> ,<br>pH = 4;<br>internal electrolyte,<br>10 <sup>-2</sup> M CuCl <sub>2</sub> , pH = 3         |  |

| ionophore membrane<br>composition                                                | lgK <sub>Hg</sub> 2+,Bn+                                                                                                                                                 | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | $\begin{array}{c} Ca^{2+},-0.8;Co^{2+},-0.3;\\ Ni^{2+},-0.1;Zn^{2+},-0.5;\\ Cd^{2+},-0.3;Pb^{2+},+0.1;\\ Hg^{2+},+4.0\end{array}$                                        | FIM    | 1                           | 0.01                            |                          | I                      | <i>K</i> was obtained<br>as $\lg K_{cu}^{2}$ , $_{Bn+.}$ ;<br>conditioned for 2<br>weeks in $10^{-3}$ M<br>Cu(NO <sub>3</sub> )2, $pH = 4$ ;<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> , $pH = 3$ |
| <b>Hg<sup>2+.1</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 69$ %), PVC ( $w = 30$ %) | $\begin{array}{l} Na^+, -1.2;  Ca^{2+}, -1.4;\\ Co^{2+}, -1.0;  Ni^{2+}, -1.2\\ Cu^{2+}, -0.9;  Zn^{2+}, -2.4;\\ Cd^{2+}, -2.0;  Pb^{2+}, -1.8;\\ Ag^+, +1.9\end{array}$ | SSM    | 0.01                        | 0.01                            | 1                        | I                      | conditioned [2]<br>overnight in $H_2O$ ;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> pH = 3                                                                                                         |
|                                                                                  | $\begin{array}{l} Na^+, -4.3; \ Ca^{2+}, -2.9; \\ Ni^{2+}, -2.6; \ Cu^{2+}, -2.4; \\ Zn^{2+}, -2.7; \ Cd^{2+}, -2.9; \\ Pb^{2+}, -2.7; \ Ag^+, +2.2 \end{array}$         | SSM    | 0.01                        | 0.01                            | 1                        | I                      | conditioned<br>in 10 <sup>-3</sup> M HgCl <sub>2</sub><br>for 2 d, pH = 2;<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> , pH = 2                                                              |
|                                                                                  | $\begin{array}{l} Na^+, -4.5; Ca^{2+}, -3.3; \\ Ni^{2+}, -2.9; Cu^{2+}, -2.6; \\ Zn^{2+}, -3.1; Cd^{2+}, -3.1; \\ Pb^{2+}, -2.9; Ag^+, +2.3 \end{array}$                 | SSM    | 0.01                        | 0.01                            | I                        | I                      | conditioned<br>in 10 <sup>-3</sup> M HgCl <sub>2</sub><br>for 6 d, pH = 2;<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> , pH = 2                                                              |
|                                                                                  | $\begin{array}{l} Na^+, -4.0; \ Ca^{2+}, -3.1; \\ Ni^{2+}, -2.9; \ Cu^{2+}, -2.7; \\ Zn^{2+}, -2.6; \ Cd^{2+}, -2.6; \\ Pb^{2+}, -2.9; \ Ag^+, +2.3 \end{array}$         | SSM    | 0.01                        | 0.01                            | 1                        | I                      | conditioned<br>in $10^{-3}M$ HgCl <sub>2</sub><br>for 40 d, pH = 2;<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> , pH = 2                                                                            |
|                                                                                  | $\begin{array}{l} Na^+, -3.7; \ Ca^{2+}, -2.7; \\ Ni^{2+}, -2.9; \ Cu^{2+}, -2.7; \\ Zn^{2+}, -2.9; \ Cd^{2+}, -2.9; \\ Pb^{2+}, -2.7; \ Ag^+, +1.8 \end{array}$         | SSM    | 0.01                        | 0.01                            | I                        | I                      | conditioned<br>in 10 <sup>-3</sup> M HgCl <sub>2</sub> ,<br>pH = 3; internal<br>electrolyte, 10 <sup>-2</sup> M<br>HgCl <sub>2</sub> , pH = 3                                                                     |
|                                                                                  | $\begin{array}{l} Na^+, -0.1; \ Ca^{2+}, -1.6; \\ Ni^{2+}, -1.8; \ Cu^{2+}, -2.7; \\ Zn^{2+}, -1.8; \ Cd^{2+}, -2.2; \\ Pb^{2+}, -1.9; \ Ag^+, +3.0 \end{array}$         | SSM    | 0.01                        | 0.01                            | I                        | I                      | conditioned<br>in 10 <sup>-3</sup> M KCl,<br>pH = 3; internal<br>electrolyte,<br>10 <sup>-2</sup> M KCl, pH = 3                                                                                                   |

Potentiometric selectivity coefficients of ion-selective electrodes

2053

continues on next page

| ionophore | membrane<br>composition                                                                                           | lgK <sub>Hg</sub> 2+,Bn+                                                                                                                                         | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                   | $\begin{array}{l} Na^+, -1.3; Ca^{2+}, -1.7; \\ Ni^{2+}, -2.4; Zn^{2+}, -2.4; \\ Cd^{2+}, -2.0; Pb^{2+}, -1.7; \\ Ag^+, +2.4 \end{array}$                        | SSM    | 0.01                        | 0.01                            | 1                        | 1                      | conditioned<br>in 10- <sup>3</sup> M CuCl <sub>2</sub> ,<br>pH = 3; internal<br>electrolyte,<br>10- <sup>2</sup> M HgCl <sub>2</sub> , pH = 3   |
|           | <b>Hg<sup>2+</sup>1</b> ( $w = 1$ %),<br>oNPOE ( $w = 66-69$ %),<br>KTpCIPB ( $x_1 = 70$ %),<br>PVC ( $w = 30$ %) | Na <sup>+</sup> , -4.4; Co <sup>2+</sup> , -4.8;<br>Ni <sup>2+</sup> , -5.6; Zn <sup>2+</sup> , -5.8;<br>Pb <sup>2+</sup> , -3.6; Ag <sup>+</sup> , +1.6         | SSM    | 0.01                        | 0.01                            | 41                       | 10-5-10-3              | conditioned [2] overnight in $H_2O$ ;<br>$t_{resp} < 45$ s;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3                  |
|           |                                                                                                                   | $\begin{array}{l} Na^+, -5.0; \ Ca^{2+}, -4.2; \\ Ni^2+, -3.7; \ Cu^{2+}, -3.5; \\ Zn^{2+}, -3.8; \ Cd^{2+}, -3.6; \\ Pb^{2+}, -3.7; \ Ag^+, +2.4 \end{array}$   | SSM    | 0.01                        | 0.01                            | I                        | I                      | conditioned<br>in $10^{-3}M$ HgCl <sub>2</sub> .<br>for 2 d, pH = 2;<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> , pH = 2         |
|           |                                                                                                                   | $\begin{array}{l} Na^+, -5.2; \ Ca^{2+}, -4.5; \\ Ni^{2+}, -4.2; \ Cu^{2+}, -3.5; \\ Zn^{2+}, -4.0; \ Cd^{2+}, -3.9; \\ Pb^{2+}, -3.9; \ Ag^+, +2.3 \end{array}$ | SSM    | 10.0                        | 0.01                            | I                        | I                      | conditioned<br>in 10- <sup>3</sup> M HgCl <sub>2</sub> .<br>for 6 d, pH = 2;<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> , pH = 2 |
|           |                                                                                                                   | $\begin{array}{l} Na^+, -4.6; \ Ca^{2+}, -4.0; \\ Ni^{2+}, -3.5; \ Cu^{2+}, -3.0; \\ Zn^{2+}, -3.2; \ Cd^{2+}, -3.0; \\ Pb^{2+}, -3.6; \ Ag^+, +2.2 \end{array}$ | SSM    | 10.0                        | 0.01                            | I                        | I                      | conditioned<br>in $10^{-3}M$ HgCl <sub>2</sub> ,<br>for 40 d, pH = 2;<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> , pH = 2        |
|           |                                                                                                                   | $\begin{array}{l} Na^+, -5.4; \ Ca^{2+}, -2.7; \\ Ni^{2+}, -3.9; \ Zn^{2+}, -3.9; \\ Cd^{2+}, -3.9; \ Pb^{2+}, -3.7; \\ Ag^+, +2.6 \end{array}$                  | SSM    | 0.01                        | 0.01                            | I                        | I                      | conditioned<br>in 10- <sup>3</sup> M HgCl <sub>2</sub> ,<br>pH = 3; internal<br>electrolyte, 10- <sup>2</sup> M<br>HgCl <sub>2</sub> , pH = 3   |
|           |                                                                                                                   | $\begin{array}{l} Na^+,+1.3;\ Ca^{2+},-0.8;\\ Ni^{2+},-0.9;\ Cu^{2+},-0.6;\\ Zn^{2+},-0.9;\ Cd^{2+},-1.3;\\ Pb^{2+},-1.0;\ Ag^+,+2.8 \end{array}$                | SSM    | 0.01                        | 0.01                            | I                        | I                      | conditioned<br>in 10- <sup>3</sup> M KCl,<br>pH = 3: internal<br>electrolyte,<br>10- <sup>2</sup> M KCl, pH = 2                                 |
|           |                                                                                                                   | $\begin{array}{l} Na^+, -2.0; \ Ca^{2+}, -3.7; \\ Ni^{2+}, -3.4; \ Zn^{2+}, -3.4 \\ Cd^{2+}, -4.0; \ Pb^{2+}, -3.7; \\ Ag^+, +1.3 \end{array}$                   | SSM    | 0.01                        | 0.01                            | 1                        | I                      | conditioned<br>in 10- <sup>3</sup> M CuCl <sub>2</sub> ,<br>pH = 3; internal<br>electrolyte, 10- <sup>2</sup> M<br>CuCl <sub>2</sub> , pH = 2   |

 Table 16: Hg<sup>2+</sup>-Selective Electrodes (Continued)

| T and T of          |                                                                                                                 |                                                                                                                                                                                              |        |                             |                                                       |                          |                        |                                                                                                                                                                                                                              |
|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ionophore           | membrane<br>composition                                                                                         | $\lg K_{\mathrm{Hg}^{2+},\mathrm{B}^{n+}}$                                                                                                                                                   | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                                                                                                                                                 |
| Hg <sup>2+</sup> -2 | <b>Hg<sup>2</sup>+.2</b> ( $w = 1-4$ %),<br>DDP ( $w = 66-69$ %), PVC ( $w = 30$ %)                             | $\begin{array}{c} {\rm Ca}^{2+}, -1.1;  {\rm Co}^{2+}, -0.5; \\ {\rm Ni}^{2+}, -0.5;  {\rm Zn}^{2+}, -0.7; \\ {\rm Cd}^{2+}, +0.3;  {\rm Pb}^{2+}, -0.3; \\ {\rm Hg}^{2+}, +0.3 \end{array}$ | FIM    | I                           | 0.01                                                  | 1                        | 1                      | <i>K</i> was obtained [1]<br>as $\lg K_{cu}^{2}$ + $_{Bn}$ +.;<br>conditioned<br>overnight in 10 <sup>-3</sup> M<br>CuCl <sub>2</sub> , pH = 3;<br>internal electrolyte,<br>10 <sup>-2</sup> M CuCl <sub>2</sub> , pH = 2    |
|                     |                                                                                                                 | $\begin{array}{c} {\rm Ca}^{2+}, -1.6;  {\rm Co}^{2+}, -0.8; \\ {\rm Ni}^{2+}, -0.4;  {\rm Zn}^{2+}, -0.9; \\ {\rm Cd}^{2+}, -1.2;  {\rm Pb}^{2+}, -0.7; \\ {\rm Hg}^{2+}, +1.3 \end{array}$ | FIM    | I                           | 0.01                                                  | I                        | 1                      | K was obtained<br>as $lgK_{Cu}^{2+}Bn+$ ;<br>conditioned for 3 d<br>in 10 <sup>-3</sup> M Cu(NO <sub>3</sub> ) <sub>2</sub> ,<br>pH = 4;<br>internal electrolyte,<br>10 <sup>-2</sup> M CuCl <sub>2</sub> , pH = 3           |
|                     |                                                                                                                 | $\begin{array}{c} Ca^{2+}, -1.3; \ Co^{2+}, -0.7; \\ Ni^{2+}, -0.2; \ Zn^{2+}, -1.2; \\ Cd^{2+}, -0.5; \ Pb^{2+}, +0.3; \\ Hg^{2+}, +4.4 \end{array}$                                        | FIM    | 1                           | 0.01                                                  | I                        | 1                      | K was obtained<br>as $lgK_{Cu^{2+},Bn^{+}}$ ;<br>conditioned for 2<br>weeks in 10 <sup>-3</sup> M<br>Cu(NO <sub>3</sub> ) <sub>2</sub> , pH = 4;<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> , pH = 3   |
|                     | <b>Hg<sup>2</sup>+.2</b> ( $w = 1-4$ %),<br>DDP ( $w = 66-69$ %), PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %) | $\begin{array}{l} Ca^{2+}, +0.5; \ Co^{2+}, +0.2; \\ Ni^{2+}, +0.1; \ Zn^{2+}, +0.1; \\ Cd^{2+}, +0.3; \ Pb^{2+}, +0.2; \\ Hg^{2+}, +5.8 \end{array}$                                        | FIM    | I                           | 0.0                                                   | 1                        | 1                      | <i>K</i> was obtained [1] as $\lg K_{Cu}^{2+}$ , $\operatorname{Bn+}$ ;<br>conditioned overnight in 10 <sup>-3</sup> M CuCl <sub>2</sub> , pH = 3;<br>internal electrolyte:<br>10 <sup>-2</sup> M CuCl <sub>2</sub> , pH = 3 |
|                     |                                                                                                                 | $\begin{array}{c} {\rm Ca}^2, -0.4;  {\rm Co}^{24}, -0.2; \\ {\rm Ni}^2, -0.1;  {\rm Zn}^{24}, -0.5; \\ {\rm Cd}^2, +0.1;  {\rm Pb}^{24}, +0.0; \\ {\rm Hg}^2+, +5.6 \end{array}$            | FIM    | T                           | 0.01                                                  | I                        | I                      | K was obtained<br>as $\lg K_{Cu}^{2+}$ , $\lg m+$ ;<br>conditioned for 3 d in<br>$10^{-3}$ M Cu(NO <sub>3</sub> ) <sub>2</sub> ,<br>pH = 4;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3               |

Potentiometric selectivity coefficients of ion-selective electrodes

continues on next page

| ionoluono:          |                                                                                                | 1~V 2                                                                                                                                                                                                         |         | 1 and one inter             | intonforing                     | -   0 <b>1</b> 0         | lincou                |                                                                                                                                                                                                                                         | I |
|---------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|---------------------------------|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| lonopnore           | nemorate<br>composition                                                                        | Ig∧Hg∠+,Bn+                                                                                                                                                                                                   | Illemon | primary<br>ion conc.<br>(M) | intertering<br>ion conc.<br>(M) | stope<br>(mV/<br>decade) | unear<br>range<br>(M) | remarks ret.                                                                                                                                                                                                                            | I |
|                     |                                                                                                | $\begin{array}{l} Ca^{2+}, -1.0; \ Co^{2+}, -0.6;\\ Ni^{2+}, -0.4; \ Zn^{2+}, -1.3;\\ Cd^{2+}, -0.8; \ Pb^{2+}, -0.4;\\ Hg^{2+}, +3.8\end{array}$                                                             | FIM     | I                           | 0.01                            | I                        | I                     | K was obtained<br>as $lgK_{Cu}^{2+}$ , $lg^{n+}$ ;<br>conditioned for 2<br>weeks in 10 <sup>-3</sup> M<br>Cu(NO <sub>3</sub> ) <sub>2</sub> , $pH$ 4;<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> , $pH$ = 3       |   |
|                     | $Hg^{2+,2}$ (w = 1 %),<br>oNPOE (w = 69 %), PVC (w = 30 %)                                     | Na <sup>+</sup> , -1.5; Ca <sup>2+</sup> , -2.2;<br>Ni <sup>2+</sup> , -1.7; Zn <sup>2+</sup> , -1.8;<br>Cd <sup>2+</sup> , -2.4; Pb <sup>2+</sup> , -2.2;<br>Ag <sup>+</sup> , +1.3                          | SSM     | 0.01                        | 0.01                            | I                        | 1                     | conditioned [2]<br>overnight in $H_2O$ ;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3                                                                                                                             |   |
|                     | $Hg^{2+.2}$ (w = 1 %),<br>oNPOE (w = 69 %), PVC (w = 30 %),<br>KTpCIPB (x <sub>i</sub> = 70 %) | Na <sup>+</sup> , -2.7; Ca <sup>2+</sup> , -4.1;<br>Ni <sup>2+</sup> , -4.2; Co <sup>2+</sup> , -4.0;<br>Zn <sup>2+</sup> , -4.2; Cd <sup>2+</sup> , -4.8;<br>Pb <sup>2+</sup> , -4.2; Ag <sup>+</sup> , +1.6 | SSM     | 0.01                        | 0.01                            | 38                       | 10-5-10-3             | conditioned [2]<br>overnight in H <sub>2</sub> O;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3                                                                                                                    |   |
| Hg <sup>2+</sup> .3 | <b>Hg<sup>2+</sup>-3</b> ( $w = 1-4$ %),<br>DDP ( $w = 66-69$ %), PVC ( $w = 30$ %)            | Ca <sup>2+</sup> , -2.0; Co <sup>2+</sup> , +0.3;<br>Ni <sup>2+</sup> , -1.1; Zn <sup>2+</sup> , -1.0;<br>Cd <sup>2+</sup> , +1.3; Pb <sup>2+</sup> , +0.3;<br>Hg <sup>2+</sup> , +1.2                        | FIM     | I                           | 0.01                            | I                        | 1                     | K was obtained [1]<br>as $lgK_{Cu}^{24}$ , $l_{B}^{1+}$ ;<br>conditioned<br>overnight in $10^{-3}$ M<br>CuCl <sub>2</sub> , $pH = 3$ ;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , $pH = 3$                             |   |
|                     |                                                                                                | $\begin{array}{l} Ca^{2+},-1.0;\ Co^{2+},-0.3;\\ Ni^{2+},-0.2;\ Zn^{2+},-0.4;\\ Cd^{2+},+0.1;\ Pb^{2+},+0.4;\\ Hg^{2+},+0.6\end{array}$                                                                       | FIM     | I                           | 10.0                            | I                        | 1                     | K was obtained [1]<br>as lgKcu <sup>2+</sup> , $B^{n+}$ ;<br>conditioned for 3 d in<br>$10^{-3}$ M Cu(NO <sub>3</sub> ) <sub>2</sub> ,<br>pH = 4;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , $PH = 3$                  |   |
|                     |                                                                                                | $\begin{array}{c} Ca^{2+}, -1.7; \ Co^{2+}, -0.7; \\ Ni^{2+}, -0.4; \ Cd^{2+}, -0.5; \\ Pb^{2+}, -0.3; \ Hg^{2+}, +2.0 \end{array}$                                                                           | FIM     | I                           | 0.01                            | I                        | 1                     | K was obtained [1]<br>as $lgK_{Cu}^{2+}$ , $l^{n+.:}$<br>conditioned for 2<br>weeks in 10 <sup>-3</sup> M<br>Cu(NO <sub>3</sub> ) <sub>2</sub> , $pH = 4$ ;<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> , $pH = 3$ |   |

 Table 16: Hg<sup>2+</sup>-Selective Electrodes (Continued)

# Y. UMEZAWA et al.

| ionophore           | membrane<br>composition                                                                                                                                  | $\lg K_{\mathrm{Hg}^{2+},\mathrm{B}^{\mathrm{n}+}}$                                                                                                                                                           | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks ref.                                                                                                                                                                                                          |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | <b>Hg<sup>2+.3</sup></b> ( $w = 1-4\%$ ),<br>DDP ( $w = 66-69\%$ ), PVC ( $w = 30\%$ ),<br>KTpCIPB ( $x_1 = 70\%$ )                                      | $\begin{array}{l} Ca^{2+}, -0.7; \ Co^{2+}, -0.3; \\ Ni^{2+}, -0.1; \ Zn^{2+}, -0.1; \\ Cd^{2+}, +0.6; \ Pb^{2+}, +0.5; \\ Hg^{2+}, +3.3 \end{array}$                                                         | FIM    | I                           | 0.01                                                  | I                        | 1                                  | K was obtained [1]<br>as $lgK_{Cu}^{2+}$ , Bn+;<br>conditioned<br>overnight in 10 <sup>-3</sup> M<br>CuCl <sub>2</sub> , pH = 3;<br>internal electrolyte,<br>10 <sup>-2</sup> M CuCl <sub>2</sub> , pH = 3            |
|                     |                                                                                                                                                          | Ca <sup>2+</sup> , -1.0; Co <sup>2+</sup> , -0.4;<br>Ni <sup>2+</sup> , -0.4; Zn <sup>2+</sup> , -1.1;<br>Cd <sup>2+</sup> , -0.8; Pb <sup>2+</sup> , -1.7;<br>Hg <sup>2+</sup> , +3.0                        | FIM    | 1                           | 10.0                                                  | I                        | 1                                  | <i>K</i> was obtained [1]<br>as $lgK_{Cu}^{2}+_{B^{H}+}$ ;<br>conditioned for 3 d in<br>$10^{-3}$ M Cu(NO <sub>3</sub> ) <sub>2</sub> ,<br>pH = 4;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3 |
|                     |                                                                                                                                                          | $\begin{array}{l} Ca^{2+}, +0.4; \ Co^{2+}, +1.3; \\ Ni^{2+}, +0.2; \ Zn^{2+}, +1.1; \\ Cd^{2+}, +1.4; \ Pb^{2+}, +1.5; \\ Hg^{2+}, +4.4 \end{array}$                                                         | FIM    | 1                           | 10.0                                                  | I                        | 1                                  | <i>K</i> was obtained [1]<br>as $lgK_{Cu}^2+$ , $g_{n+.}$ ;<br>conditioned for 2<br>weeks in 10 <sup>-3</sup> M<br>CuNO3, pH = 4;<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> , pH = 3           |
|                     | <b>Hg<sup>2+</sup>.3</b> ( $w = 1$ %),<br>oNPOE ( $w = 69$ %), PVC ( $w = 30$ %)                                                                         | Na <sup>+</sup> , -1.0; Ca <sup>2+</sup> , -1.8;<br>Ni <sup>2+</sup> , -1.1; Cu <sup>2+</sup> , -1.3;<br>Zn <sup>2+</sup> , -0.9; Cd <sup>2+</sup> , -2.1;<br>Pb <sup>2+</sup> , -1.8; Ag <sup>+</sup> , +1.6 | SSM    | 0.01                        | 0.01                                                  | I                        | I                                  | conditioned [2]<br>overnight in $H_2O$ ;<br>internal electrolyte,<br>$10^{-2} M CuCl_2$ , $pH = 3$                                                                                                                    |
|                     | $\begin{array}{l} \mathbf{Hg^{2+,3}} & (w=1\ \%),\\ \text{oNPOE} & (w=69\ \%), \ \text{PVC} & (w=30\ \%),\\ \text{KTpCIPB} & (x_{i}=70\ \%) \end{array}$ | Na <sup>+</sup> , +0.4; Ca <sup>2+</sup> , -1.7;<br>Ni <sup>2+</sup> , -1.1; Cu <sup>2+</sup> , -1.4;<br>Zn <sup>2+</sup> , -1.9; Cd <sup>2+</sup> , -2.1;<br>Pb <sup>2+</sup> , -1.7; Ag <sup>+</sup> , +1.7 | SSM    | 0.01                        | 0.01                                                  | I                        | I                                  | conditioned [2]<br>overnight in $H_2O$ ;<br>internal electrolyte,<br>$10^{-2}$ M CuCl <sub>2</sub> , pH = 3                                                                                                           |
| Hg <sup>2+-</sup> 4 | $Hg^{2+}4$ (w = 1 %),<br>DOP (w = 20-50 %),<br>PVC (w = 80-49 %)                                                                                         | $\begin{array}{l} Co^{2+},-2.06;Ni^{2+},-2.60;\\ Cu^{2+},-1.15;Cd^{2+},-2.35;\\ Pb^{2+},-0.77;Bi^{3+},+0.11;\\ Fe^{3+},+0.70;Ce^{3+},-1.66 \end{array}$                                                       | MSM    | 0.01                        | 0.01                                                  | 27                       | 10 <sup>-5</sup> -10 <sup>-2</sup> | coated [3]<br>graphite elec.;<br>pH = 3.4                                                                                                                                                                             |
| Hg <sup>2+-5</sup>  | <b>Hg<sup>2+-5</sup></b> ( $w = 2$ %),<br>oNPOE ( $w = 66$ %),                                                                                           | Li <sup>+</sup> , –3.0; Na <sup>+</sup> , –2.9;<br>K <sup>+</sup> , –2.8; NH <sub>4</sub> <sup>+</sup> , –2.8;                                                                                                | SSM    | 10-3                        | 10-3                                                  | I                        | I                                  | pH = 4.5 [4]                                                                                                                                                                                                          |

Potentiometric selectivity coefficients of ion-selective electrodes

| 1 able 10:          | Lable 10: hg <sup>2+</sup> -Selecuve Elecuodes (Commen)                                                           |                                                                                                                                                                                                                                                                                        |        |                             |                                 |                          |                                    |                                                                        |      |
|---------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------------------|------------------------------------------------------------------------|------|
| ionophore           | membrane<br>composition                                                                                           | lgK <sub>Hg</sub> 2+, <sub>B<sup>n+</sup></sub>                                                                                                                                                                                                                                        | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks                                                                | ref. |
|                     | PVC ( $w = 32$ %),<br>KTpCIPB ( $x_1 = 5$ %)                                                                      | $\begin{array}{l} Mg^{2+}_{g},-6.0; Ca^{2+}_{g},-5.9;\\ Mn^{2+}_{g},-6.0; Co^{2+}_{g},-6.0;\\ Ni^{2+}_{g},-6.2; Cu^{2+}_{g},-6.1;\\ Zn^{2+}_{g},-6.2; Cd^{2+}_{g},-6.1;\\ Pb^{2+}_{g},-5.7; Cr^{3+}_{g},-7.0;\\ Fe^{3+}_{g},-7.1; Ag^{+}_{g},-0.7 \end{array}$                         |        |                             |                                 |                          |                                    |                                                                        |      |
| Hg <sup>2+</sup> -6 | <b>Hg<sup>2+-6</sup></b> ( $w = 2\%$ ),<br>oNPOE ( $w = 6\%$ ),<br>PVC ( $w = 32\%$ ),<br>KTpCIPB ( $x_i = 5\%$ ) | $\begin{array}{l} Li^+,-5.8;Na^+,-5.6;\\ K^+,-5.6;NH_4^+,-5.6;\\ Mg^2+,-8.7;Ca^{2+},-8.5;\\ Mn^{2+},-9.1;Co^{2+},-8.8;\\ Ni^{2+},-9.2;Cu^{2+},-8.2;\\ Ni^{2+},-9.2;Cd^{2+},-8.9;\\ Pb^{2+},-7.9;Cr^{3+},-10.1;\\ Fe^{3+},-10.3;Ag^+,-2.2\end{array}$                                   | SSM    | 10-3                        | 10-3                            | I                        | 1                                  | pH = 4.5                                                               | [4]  |
| Hg <sup>2+</sup> -7 | <b>Hg<sup>2+1</sup></b> ( $w = 2\%$ ),<br>oNPOE ( $w = 66\%$ ),<br>PVC ( $w = 32\%$ ),<br>KTpCIPB ( $x_i = 5\%$ ) | $\begin{array}{l} Li^+, -3.7; Na^+, -4.1;\\ K^+, -3.3; NH4^+, -3.7;\\ Mg^2+, -6.6;\\ Mn^2+, -6.6;\\ Mn^2+, -7.6; Co^{2+}, -7.2;\\ Ni^2+, -8.0; Cu^{2+}, -8.2;\\ Ni^2+, -7.9; Cd^{2+}, -7.9;\\ Pb^{2+}, -2.3; Cr^3+, -8.0;\\ Fe^{3+}, -8.3; Ag^+, +0.6\end{array}$                      | SSM    | 10-3                        | 10-3                            | 1                        | 1                                  | pH = 4.5                                                               | [4]  |
| Hg <sup>2+.</sup> 8 | <b>Hg<sup>2+.8</sup></b> ( $w = 2$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 32$ %),<br>KTpCIPB ( $x_1 = 5$ %)    | $\begin{array}{l} Li^+, -9.0; Na^+, -9.1;\\ K^+, -8.1; NH_4^+, -8.6;\\ Mg^{2+}, -12.2; Ca^{2+}, -12.0;\\ Mn^{2+}, -12.0; Co^{2+}, -11.8;\\ Ni^{2+}, -12.0; Cu^{2+}, -12.1;\\ Zn^{2+}, -12.1; Cd^{2+}, -11.1;\\ Pb^{2+}, -6.5; Cr^{3+}, -12.1;\\ Fe^{3+}, -12.8; Ag^+, -4.7\end{array}$ | SSM (  | 10-3                        | 10-3                            | ca. 70                   | 10 <sup>-5</sup> -10 <sup>-2</sup> | pH = 4.5;<br>195 ≈ 10 s                                                | [4]  |
|                     |                                                                                                                   | $ \begin{array}{l} Li^+, -6.0; Na^+, -6.1; \\ K^+, -5.5; NH_4^+, -5.8; \\ Mg^2+, -7.6; Ca^{2+}, -7.5; \\ Mn^{2+}, -7.5; Cu^{2+}, -7.4; \\ Ni^{2+}, -7.5; Cu^{2+}, -7.6; \\ Zn^{2+}, -7.6; Cd^{2+}, -7.4; \\ Pb^{2+}, -4.8; Cr^{3+}, -8.1; \\ Pb^{3+}, -7.9; Ag^+, -3.9 \end{array} $   | SSM    | 10-3                        | 10-3                            |                          |                                    | K values<br>were recalculated<br>using the<br>observed<br>slope value. | ted  |

Table 16: Hg<sup>2+</sup>-Selective Electrodes (Continued)

| Table 16: ]                                                            | Table 16: Hg <sup>2+</sup> -Selective Electrodes (Continued)                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                           |                                                      |                      |                                                               |                                                                                                                                                                  |         |      |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| ionophore                                                              | ionophore membrane<br>composition                                                                                                                                                                                                                                                                                                                                           | lgK <sub>Hg</sub> 2+, <sub>Bn</sub> +                                                                                                                                                                                                                                                        | method                                                                                    | primary interferin<br>ion conc. ion conc.<br>(M) (M) | 50                   | slope<br>(mV/<br>decade)                                      | linear<br>range<br>(M)                                                                                                                                           | remarks | ref. |
| Hg <sup>2+</sup> -9                                                    | <b>Hg2+.9</b> ( $w = 2$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 32$ %),<br>KTpCIPB ( $x_i = 5$ %)                                                                                                                                                                                                                                                                         | $\begin{array}{l} Li^+, -4.9;  Na^+, -5.0; \\ K^+, -3.3;  NH_4^+, -4.0; \\ Mg^{2+}, -8.0;  Ca^{2+}, -8.6; \\ Mn^{2+}, -8.3;  Co^{2+}, -7.7; \\ Ni^{2+}, -8.5;  Cu^{2+}, -8.7; \\ Ni^{2+}, -8.3;  Cd^{2+}, -8.7; \\ Pb^{2+}, -5.0;  Cr^{3+}, -9.5; \\ Fe^{3+}, -9.1;  Ag^+, -1.6 \end{array}$ | WSS                                                                                       | 10-3                                                 | 10-3                 | I                                                             | 1                                                                                                                                                                | pH, 4.5 | [4]  |
| (1) M. P.<br>(2) Z. Br<br>(3) Y. M<br>(4) D.S.                         | <ul> <li>M. Piertraszkiewicz, R. Gasiorowski, Z. Brzózka, J. Inclusion. Phenom. Mol. Recognit. Chem., 9, 259–265 (1990).</li> <li>Z. Brzozka, M. Piertraszkiewicz, Electroanalysis, 3, 855–858 (1991).</li> <li>Y. Masuda, E. Sekido, Bunseki Kagaku, 39, 683–687 (1990).</li> <li>D.S. Siswanta, M. Kin, H. Hisamoto, K. Suzuki, Chem. Lett., 1011–1012 (1996).</li> </ul> | zka, J. Inclusion. Phenom. 1<br>ysis, <b>3</b> , 855–858 (1991).<br>83–687 (1990).<br>iki, Chem. Lett., 1011–1012                                                                                                                                                                            | Mol. Recogn<br>: (1996).                                                                  | iit. Chem.,                                          | <b>9</b> , 259–265 ( | .(0661                                                        |                                                                                                                                                                  |         |      |
| R <sup>-</sup> N<br>Hg <sup>2+</sup> -1 (M,<br>Hg <sup>2+</sup> -2 (M, | $Hg^{2*-1} (M_{f} = 599.00); R=c$                                                                                                                                                                                                                                                                                                                                           | Hg <sup>2+</sup> .4 (Mr = 360.69)                                                                                                                                                                                                                                                            | $Hg^{24-6} (M_{f} = 229.37); R=-CH_{3}$ $Hg^{24-6} (M_{f} = 305.46); R=-CH_{2}C_{6}H_{5}$ | C1+H23<br>0<br>337): R=-CH<br>46): R=-CH             | E Sol                | о<br>Н на <sup>22+</sup> -<br>Н на <sup>22+</sup> -<br>е<br>е | Hg <sup>2+-</sup> -7 (M <sup>+</sup> = 356.43): n=4<br>Hg <sup>2+-</sup> 8 (M <sub>+</sub> = 412.53): n=8<br>Hg <sup>2+-</sup> 9 (M <sub>+</sub> = 482.67): n=13 |         |      |

| Table 17: | Table 17: Tl+-Selective Electrodes                                                                                       |                                                                                                                                                                                                                                                                                                                    |        |                             |                                 |                          |                                                    |                                                        |      |
|-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------|------|
| ionophore | ionophore membrane<br>composition                                                                                        | lgK <sub>Tl</sub> +, <sub>B</sub> n+                                                                                                                                                                                                                                                                               | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                             | remarks                                                | ref. |
| 1-+IL     | <b>TI+-1</b> ( $w = 2.8 \ \%$ ),<br>NaTFPB ( $x_i = 16 \ \%$ ),<br>oNPOE ( $w = 69.0 \ \%$ ),<br>PVC ( $w = 27.6 \ \%$ ) | $\begin{array}{l} Na^+, -4.0; K+, -0.5; \\ Rb^+, -0.95; Cs^+, -1.9; \\ NH_4^+, -2.05; Mg^{2+}, -5.3; \\ Ca^{2+}, -5.0; Sr^{2+}, -5.2; \\ Ba^{2+}, -4.0; Pb^{2+}, -4.7; \\ Cd^{2+}, -5.4; Ag^{2+}, -3.2; \\ As^{3+}, -4.0 \end{array}$                                                                              | MSM    | 1                           | 1                               | 1                        | 1                                                  | 1.0.0.g.                                               | Ξ    |
| TI+2      | <b>TI+-2</b> ( $w = 2.8 \ \%$ ),<br>NaTFPB ( $x_1 = 8 \ \%$ ),<br>oNPOE ( $w = 69.0\%$ ),<br>PVC ( $w = 27.6 \ \%$ )     | $ \begin{array}{l} Li+,-4.6, Na+,-2.0;\\ K+,-0.15; Rb+,-0.4;\\ Cs+,-0.45; NH_4+,-1.9;\\ H^+,-3.5; Ng^{2+},-4.4;\\ Ca^{2+},-4.5; Sr^{2+},-4.1;\\ Ba^{2+},-3.4; Co^{2+},-4.15;\\ Ni^{2+},-4.4; Cu^{2+},-4.15;\\ Ni^{2+},-4.4; Cu^{2+},-4.15;\\ Hg^{2+},-3.4; Cr^{3+},-4.12;\\ Hg^{2+},-3.7; Ag^{+},-1.2 \end{array}$ | MSM    | I                           | I                               | 59                       | 3.2 × 10 <sup>-5</sup> -<br>1.0 × 10 <sup>-2</sup> | 3 < pH < 11;<br>7 > 30 d;<br>tresp < 10 s;<br>r.o.o.g. | Ξ    |
| Tl+-3     | <b>TI+-3</b> ( $w = 2.8 \%$ ),<br>NaTFPB ( $x_1 = 8 \%$ ),<br>oNPOE ( $w = 69.0\%$ ),<br>PVC ( $w = 27.6 \%$ )           | $\begin{array}{l} Li^+, -3.3;  Na^+, -2.5; \\ K^+, -1.26;  Rb^+, -1.1; \\ Cs^+, -1.35;  NH4^+, -2.1; \\ H^+, -3.8;  Mg^{2+}, -4.8; \\ Ca^2+, -4.7;  Sr^2+, -4.8; \\ Ba^2+, -3.7;  Co^{2+}, +4.5; \\ Ni^{2+}, -4.9;  Cd^{2+}, -4.4; \\ Hg^{2+}, -4.1;  Cr^{3+}, -4.7; \\ Fe^{3+}, -4.6;  Ag^+, -1.4 \end{array}$    | MSM    | I                           | I                               | 59                       | 3.2 × 10 <sup>-5</sup> -<br>1.0 × 10 <sup>-2</sup> | 3 < pH < 11;<br>7 > 30 d;<br>tresp < 10 s;<br>r.o.o.g. | Ξ    |
| T)+-4     | <b>TI+-4</b> ( $w = 2.8 \ \%$ ),<br>NaTFPB ( $x_1 = 9 \ \%$ ),<br>oNPOE ( $w = 69.0 \ \%$ ),<br>PVC ( $w = 27.6 \ \%$ )  | $\begin{array}{l} Li^+,-4.6; Na^+,-3.0;\\ K^+,-1.73; Rb^+,-1.6;\\ Cs^+,-1.5; NH4^+,-2.2;\\ H^+,-3.9; Mg^{2+}_{2+},-5.1;\\ Ca^{2+}_{2+},-5.0; Sr^{2+}_{2+},-4.5;\\ Ba^{2+}_{2+},-4.0; Co^{2+}_{2+},-4.8;\\ Ni^{2+}_{2+},-3.6; Cd^{2+}_{2+},-4.9;\\ Hg^{2+}_{2+},-3.9; Ag^+_{7+},-1.4\\ \end{array}$                 | MSM    | I                           | 1                               | 29                       | 3.2 × 10 <sup>-5</sup> -<br>1.0 × 10 <sup>-2</sup> | 3 < pH < 11;<br>7 > 30 d;<br>hesp < 10 s;<br>r.o.o.g.  | Ξ    |

| IT Alon T             |                                                                                                                                                                                                       |                                                                                                                                                                                                                |                         |                             |                                                           |                                                                                              |                                    |                       |      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|-----------------------|------|
| ionophore             | membrane<br>composition                                                                                                                                                                               | lgKrl+,Bn+                                                                                                                                                                                                     | method                  | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M)     | slope<br>(mV/<br>decade)                                                                     | linear<br>range<br>(M)             | remarks               | ref. |
| T]+-5                 | <b>TI+-5</b> ,<br>DOP, PVC<br>(weight ratio not given)                                                                                                                                                | Na <sup>+</sup> , -2.3; Mg <sup>2+</sup> , -3.4;<br>Ca <sup>2+</sup> , -2.9; Co <sup>2+</sup> , -3.2;<br>Ni <sup>2+</sup> , -3.9; Cu <sup>2+</sup> , -2.8;<br>Zn <sup>2+</sup> , -3.6; Fe <sup>3+</sup> , -2.9 | FIM                     | I                           | I                                                         | 1                                                                                            | I                                  | pH = 5.0;<br>r.o.o.g. | [2]  |
|                       | <b>TI-15</b> ( $w = 5.1 \%$ ),<br>DOP ( $w = 61.5 \%$ ), PVC ( $w = 30.8 \%$ ),<br>KTpCIPB ( $x_i = 28 \%$ )                                                                                          | $\begin{array}{l} Mg^{2+},-3.4;Ca^{2+},-3.3;\\ ,Co^{2+},-3.1;Ni^{2+},-3.6;\\ Cu^{2+},-3.3;Zn^{2+},-3.8;\\ Fe^{3+},-3.2\end{array}$                                                                             | MSM                     | I                           | 1                                                         | 55                                                                                           | $10^{-5}$ – $10^{-1}$              | I.0.0.g.              | [2]  |
|                       | $\begin{array}{l} \textbf{TP+5} \ (w=5.1\ \%), & Mg^{2+}, -3.2; \ Ca^{2+}, -3.1; \\ DOS \ (w=61.5\ \%), \ PVC \ (w=30.8\ \%), \ Co^{2+}, -3.5; \ Zn^{2+}, -3.3 \\ KTpCIPB \ (x_1=28\ \%) \end{array}$ | Mg <sup>2+</sup> , -3.2; Ca <sup>2+</sup> , -3.1;<br>Co <sup>2+</sup> , -3.5; Zn <sup>2+</sup> , -3.3                                                                                                          | FIM                     | I                           | I                                                         | I                                                                                            | I                                  | r.o.o.g.              | [2]  |
|                       | <b>TI+-5</b> ( $w = 3.0$ %),<br>DOP ( $w = 51$ %), PVC ( $w = 46$ %)                                                                                                                                  | Co <sup>2+</sup> , -2.0; Ni <sup>2+</sup> , -1.6;<br>Cu <sup>2+</sup> , -0.8; Fe <sup>2+</sup> , -1.3                                                                                                          | FIM                     | I                           | I                                                         | 46                                                                                           | 10 <sup>-5</sup> -10 <sup>-1</sup> | CWE;<br>r.o.o.g.      | [2]  |
| (1) Y. Y.<br>(2) Y. M | Y. Yamashoji, M. Tanaka, S. Nagamune, M. Ouchi, T. Hakushi, T. Shono, <i>Anal. Sci.</i> , 7, 485–486 (1991). Y. Masuda, K. Yakabe, Y. Shibutani, T. Shono, <i>Anal. Sci.</i> , 10, 491–495 (1994).    | Duchi, T. Hakushi, T. Shon<br>o, <i>Anal. Sci.</i> , <b>10</b> , 491–495                                                                                                                                       | o, Anal. Sci<br>(1994). | ., 7, 485–48                | 6 (1991).                                                 |                                                                                              |                                    |                       |      |
|                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                |                         |                             |                                                           | $-0 \qquad 0 \qquad$ | 0                                  |                       |      |
| Jo_                   | )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                    | <b>11+2</b> (M <sub>i</sub> = 360.42)                                                                                                                                                                          | -0 0 0 0                | O´<br>388.46)               | s<br>S                                                    |                                                                                              | )<br>D—_                           |                       |      |
|                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                |                         |                             | -S<br>S                                                   |                                                                                              |                                    |                       |      |
| Ξ.                    | <b>TI+-1</b> ( <i>M</i> <sub>r</sub> = 560.82)                                                                                                                                                        |                                                                                                                                                                                                                |                         | F                           | <b>TI<sup>+</sup>-5</b> ( <i>M</i> <sub>r</sub> = 268.51) | 51)                                                                                          |                                    |                       |      |

|                     | ionophore membrane<br>composition                                                   | lgKpb2+,Bn+                                                                                                                                                                                                                                                                                                                                                                                   | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                    | remarks ret.                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Pb <sup>2+</sup> -1 | <b>Pb2+-1</b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %)            | $\begin{array}{c} Ca^{2+},-2.40;\ Sr^{2+},-2.40;\\ Co^{2+},-2.60;\ Ni^{2+},-2.40;\\ Cu^{2+},-1.80;\ Zn^{2+},-2.10;\\ Cd^{2+},-2.49\end{array}$                                                                                                                                                                                                                                                | SSM    | 0.001                       | 100.0                           | 31                       | $4 \times 10^{-6}$<br>$-3 \times 10^{-3}$ | 25.0±0.1 °C [1]                                                                                                  |
|                     | <b>Pb<sup>2+</sup>-1</b> ( $w = 1$ %), DOP ( $w = 66$ %),<br>PVC ( $w = 33$ %)      | Ca <sup>2+</sup> , -2.10; Sr <sup>2+</sup> , -2.41;<br>Co <sup>2+</sup> , -2.80; Ni <sup>2+</sup> , -2.39;<br>Cu <sup>2+</sup> , -1.08; Zn <sup>2+</sup> , -2.06;<br>Cd <sup>2+</sup> , -2.19                                                                                                                                                                                                 | SSM    | 0.001                       | 0.001                           | 33                       | $4 \times 10^{-6}$<br>$-3 \times 10^{-3}$ | 25.0±0.1 °C [1]                                                                                                  |
|                     | <b>Pb<sup>2+-1</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %) | $ \begin{array}{l} Li^+,-2.3;Na^+,-1.8;\\ K^+,-0.5;NH4^+,-1.4;\\ Ca^{2+},-1.9;Sr^{2+},-2.0;\\ Mn^{2+},-2.1;Co^{2+},-1.9;\\ Ni^{2+},-1.98;Cu^{2+},-1.98;\\ Ni^{2+},-1.98;Cu^{2+},-2.2;\\ Ag^+,-1.35;Tl^+,-0.6 \end{array} $                                                                                                                                                                    | SSM    | 0.001                       | 0.001                           | 45 ± 2                   | T                                         | $22 \pm 2$ °C; [2]<br>pH = 6; r.o.o.g.;<br>Charge numbers of<br>the ions were omitted<br>to calculate <i>K</i> . |
|                     | <b>Pb<sup>2+1</sup></b> ( $w = 1$ %), DOP ( $w = 66$ %),<br>PVC ( $w = 33$ %)       | $ \begin{array}{l} Li^+,-2.44;Na^+,-1.6;\\ K^+,-0.55;NH4^+,-2.2;\\ Ca^{2+},-2.46;Sr^{2+},-2.44;\\ Mn^{2+},-2.55;Co^{2+},-2.4;\\ Ni^{2+},-2.44;Cu^{2+},-2.5;\\ Zn^{2+},-2.42;Cd^{2+},-2.7;\\ Ag^+,-1.98;Tl^+,-0.85\\ \end{array} $                                                                                                                                                             | SSM    | 0.001                       | 100.0                           | 45 ± 2                   | 1                                         | $22 \pm 2$ °C; [2]<br>pH = 6; r.o.o.g.;<br>Charge numbers of<br>the ions were omitted<br>to calculate <i>K</i> . |
| Pb <sup>2+</sup> -2 | <b>Pb<sup>2+</sup>-2</b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %), PVC ( $w = 33$ %)    | $\begin{array}{l} Ca^{2+},-2.40;\ Sr^{2+},-2.40;\\ Co^{2+},-2.52;\ Ni^{2+},-2.62;\\ Cu^{2+},-1.89;\ Zn^{2+},-2.11;\\ Cd^{2+},-2.19\end{array}$                                                                                                                                                                                                                                                | SSM    | 0.001                       | 0.001                           | Nu                       | $4 \times 10^{-6}$<br>$-3 \times 10^{-3}$ | 25.0±0.1 °C [1]                                                                                                  |
|                     | <b>Pb<sup>2</sup>+-2</b> ( $w = 1$ %),<br>DOP ( $w = 66$ %),<br>PVC ( $w = 33$ %)   | $\begin{array}{l} Ca^{2+},-2.10;\ Sr^{2+},-2.41;\\ Co^{2+},-2.49;\ Ni^{2+},-2.30;\\ Cu^{2+},-1.60;\ Zn^{2+},-1.89;\\ Cd^{2+},-2.23\end{array}$                                                                                                                                                                                                                                                | SSM    | 0.001                       | 0.001                           | Nu                       | $4 \times 10^{-6}$<br>$-3 \times 10^{-3}$ | 25±2°C [1]                                                                                                       |
|                     | <b>Pb<sup>2+</sup>-2</b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %) | Li <sup>+</sup> , -2.75; Na <sup>+</sup> , -2.25;<br>K <sup>+</sup> , -2.0; NH <sub>4</sub> <sup>+</sup> , -2.05;<br>Ca <sup>2+</sup> , -2.40; Sr <sup>2+</sup> , -2.36;<br>Mn <sup>2+</sup> , -2.50; Co <sup>2+</sup> , -2.36;<br>Ni <sup>2+</sup> , -1.95; Cu <sup>2+</sup> , -1.7;<br>Zn <sup>2+</sup> , -2.3; Cd <sup>2+</sup> , -2.4;<br>Ag <sup>+</sup> , -1.47; Tl <sup>+</sup> , -1.4 | SSM    | 0000                        | 100.0                           | 45±2                     | T                                         | $22 \pm 2$ °C; [2]<br>pH = 6; r.o.o.g.;<br>Charge numbers of<br>the ions were omitted<br>to calculate <i>K</i> . |

## Y. UMEZAWA et al.

| ionophore           | membrane<br>composition                                                                                                                                            | $\lg K_{Pb^{2+},B^{n+}}$                                                                                                                                                                                                                                                                                                                                                                            | method     | primary<br>ion conc.<br>(M)               | primary interfering<br>ion conc. ion conc.<br>(M) (M)                  | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks ref                                                                                                                      |                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------|------------------------------------------------------------------------|--------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                     | <b>Pb<sup>2+</sup>-2</b> ( <i>w</i> = 1 %), DOP ( <i>w</i> = 66 %),<br>PVC ( <i>w</i> = 33 %)                                                                      | Li+, -2.8; Na+, -2.35;<br>K+, -1.95; NH4+, -2.35;<br>Ca <sup>2+</sup> , -2.7; Sr <sup>2+</sup> , -2.6;<br>Mn <sup>2+</sup> , -2.65; Co <sup>2+</sup> , -2.3;<br>Ni <sup>2+</sup> , -2.45; Cd <sup>2+</sup> , -2.4;<br>Ag <sup>+</sup> , -1.58; Tl <sup>+</sup> , -1.55<br>Ag <sup>+</sup> , -1.58; Tl <sup>+</sup> , -1.55                                                                          | SSM        | 0.001                                     | 0.001                                                                  | 45±2                     | 1                                  | $22 \pm 2$ °C; [2]<br>pH = 6; r.o.o.g.;<br>Charge numbers of<br>the ions were omitted<br>to calculate <i>K</i> .                 | f                      |
| Pb <sup>2+</sup> -3 | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                               | Na <sup>+</sup> , $-5.0$<br>K <sup>+</sup> , $-4.1$ ; Mg <sup>2+</sup> , $-5.3$ ;<br>Ca <sup>2+</sup> , $-5.2$ ;<br>Fe <sup>3+</sup> , $-5.5$<br>ethoxyacetophenone)                                                                                                                                                                                                                                | FIM<br>SSM | -<br>10 <sup>-3</sup><br>10 <sup>-4</sup> | 0.01<br>10-3<br>10-4                                                   | 63                       | 10 <sup>-6</sup> -10 <sup>-3</sup> | ISFET; 25 °C; [3]<br>$10^{-2}$ M sodium<br>acetate, pH = 5.5;<br>$t_{resp} < 2$ min;<br>$\tau > 60$ d                            |                        |
|                     | <b>Pb<sup>2+.3</sup></b> ( $w = 5$ %), BHES ( $w = 62$ %),<br>PVC–PVA–PVAc ( $w = 33$ %)<br>PVA, poly(vinyl alcohol);<br>PVAc, poly(vinyl acetate)                 | $\begin{array}{l} K^+, -3.21;\\ Al^3+, -2.12;\\ Fe^{2+}, -4.26;\\ Cu^{2+}, -3.01; Cd^{2+}, -2.82;\\ Hg^{2+}, -1.81\end{array}$                                                                                                                                                                                                                                                                      | FIM        | 1 1                                       | $\begin{array}{c} 0.1 \\ 0.005 \\ 10^{-5} \\ 0.05 \\ 0.01 \end{array}$ | 31.9                     | $10^{-6}$ -8.4 × $10^{-3}$         | 25 °C; ionic [4]<br>strength of $10^{-3}$ M<br>NaCIO4;<br>$t_{resp} = 10$ s;<br>$\tau = 210$ d                                   |                        |
|                     | <b>Pb<sup>2+</sup>-3</b> ( <i>w</i> = 5 %), BHES ( <i>w</i> = 62 %),<br>PVC–PVA–PVAc ( <i>w</i> = 33 %)<br>PVAc, poly(vinyl alcohol);<br>PVAc, poly(vinyl acetate) | K+, -2.12;<br>Al <sup>3+</sup> , -3.16;<br>Fe <sup>2+</sup> , -1.67; Cu <sup>2+</sup> , -2.63;<br>Cd <sup>2+</sup> , -2.16;<br>Hg <sup>2+</sup> , -1.60                                                                                                                                                                                                                                             | FIM        | I                                         | 0.1<br>0.01<br>0.001<br>0.005                                          | 36.1                     | $10^{-6}$ -3.1 × 10 <sup>-3</sup>  | 25 °C; coated [4]<br>carbon elec.; ionic<br>strength of $10^{-3}$ M<br>NaCIO <sub>4</sub> ;<br>$t_{resp} = 20$ s; $\tau = 150$ d | 00                     |
| Pb <sup>2+.4</sup>  | <b>Pb<sup>2+.4</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 69$ %),<br>PVC ( $w = 30$ %)                                                                                | Li <sup>+</sup> , +0.3; Na <sup>+</sup> , -0.5;<br>K <sup>+</sup> , -2.0; NH4 <sup>+</sup> , -2.0;<br>H <sup>+</sup> , -0.3; Mg <sup>2+</sup> , -2.6;<br>Ca <sup>2+</sup> , -0.3; Sr <sup>2+</sup> , -2.6;<br>Ba <sup>2+</sup> , -2.4; Co <sup>2+</sup> , -2.6;<br>Ni <sup>2+</sup> , -2.8; Cu <sup>2+</sup> , -2.4;<br>Ni <sup>2+</sup> , -0.5; Cd <sup>2+</sup> , -0.2;<br>Ag <sup>+</sup> , +1.9 | SSM        | 0.1                                       | 0.1                                                                    | 23.0                     | 10-3.0<br>-10-1.5                  | 20-22 °C; [5]<br>4.0 < pH < 6.0;<br>r.o.o.g.;<br>pH = 4                                                                          |                        |
|                     | <b>Pb2+.4</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 40$ %)                                                            | $ \begin{array}{l} Lit, -1.4; Na^{+}, -3.5; \\ K^{+}, -3.9; NH_{4}+, -4.0; \\ H^{+}, -0.7; Mg^{2+}, -3.0; \\ Ca^{2+}, +0.0; Sr^{2+}, -3.0; \\ Ba^{2+}, -3.0; Co^{2+}, -3.5; \\ Ni^{2+}, -4.5; Cu^{2+}, -2.5; \\ Ni^{2+}, -1.4; Cd^{2+}, +0.2; \\ Ag^{+}, +1.0 \end{array} $                                                                                                                         | SSM        | 0.1                                       | 0.1                                                                    | 34.1                     | 10-4.0<br>-10-1.5                  | 20-22 °C; [5]<br>3.0 < pH < 6.0;<br>r.o.o.g.;<br>pH = 4                                                                          | continues on next page |

 Table 18: Pb<sup>2+</sup>-Selective Electrodes (Continued)

| ionophore          | membrane<br>composition                                                                                            | $\lg K_{\mathrm{Pb}^{2+},\mathrm{B}^{\mathrm{n}+}}$                                                                                                                                                                                                                       | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|---------------------------------------------------------|
| Pb <sup>2+-5</sup> | <b>Pb2+-S</b> $(w = 1 \ \%)$ ,<br>oNPOE $(w = 69 \ \%)$ ,<br>PVC $(w = 30 \ \%)$                                   | $\begin{array}{l} Li^+,-2.2;Na^+,-0.6;\\ K^+,-2.7;NH_4^+,-1.8;\\ H^+,-0.7;Mg^{2+},-2.9;\\ Ca^{2+},-0.9;Ss^{2+},-1.2;\\ Ba^{2+},-1.5;Co^{2+},-1.3;\\ Ni^{2+},-2.0;Cu^{2+},-1.3;\\ Ni^{2+},-2.5;Cd^{2+},-0.6;\\ Ag^+,+0.5\end{array}$                                       | SSM    | 0.1                         | 0.1                                                   | 37.2                     | -10-5.0<br>-10-2.0     | 20-22 °C; [5]<br>4.0 < pH < 6.0;<br>r.o.o.g;<br>pH = 4  |
|                    | <b>Pb<sup>2+-5</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 40$ %) | $\begin{array}{l} Li^+,-3.5;Na^+,-1.9;\\ K^+,-3.8;NH4^+,-1.9;\\ H^+,-1.3;Mg^{24},-3.2;\\ Ca^{2+},+0.5;Sr^{2+},-1.1;\\ Ba^{2+},-1.3;Co^{2+},-3.8;\\ Ni^{2+},-3.2;Cu^{2+},-1.6;\\ Ni^{2+},-3.2;Cu^{2+},+0.7;\\ Ag^+,+1.4\end{array}$                                        | SSM    | 0.1                         | 0.1                                                   | 40.2                     | -10-5.3<br>-10-1.5     | 20-22 °C; [5]<br>3.0 < pH < 6.0;<br>1.0.0 g;<br>pH = 4  |
| Pb <sup>2+-6</sup> | <b>Pb<sup>2+-6</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 69$ %),<br>PVC ( $w = 30$ %)                                | $ \begin{array}{l} Li^+, -0.8;  Na^+, -1.5; \\ K^+, -1.2;  NH4^+, -1.2; \\ H^+, +1.8,  Mg^{2+}, -2.7; \\ Ca^{2+}, -2.0;  Si^{2+}, -1.7; \\ Ba^{2+}, -1.8;  Co^{2+}, -3.2; \\ Ni^{2+}, -2.9;  Cu^{2+}, -3.2; \\ Ni^{2+}, -3.2;  Cd^{2+}, -3.5; \\ Ag^+, +1.2 \end{array} $ | SSM    | 0.1                         | 0.1                                                   | 27.3                     | 10-5.5<br>-10-2.0      | 20-22 °C; [5]<br>3.0 < pH < 5.5<br>1.0.0.g.;<br>pH = 4  |
|                    | <b>Pb<sup>2+-6</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 40$ %) | $ \begin{array}{l} Li^+, -2.9;  Na^+, -3.7; \\ K^+, -3.8;  NH4^+, -3.6; \\ H^+, -0.2;  Mg^{2+}, -4.6; \\ Ca^{2+}, -2.2;  Sr^{2+}, -1.6; \\ Ba^{2+}, -2.3;  Co^{2+}, -4.0; \\ Ni^{2+}, -4.6;  Cu^{2+}, -3.8; \\ Ni^{2+}, -4.3;  Cd^{2+}, -4.0; \\ Ag^+, +0.1 \end{array} $ | SSM    | 0.1                         | 0.1                                                   | 35.3                     | 10-5.2<br>-10-1.0      | 20-22 °C; [5]<br>2.0 < pH < 6.0<br>r.o.o.g.;<br>pH = 4  |
| Pb2+-7             | <b>Pb<sup>2+</sup>-7</b> ( $w = 1$ %),<br>oNPOE ( $w = 69$ %),<br>PVC ( $w = 30$ %)                                | $ \begin{array}{l} Li^+, +1.3;  Na^+, +0.4; \\ K^+, -2.0;  NH4^+, -2.5; \\ H^+, -1.7;  Mg^2+, -2.3; \\ Ca^{2+}, -0.3;  Si^{2+}, -1.0; \\ Ba^{2+}, -1.3;  Co^{2+}, -2.7; \\ Ni^{2+}, -3.0;  Cu^{2+}, -2.1; \\ Ni^{2+}, +0.8 \\ Ag^+, +0.8 \end{array} $                    | SSM    | 0.1                         | 0.1                                                   | 23.5                     | 10-5.0<br>-10-1.0      | 20-22 °C; [5]<br>3.0 < pH < 5.0;<br>r.o.o.g.;<br>pH = 4 |

 Table 18: Pb<sup>2+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

Y. UMEZAWA et al.

| ionophore            | membrane<br>composition                                                                                                | lgKpb2+,Bn+                                                                                                                                                                                                                                                                       | method | primary interferin<br>ion conc. ion conc.<br>(M) (M) | ы                                        | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                    | remarks ru                                                                                                                                                        | ref.                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------|------------------------------------------|--------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                      | <b>Pb2+-7</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 40$ %)                | $\begin{array}{l} Li^+,-0.3;Na^+,+0.4;\\ K^+,-3.7;NH_4^+,-3.7;\\ H^+,-4.2;Mg^{2+},-3.3;\\ Ca^{2+},-0.3;Sr^{2+},-1.1;\\ Ba^{2+},-1.6;Co^{2+},-3.3;\\ Ni^{2+},-4.5;Cu^{2+},-3.1;\\ Zn^{2+},-1.6;Cd^{2+},-0.7;\\ Ag^+,+0.1\end{array}$                                               | SSM    | 0.1                                                  | 0.1                                      | 26.89                    | -10-5.3<br>-10-1.0                        | 20-22 °C; [<br>3.0 < pH < 6.0;<br>r.o.o.g.;<br>pH = 4                                                                                                             | [ <u>5</u> ]                  |
| Pb <sup>2+</sup> -8  | <b>Pb<sup>2+.8</sup></b> ( $w = 11.2$ %),<br>oNPOE ( $w = 49.6$ %),<br>PVC ( $w = 37.2$ %),<br>KTpCIPB ( $x_i = 15$ %) | Mg <sup>2+</sup> , -5.26; Ca <sup>2+</sup> , -5.44;FIM<br>Mn <sup>2+</sup> , -5.21; Co <sup>2+</sup> , -5.20;<br>Ni <sup>2+</sup> , -4.96; Cd <sup>2+</sup> , -3.57<br>Na <sup>+</sup> , -2.23<br>Zn <sup>2+</sup> , -3.48; Fe <sup>3+</sup> , -2.54<br>Cu <sup>2+</sup> , -3.48; | FIM    | I                                                    | 0.1<br>0.01<br>0.001<br>10 <sup>-5</sup> | 28                       | 10 <sup>-6.0</sup><br>-10 <sup>-2.0</sup> | $25.0 \pm 0.1$ °C; [5, 6]<br>3.1 < pH < 5.4;<br>$c_{d1} = 3.5 \times 10^{-7}$ M;<br>$t_{resp} = 16$ s                                                             | . 6]<br>M;                    |
|                      | <b>Pb<sup>2+.8</sup></b> ( $w = 12.7$ %),<br>oNPOE ( $w = 52.9$ %),<br>PVC ( $w = 32.4$ %),<br>KTpCIPB ( $x_i = 13$ %) | $\begin{array}{l} Na^+, -1.8; K+, -2.0; \\ Mg^{2+}, -5.2; Ca^{2+}, -5.43 \\ Sr^{2+}, -4.8; Mn^{2+}, -4.8; \\ Co^{2+}, -4.6; Ni^{2+}, -4.5; \\ Cd^{2+}, -3.4 \\ Cu^{2+}, +0.8 \\ Zn^{2+}, -3.0 \end{array}$                                                                        | FIM    | I                                                    | 0.1<br>10 <sup>-5</sup><br>0.001         | 29                       | -10-5.0<br>-10-1.0                        | $25 \pm 0.1$ °C; [7]<br>3.5 < pH < 5.4;<br>$c_{dl} = 7.9 \times 10^{-6}$ M;<br>$t_{resp} = 11$ s;<br>coated carbon elec.;<br>r.o.o.g.                             | 6 M;<br>elec.;                |
| Pb <sup>2+</sup> -9  | <b>Pb<sup>2+.9</sup></b> ( $w = 12.4$ %),<br>oNPOE ( $w = 49.4$ %),<br>PVC ( $w = 37.0$ %),<br>KTpCIPB ( $x_i = 15$ %) | Mg <sup>2+</sup> , -2.51; Ca <sup>2+</sup> , -2.39;FIM<br>Mn <sup>2+</sup> , -2.16; Co <sup>2+</sup> , -1.85;<br>Ni <sup>2+</sup> , -1.80; Cd <sup>2+</sup> , -1.54<br>Na <sup>+</sup> , -1.31<br>Zn <sup>2+</sup> , -1.51; Fe <sup>3+</sup> , -2.54<br>Cu <sup>2+</sup> , -1.11  | FIM    | I                                                    | 0.1<br>0.01<br>0.001<br>10 <sup>-5</sup> | 28                       | 10-6.0<br>-10-2.0                         | $25.0 \pm 0.1 \text{ °C; [6, 7]}$<br>3.1 < pH < 5.4;<br>$c_{\text{cl}} = 3.5 \times 10^{-7} \text{ M;}$<br>$t_{\text{resp}} = 8 \text{ s}$                        | 5, 7]<br>M;                   |
|                      | <b>Pb<sup>2+.9</sup></b> ( $w = 11.0$ %),<br>oNPOE ( $w = 53.0$ %),<br>PVC ( $w = 33.9$ %),<br>KTpCIPB( $x_1 = 18$ %)  | $\begin{array}{l} Na^+, -1.0;\\ Mg^2+, -2.9; Ca^{2+}, -2.9;\\ Sr^{2+}, -2.6; Mn^{2+}, -2.6;\\ Co^{2+}, -2.4; Ni^{2+}, -2.3;\\ Cd^{2+}, -2.1, \\ Zn^{2+}, -1.8\\ Cu^{2+}, +1.1\\ Cu^{2+}, +1.1 \end{array}$                                                                        | HIM    | I                                                    | 0.1<br>0.001<br>10 <sup>-5</sup>         | 29                       | 10 <sup>-5.0</sup><br>-10 <sup>-1.0</sup> | 25.0 $\pm$ 0.1 °C; [7]<br>3.5 $<$ pH < 5.4;<br>c <sub>dl</sub> = 7.9 × 10 <sup>-6</sup> M;<br><i>t</i> <sub>resp</sub> = 6 s;<br>coated carbon elec.;<br>r.o.o.g. | 7]<br>M;<br>ec.;              |
| Pb <sup>2+</sup> -10 | <b>Pb<sup>2+</sup>-I0</b> ( $w = 1$ %),<br>DBP ( $w = 66$ %),<br>PVC ( $w = 33$ %)                                     | Li <sup>+</sup> , -3.07; Na <sup>+</sup> , -3.00;<br>K <sup>+</sup> , -2.16; Rb <sup>+</sup> , -2.68;<br>Cs <sup>+</sup> , -2.38; Mg <sup>2+</sup> , -2.28;<br>Ca <sup>2+</sup> , -2.92: Sr <sup>2+</sup> , -2.19;                                                                |        | I                                                    | 1                                        | Nu                       | $10^{-6.0}$<br>$-10^{-2.0}$               |                                                                                                                                                                   | [8]<br>continues on next page |

Tahle 18: Ph<sup>2+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

Potentiometric selectivity coefficients of ion-selective electrodes

| Table 18:            | Table 18: Pb <sup>2+</sup> -Selective Electrodes (Continued)                               |                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                      |                                 |                          |                        |                           |      |
|----------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------|---------------------------------|--------------------------|------------------------|---------------------------|------|
| ionophore            | membrane<br>composition                                                                    | lgKpb <sup>2+</sup> ,Bn+                                                                                                                                                                                                                                                                                                                                                                                           | method | primary interferin<br>ion conc. ion conc.<br>(M) (M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                   | ref. |
|                      |                                                                                            | Ba <sup>2+</sup> , -2.52; Co <sup>2+</sup> , -2.82;<br>Ni <sup>2+</sup> , -2.92; Cu <sup>2+</sup> , -0.44;<br>Zn <sup>2+</sup> , -2.51; Cd <sup>2+</sup> , -2.16;<br>Ag <sup>+</sup> , +0.54                                                                                                                                                                                                                       |        |                                                      |                                 |                          |                        |                           |      |
| Pb <sup>2+</sup> -11 | <b>Pb<sup>2+</sup>-11</b> ( $w = 1$ %),<br>DBP ( $w = 66$ %),<br>PVC ( $w = 33$ %)         | $ \begin{array}{l} Lit, -3.00; Na^{+}, -2.96; \\ K^{+}, -2.82; Rb^{+}, -3.00; \\ Cs^{+}, -4.00; Mg^{2+}, -2.64; \\ Ca^{2+}, -3.00; Sr^{2+}, -2.92; \\ Ba^{2+}, -3.19; Co^{2+}, -2.30; \\ Ni^{2+}, -2.15; Cu^{2+}, -0.44; \\ Ni^{2+}, -0.33 \\ Ag^{+}, -0.33 \end{array} $                                                                                                                                          |        | I                                                    | 1                               | Zu                       | -10-5.0<br>-10-2.0     |                           | [8]  |
| Pb <sup>2+</sup> -12 | <b>Pb<sup>2+</sup>-12</b> $(w = 1 %)$ ,<br>DBP $(w = 66 \%)$ ,<br>PVC $(w = 33 \%)$        | Li <sup>+</sup> , -4.00; Na <sup>+</sup> , -3.00;<br>K <sup>+</sup> , -2.17; Rb <sup>+</sup> , -2.19;<br>Cs <sup>+</sup> , -2.96; Mg <sup>2+</sup> , -3.70;<br>Ca <sup>2+</sup> , -4.00; Sr <sup>2+</sup> , -4.00;<br>Ba <sup>2+</sup> , -3.52; Co <sup>2+</sup> , -3.62;<br>Ni <sup>2+</sup> , -4.00; Cu <sup>2+</sup> , -1.52;<br>Zn <sup>2+</sup> , -3.22; Cd <sup>2+</sup> , -2.40;<br>Ag <sup>+</sup> , -0.35 |        | I                                                    | I                               | Zu                       | -10-5.0<br>-10-2.0     |                           | [8]  |
| Pb <sup>2+</sup> -13 | <b>Pb2+.13</b> ( $w = 40 \ \%$ ),<br>DBP ( $w = 20 \ \%$ ),<br>PVC ( $w = 40 \ \%$ )       | $\begin{array}{l} Li^+,-4.97;Na^+,-1.81;\\ K^+,-0.61;Mg^{2+},-4.51;\\ Ca^{2+},-4.89;Sr^{2+},-4.56;\\ Ba^{2+},-4.13;Co^{2+},-4.70;\\ Ni^{2+},-3.93;Cu^{2+},-3.09;\\ Ni^{2+},-3.93;Cu^{2+},-5.11;\\ Hg^{2+},-0.83;Ag^+,-1.31;\\ La^{3+},-4.84;Fe^{3+},-4.25\end{array}$                                                                                                                                              | MSM    | 10-5                                                 | I                               | 30 ± 1                   | -10-6.0<br>-10-2.0     | f <sub>resp</sub> < 1 min | [6]  |
| Pb <sup>2+</sup> -14 | <b>Pb<sup>2+</sup>-14</b> ( $w = 37\%$ ),<br>DBP ( $w = 18.5\%$ ),<br>PVC ( $w = 44.5\%$ ) | $\begin{array}{l} Li^+,-2.31;Na^+,-0.61;\\ K^+,-0.64;Mg^{2+},-4.36;\\ Ca^{2+},-4.43;Sr^{2+},-3.29;\\ Ba^{2+},-3.46;Co^{2+},-3.68;\\ Ni^{2+},-3.63;Cu^{2+},-3.68;\\ Ni^{2+},-4.76;Cd^{2+},-4.00;\\ Hg^{2+},-4.24;Ag^+,-0.06;\\ La^{3+},-0.08Fe^{3+},-0.51\end{array}$                                                                                                                                               | MSM    | 10-5                                                 | I                               | 30±1                     | -10-6.0<br>-10-1.0     | fresp < 1 min             | [6]  |

| ionophore            | ionophore membrane                                                                                                  | lgKpb2+,Bn+                                                                                                                                                                                                                                                                                                                                      | method | primary | interfering | slope   | linear             | remarks                                                                 | ref. |
|----------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------------|---------|--------------------|-------------------------------------------------------------------------|------|
|                      | nontenduino                                                                                                         |                                                                                                                                                                                                                                                                                                                                                  |        | (M)     | (M)         | decade) | (M)                |                                                                         |      |
| Pb <sup>2+</sup> -15 | <b>Pb<sup>2+</sup>-15</b> ( $w = 40 \%$ ),<br>DBP ( $w = 20 \%$ ),<br>PVC ( $w = 40 \%$ )                           | Li+, -1.56; Na+, -1.36;<br>K+, -1.28; Mg <sup>2+</sup> , -4.77;<br>Ca <sup>2+</sup> , -5.11; Sr <sup>2+</sup> , -3.41;<br>Ba <sup>2+</sup> , -3.75; Co <sup>2+</sup> , -3.78;<br>Ni <sup>2+</sup> , -4.11; Cu <sup>2+</sup> , -4.43;<br>Ni <sup>2+</sup> , -1.44; Ag <sup>+</sup> , -0.61;<br>Hg <sup>2+</sup> , -1.258 Fe <sup>3+</sup> , -2.19 | MSM    | 10-5    | 1           | 30±1    | -10-6.0<br>-10-1.0 | fresp < 1 min                                                           | [6]  |
| Pb <sup>2+</sup> -16 | <b>Pb2+.16</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %)            | Mg <sup>2+</sup> , -3.8; Ca <sup>2+</sup> , -2.4;<br>Co <sup>2+</sup> , -3.6; Ni <sup>2+</sup> , -3.6;<br>Cu <sup>2+</sup> , -1.7; Zn <sup>2+</sup> , -3.8;<br>Cd <sup>2+</sup> , -2.5                                                                                                                                                           | WSS    | 0.01    | 0.01        | 36.9    | 10-5.4<br>-10-1.5  | <i>t</i> 95 < 20 s;<br>τ = 14 d;<br>r.o.o.g.                            | [10] |
|                      |                                                                                                                     | H <sup>+</sup> , -0.4; Li <sup>+</sup> , -2.2;<br>Na <sup>+</sup> , -2.0; K <sup>+</sup> , -1.0;<br>Rb <sup>+</sup> , -0.4; NH4 <sup>+</sup> , -0.4;<br>Pb <sup>2+</sup> , -0.9; Ag <sup>+</sup> , +0.3                                                                                                                                          | SSM    | 0.1     | 0.1         |         |                    | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g. | d as |
| Pb <sup>2+</sup> -17 | <b>Pb2+-17</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %)            | $\begin{array}{l} Mg^{2+},-2.9;Ca^{2+},-2.2;\\ Co^{2+},-2.6;Ni^{2+},-2.8;\\ Cu^{2+},-1.2;Zn^{2+},-2.8;\\ Cu^{2+},-2.6\\ Cd^{2+},-2.6 \end{array}$                                                                                                                                                                                                | SSM    | 0.01    | 0.01        | I       | I                  | 1.0.0.g.                                                                | [10] |
|                      |                                                                                                                     | H <sup>+</sup> , -2.0; Li <sup>+</sup> , -2.8;<br>Na <sup>+</sup> , -2.5; K <sup>+</sup> , -1.2;<br>Rb <sup>+</sup> , -0.5 NH <sub>4</sub> <sup>+</sup> , -1.6;<br>Pb <sup>2+</sup> , -1.9; Ag <sup>+</sup> , +2.0                                                                                                                               | SSM    | 0.1     | 0.1         |         |                    | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g. | d as |
| Pb <sup>2+</sup> -18 | <b>Pb<sup>2+</sup>-18</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %) | $\begin{array}{l} Mg^{2+}, -2.0;  Ca^{2+}, -1.2; \\ Co^{2+}, -1.8;  Ni^{2+}, -1.8; \\ Cu^{2+}, -0.6;  Zn^{2+}, -2.0; \\ Cd^{2+}, -1.5 \end{array}$                                                                                                                                                                                               | WSS    | 0.01    | 0.01        | I       | 1                  | r.o.o.g.                                                                | [10] |
|                      |                                                                                                                     | H <sup>+</sup> , -3.4; Li <sup>+</sup> , -3.3;<br>Na <sup>+</sup> , -2.8; K <sup>+</sup> , -1.4;<br>Rb <sup>+</sup> , -0.5; NH4 <sup>+</sup> , -1.7;<br>Pb <sup>2+</sup> , -2.6; Ag <sup>+</sup> , +1.0                                                                                                                                          | SSM    | 0.1     | 0.1         |         |                    | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g. | d as |
| Pb <sup>2+</sup> -19 | <b>Pb2+.19</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %)            | $\begin{array}{l} Mg^{2+},-2.3;Ca^{2+},-3.4;\\ Co^{2+},-3.0;Ni^{2+},-1.9;\\ Cu^{2+},-0.6;Zn^{2+},-2.1;\\ Cd^{2+},-1.9\end{array}$                                                                                                                                                                                                                | SSM    | 0.01    | 0.01        | I       | I                  | 1.0.0.g.                                                                | [10] |

 Table 18: Pb<sup>2+</sup>-Selective Electrodes (Continued)

continues on next page

| ionophore            | ionophore membrane<br>composition                                                                        | lgKpb2+,Bn+                                                                                                                                                                                                         | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                       |
|----------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|------------------------------------------------------------------------------------|
|                      |                                                                                                          | H <sup>+</sup> , -3.5; Li <sup>+</sup> , -1.4;<br>Na <sup>+</sup> , -2.1; K <sup>+</sup> , -1.4;<br>Rb <sup>+</sup> , -0.6; NH <sub>4</sub> <sup>+</sup> , -1.9;<br>Pb <sup>2+</sup> , -2.8; Ag <sup>+</sup> , +0.8 | SSM    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g.            |
| Pb <sup>2+</sup> -20 | <b>Pb2+-20</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_1 = 70$ %) | $\begin{array}{l} Mg^{2+},-4.2; Ca^{2+},-2.4;\\ Co^{2+},-3.9; Ni^{2+},-3.9;\\ Cu^{2+},-1.4; Zn^{2+},-4.2;\\ Cd^{2+},-2.7 \end{array}$                                                                               | SSM    | 0.01                        | 0.01                                                  | 35.2                     | 10-5.4<br>-10-1.5      | <i>ty</i> 5 < 20 s; [10]<br><i>τ</i> > 14 d;<br>r.o.o.g.                           |
|                      |                                                                                                          | H <sup>+</sup> , -1.6; Li <sup>+</sup> , -2.4<br>Na <sup>+</sup> , -2.2; K <sup>+</sup> , -1.0;<br>Rb <sup>+</sup> , -0.4; NH <sub>4</sub> <sup>+</sup> , -1.3;<br>Pb <sup>2+</sup> , -0.7; Ag <sup>+</sup> , +1.0  | MSS    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g.            |
| Pb <sup>2+</sup> -21 | <b>Pb2+-21</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %) | $\begin{array}{l} Mg^{2+},-3.5; Ca^{2+},-2.3;\\ Co^{2+},-3.7; Ni^{2+},-3.7;\\ Cu^{2+},-1.4; Zn^{2+},-3.5;\\ Cd^{2+},-2.7 \end{array}$                                                                               | SSM    | 0.01                        | 0.01                                                  | I                        | I                      | r.o.o.g. [10]                                                                      |
|                      |                                                                                                          | H <sup>+</sup> , -2.0; Li <sup>+</sup> , -2.7;<br>Na <sup>+</sup> , -2.4; K <sup>+</sup> , -1.2;<br>Rb <sup>+</sup> , -0.6; NH <sub>4</sub> <sup>+</sup> , -1.7;<br>Pb <sup>2+</sup> , -1.4; Ag <sup>+</sup> , +1.4 | SSM    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g.            |
| Pb <sup>2+</sup> -22 | <b>Pb2+-22</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %) | Mg <sup>2+</sup> , -3.5; Ca <sup>2+</sup> , -1.6;<br>Co <sup>2+</sup> , -2.3; Ni <sup>2+</sup> , -2.3;<br>Cu <sup>2+</sup> , -0.3; Zn <sup>2+</sup> , -3.5;<br>Cd <sup>2+</sup> , -2.0                              | SSM    | 0.01                        | 0.01                                                  | I                        | I                      | 1.0.0.g. [10]                                                                      |
|                      |                                                                                                          | H <sup>+</sup> , -2.5; Li <sup>+</sup> , -3.4;<br>Na <sup>+</sup> , -3.0; K <sup>+</sup> , -1.4;<br>Rb <sup>+</sup> , -0.6; NH <sub>4</sub> <sup>+</sup> , -1.9;<br>Pb <sup>2+</sup> , -2.7; Ag <sup>+</sup> , +1.0 | SSM    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as<br>lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g.            |
| Pb <sup>2+</sup> -23 | <b>Pb2+-23</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %) | $\begin{array}{l} Mg^{2+},-3.4;Ca^{2+},-2.0;\\ Co^{2+},-3.3;Ni^{2+},-3.3;\\ Cu^{2+},-1.5;Zn^{2+},-3.4;\\ Cd^{2+},-1.5;Zn^{2+},-3.4;\\ Cd^{2+},-2.3\end{array}$                                                      | SSM    | 0.01                        | 0.01                                                  | I                        | I                      | 1.0.0.g. [10]                                                                      |
|                      |                                                                                                          | H <sup>+</sup> , -2.2; Li <sup>+</sup> , -2.8;<br>Na <sup>+</sup> , -2.6; K <sup>+</sup> , -1.3;<br>Rb <sup>+</sup> , -0.6; NH <sub>4</sub> <sup>+</sup> , -1.7;<br>Pb <sup>2+</sup> , -1.5; Ag <sup>+</sup> , +1.3 | SSM    | 0.1                         | 0.1                                                   |                          |                        | <i>K</i> was obtained as lg <i>K</i> <sub>Cs</sub> +, <sub>Bn</sub> +;<br>r.o.o.g. |

 Table 18: Pb<sup>2+</sup>-Selective Electrodes (Continued)

© 2000 IUPAC, Pure and Applied Chemistry 72, 1851–2082

## Y. UMEZAWA et al.

| ionophore            | ionophore membrane<br>composition                                                                                                                           | lgKpb2+,Bn+                                                                                                                                                                                                                                      | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                                       | ref.             |                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-------------------------------------------------------------------------------|------------------|------------------------|
| Pb <sup>2+</sup> -24 | <b>Pb</b> <sup>2+</sup> <b>.24</b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %)                                | Mg <sup>2+</sup> , -2.2; Ca <sup>2+</sup> , -1.3;<br>Co <sup>2+</sup> , -2.0; Ni <sup>2+</sup> , -2.2;<br>Cu <sup>2+</sup> , -0.7; Zn <sup>2+</sup> , -2.0;<br>Cd <sup>2+</sup> , -1.8                                                           | SSM    | 0.01                        | 0.01                                                  | I                        | I                      | r.o.o.g.                                                                      | [10]             |                        |
|                      |                                                                                                                                                             | H <sup>+</sup> , -1.5; Li <sup>+</sup> , -2.7;<br>Na <sup>+</sup> , -2.6; K <sup>+</sup> , -1.0;<br>Rb <sup>+</sup> , -0.5; NH <sub>4</sub> <sup>+</sup> , -1.5;<br>Pb <sup>2+</sup> , -2.4; Ag <sup>+</sup> , +1.6                              | SSM    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g.          | led as           |                        |
| Pb <sup>2+</sup> -25 | <b>Pb<sup>2+.25</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 67-69$ %),<br>PVC ( $w = 30$ %),<br>KTpCIPB ( $x_i = 70$ %)                                         | Mg <sup>2+</sup> , -1.8; Ca <sup>2+</sup> , -1.0;<br>Co <sup>2+</sup> , -1.4; Ni <sup>2+</sup> , -1.6;<br>Cu <sup>2+</sup> , -0.6; Zn <sup>2+</sup> , -1.6;<br>Cd <sup>2+</sup> , -1.4                                                           | SSM    | 0.01                        | 0.01                                                  | 1                        | I                      | r.o.o.g.                                                                      | [10]             |                        |
|                      |                                                                                                                                                             | H <sup>+</sup> , -1.7; Li <sup>+</sup> , -3.3;<br>Na <sup>+</sup> , -2.8; K <sup>+</sup> , -1.2;<br>Rb <sup>+</sup> , -0.5; NH <sub>4</sub> <sup>+</sup> , -1.6;<br>Pb <sup>2+</sup> , -3.0; Ag <sup>+</sup> , +1.0                              | SSM    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as lgK <sub>Cs</sub> +, <sub>B</sub> n+.;<br>r.o.o.g.          | led as           |                        |
| Pb <sup>2+</sup> -26 | <b>Pb</b> <sup>2+</sup> <b>.26</b> ( <i>w</i> = 1 %),<br>oNPOE ( <i>w</i> = 67–69 %),<br>PVC ( <i>w</i> = 30 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 70 %) | Mg <sup>2+</sup> , -1.4; Ca <sup>2+</sup> , -1.0;<br>Co <sup>2+</sup> , -1.2; Ni <sup>2+</sup> , -1.4;<br>Cu <sup>2+</sup> , -0.2; Zn <sup>2+</sup> , -1.4;<br>Cd <sup>2+</sup> , -1.2                                                           | SSM    | 0.01                        | 0.01                                                  | I                        | 1                      | r.o.o.g.                                                                      | [10]             |                        |
|                      |                                                                                                                                                             | H <sup>+</sup> , -2.2; Li <sup>+</sup> , -3.6;<br>Na <sup>+</sup> , -3.0; K <sup>+</sup> , -1.3;<br>Rb <sup>+</sup> , -0.5; NH <sub>4</sub> <sup>+</sup> , -2.2;<br>Pb <sup>2+</sup> , -3.4; Ag <sup>+</sup> , +0.7                              | SSM    | 0.1                         | 0.1                                                   |                          |                        | K was obtained as<br>lgK <sub>Cs</sub> +,Bn+.;<br>r.o.o.g.                    | led as           |                        |
| Pb <sup>2+</sup> -27 | <b>Pb<sup>2+</sup>-37</b> ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 75$ %)                                         | $\begin{array}{l} L_1^+, -3.6;  Na^+, -3.6; \\ K^+, -4.2;  NH4^+, -4.0; \\ Mg^2+, -5.0;  Ca^2+, -4.8; \\ Ba^2+, -4.8;  Co^{2+}, -5.0; \\ Ni^2+, -5.0;  Cu^{2+}, -3.3; \\ Zn^2+, -4.8;  Cd^{2+}, -3.3; \\ Hg^{2+}, +0.6,  Ag^+, +1.5 \end{array}$ | SSM    | 0.01                        | 0.01                                                  | 28.7                     | < 10 <sup>-1.8</sup>   | <i>1</i> 95 < 10 s;<br>cdl = 10 <sup>-6.5</sup> M;<br>3 < pH < 6;<br>r.o.o.g. | [11]<br>M;       |                        |
|                      | <b>Pb<sup>2+</sup>-27</b> ( <i>w</i> = 1 %),<br>BBPA ( <i>w</i> = 65–66 %),<br>PVC ( <i>w</i> = 33 %),<br>KTpCIPB ( <i>x</i> <sub>i</sub> = 75 %)           | $\begin{array}{l} Li^+,-2.3;Na^+,+0.7;\\ K^+,-1.9;NH_4^+,-2.8;\\ Mg^{2+},-3.6;Ca^{2+},-2.6;\\ Ba^{2+},-4.0;Co^{2+},-3.8;\\ Ni^{2+},-4.0;Cu^{2+},-4.0;\\ Zn^{2+},-3.8;Cd^{2+},-3.0;\\ Hg^{2+},stronginterference\end{array}$                      | MSS    | 0.01                        | 0.01                                                  | I                        | 1                      | Г.О.О.g.                                                                      | [11]<br>continue | continues on next page |

Potentiometric selectivity coefficients of ion-selective electrodes

2069

| ionophore membrane<br>composition                                                                                        | lgKpb2+,₿n+                                                                                                                                               | method     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks ref.                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|-----------------------------------------------------------------------------------------------|
| <b>Pb2+.27</b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %)                                                | $\begin{array}{l} Na^+, +0.5;  K^+, -0.2  ; \\ Ca^{2+}, -0.8;  Cu^{2+}, -0.9; \\ Cd^{2+}, -0.7 \end{array}$                                               | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.; [12]<br>internal electrolyte,<br>10 <sup>-2</sup> M LiCl; pH = 4.5                  |
|                                                                                                                          | $\begin{array}{l} Na^+, +0.4; \ K^+, -0.3; \\ Ca^{2+}, -1.1; \ Cu^{2+}, -0.3; \\ Cd^{2+}, -0.3 \end{array}$                                               | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.;<br>internal electrolyte,<br>10-2 M KCl;<br>pH = 4.5                                 |
|                                                                                                                          | $\begin{array}{l} Na^+, +0.3; \ K^+, +0.3; \\ Ca^{2+}, -0.9; \ Cu^{2+}, -0.5; \\ Cd^{2+}, -0.5 \end{array}$                                               | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.;<br>internal electrolyte,<br>10 <sup>-2</sup> M CdCl <sub>2</sub> ;<br>pH = 4.5      |
|                                                                                                                          | Na <sup>+</sup> , +0.3; K <sup>+</sup> , +0.3;<br>Ca <sup>2+</sup> , -1.2; Cu <sup>2+</sup> , -0.7;<br>Cd <sup>2+</sup> -0.7                              | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.;<br>internal electrolyte,<br>10-2 M PhCls.                                           |
|                                                                                                                          | Na+, +0.7: K+, +0.1;<br>Ca <sup>2+</sup> , -0.7; Cu <sup>2+</sup> , -1.0;<br>Cd <sup>2+</sup> , -0.8                                                      | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.;<br>internal electrolyte,<br>10-2 M HgCl2;<br>pH = 4.5                               |
| <b>Pb<sup>2+</sup>-27</b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %),<br>TDDMAC ( $x_i = 25$ %)          | $\begin{array}{l} Na^+, +0.5;  K^+, +0.0; \\ Ca^{2+}, -0.5;  Cu^{2+}, -0.7; \\ Cd^{2+}, -0.9 \end{array}$                                                 | SSM        | 0.1                         | 0.1                                                   | I                        | I                      | r.o.o.g.; [12]<br>internal electrolyte,<br>$10^{-2} M HgCl_2$ ;<br>pH = 4.5                   |
| <b>Pb</b> <sup>2+</sup> <b>.2</b> 7 ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %),<br>KFTPB ( $x_1 = 25$ %) | Na <sup>+</sup> , +0.3; K <sup>+</sup> , -0.2;<br>Ca <sup>2+</sup> , -0.8; Cu <sup>2+</sup> , -2.5;<br>Cd <sup>2+</sup> , -0.9                            | SSM        | 0.1                         | 0.1                                                   | I                        | 1                      | r.o.o.g.; [12]<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> ;<br>pH = 4.5 |
| <b>Pb2+-27</b> ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %),<br>KFTPB ( $x_1 = 75$ %)                      | Na <sup>+</sup> , -1.1; K <sup>+</sup> , -2.8;<br>Ca <sup>2+</sup> , -0.9; Cu <sup>2+</sup> , -3.9;<br>Cd <sup>2+</sup> , -0.9<br>Cu <sup>2+</sup> , -4.4 | SSM<br>FIM | 0.1                         | 0.1                                                   | 30.1                     | I                      | r.o.o.g.; [12]<br>internal electrolyte,<br>$10^{-2}$ M HgCl <sub>2</sub> ;<br>pH = 4.5        |
|                                                                                                                          | Cu <sup>2+</sup> , -3.8<br>Cu <sup>2+</sup> , -3.9                                                                                                        | SSM<br>FIM | 0.1                         | 0.1                                                   | I                        | I                      | internal electrolyte,<br>10-2 M PbCl2;<br>pH = 4.5                                            |
|                                                                                                                          | Cu <sup>2+</sup> , -4.0<br>Cu <sup>2+</sup> , -4.1                                                                                                        | SSM<br>FIM | 0.1                         | 0.1<br>-                                              | I                        | I                      | internal electrolyte,<br>10 <sup>-2</sup> M LiCl; pH = 4.5                                    |
| <b>Pb</b> <sup>2+</sup> -27 ( $w = 1$ %),<br>oNPOE ( $w = 66$ %),<br>PVC ( $w = 33$ %),                                  | $\begin{array}{l} Na^{+}, -3.7;  K^{+}, -4.3; \\ Ca^{2+}, -2.0;  Cu^{2+}, -4.5; \\ Cd^{2+}, -2.8 \end{array}$                                             | SSM        | 0.1                         | 0.1                                                   | 35.5                     | I                      | r.o.o.g.; [12]<br>internal electrolyte,<br>10 <sup>-2</sup> M HgCl <sub>2</sub> ;             |

 Table 18: Pb<sup>2+</sup>-Selective Electrodes (Continued)

## Y. UMEZAWA et al.

| ionophore            | ionophore membrane<br>composition                                                                                 | $\lg K_{\mathrm{Pb}^{2+},\mathrm{B}^{\mathrm{n+}}}$                                                                                                                                                                                                                                                                                                              | method     | primary<br>ion conc. | primary interfering<br>ion conc. ion conc. |         | linear<br>range      | remarks ref.                                                                                                            |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|--------------------------------------------|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------|--|
|                      | KFTPB $(x_i = 150 \%)$                                                                                            | Cu <sup>2+</sup> , -4.4                                                                                                                                                                                                                                                                                                                                          | FIM        | (INI) –              | (INI) –                                    | necane) | (INI)                | pH = 4.5                                                                                                                |  |
|                      |                                                                                                                   | Cu <sup>2+</sup> , -4.2<br>Cu <sup>2+</sup> , -4.1                                                                                                                                                                                                                                                                                                               | SSM<br>FIM | 0.1                  | 0.1<br>-                                   | I       | I                    | internal electrolyte;<br>10 <sup>-2</sup> M PbCl <sub>2</sub> ;<br>pH = 4.5                                             |  |
|                      |                                                                                                                   | Cu <sup>2+</sup> , -2.7                                                                                                                                                                                                                                                                                                                                          | SSM        | 0.1                  | 0.1                                        | I       | I                    | internal electrolyte,<br>10 <sup>-2</sup> M LiCl;<br>pH = 4.5                                                           |  |
|                      | <b>Pb<sup>2+</sup>-27</b> ( $w = 1$ %),<br>PVC ( $w = 33$ %),<br>oNPOE ( $w = 66$ %),<br>KFTPB ( $x_i = 300$ %)   | Na <sup>+</sup> , -1.1; K <sup>+</sup> , -0.6;<br>Ca <sup>2+</sup> , -0.3; Cu <sup>2+</sup> , -1.2;<br>Cd <sup>2+</sup> , +0.1                                                                                                                                                                                                                                   | MSS        | 0.1                  | 0.1                                        | I       | I                    | r.o.o.g.; [12]<br>internal electrolyte,<br>$10^{-2} \text{ M HgCl}_2$ ;<br>pH = 4.5                                     |  |
|                      | <b>Pb<sup>2+</sup>-27</b> ( $w = 2$ %),<br>oNPOE ( $w \approx 65$ %),                                             | K+, -5.2;<br>Ca <sup>2+</sup> , -4.3                                                                                                                                                                                                                                                                                                                             | FIM        | I                    | $\frac{1}{0.1}$                            | 30      | I                    | ISFET; [13]<br>pH = 4                                                                                                   |  |
|                      | PVC ( $w \approx 32$ %),<br>KTpCIPB ( $x_1 = 85$ %)                                                               | Cu <sup>2+</sup> , -3.4; Cd <sup>2+</sup> , -4.2                                                                                                                                                                                                                                                                                                                 |            |                      | 0.01                                       |         |                      |                                                                                                                         |  |
| Pb <sup>2+</sup> -28 | <b>Pb2+-28</b> ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 75$ %)          | Li <sup>+</sup> , -3.3; Na <sup>+</sup> , -0.8;<br>K <sup>+</sup> , -3.1; NH4 <sup>+</sup> , -3.6;<br>Mg <sup>2+</sup> , -4.2; Ca <sup>2+</sup> , -4.8;<br>Ba <sup>2+</sup> , -4.2; Co <sup>2+</sup> , -4.4;<br>Ni <sup>2+</sup> , -4.4; Cu <sup>2+</sup> , -2.8;<br>Zn <sup>2+</sup> , -4.2; Cd <sup>2+</sup> , -1.6;<br>Hg <sup>2+</sup> , strong interference | SSM        | 0.01                 | 0.0                                        | 28.8    | < 10 <sup>-1.8</sup> | <i>t</i> 95 < 8 s; [11]<br><i>c</i> dl = 10 <sup>-5,5</sup> M;<br>3 < pH < 6;<br>r.o.o.g.                               |  |
|                      | <b>Pb2+-28</b> ( $w = 2$ %),<br>oNPOE ( $w \approx 65$ %),<br>PVC ( $w \approx 32$ %),<br>KTpCIPB ( $x_1 = 85$ %) | K <sup>+</sup> , -2.8; Ca <sup>2+</sup> , -4.2;<br>Cu <sup>2+</sup> , -2.7; Cd <sup>2+</sup> , -1.7                                                                                                                                                                                                                                                              | FIM        | I                    | 0.1<br>0.01                                | I       | I                    | ISFET; [13]<br>pH = 4                                                                                                   |  |
| Pb <sup>2+</sup> -29 | <b>Pb<sup>2+</sup>-29</b> ( $w = 6.2 \%$ ),<br>DBP ( $w = 15.6 \%$ ),<br>PVC ( $w = 78.2 \%$ )                    | $ \begin{array}{l} Li^+, +1.50;  Na^+, +1.50; \\ K^+, +1.50;  NH_4^+, +1.20; \\ Mg^{2+}, -0.75;  Ca^{2+}, -0.45; \\ Sr^{2+}, -0.70;  Ba^{2+}, -0.55; \\ Sr^{2+}, -0.51;  Cu^{2+}, -0.55; \\ Zn^{2+}, -0.66;  Cd^{2+}, -0.55; \\ Hg^{2+}, -0.55;  Ag^+, +1.35; \\ Fe^{3+}, -1.30 \end{array} $                                                                    | FIM        | T                    | 10.0                                       | 30      | -10-5.3<br>-10-1.0   | 25.0 $\pm$ 0.1 °C; [14]<br>3 < pH < 6;<br>$t_{\text{tesp}} = 30$ s;<br>$\tau > 120$ d<br>(stored in water);<br>r.o.o.g. |  |

continues on next page

| (Continued)                                      |
|--------------------------------------------------|
| Table 18: Pb <sup>2+</sup> -Selective Electrodes |

| ionophore            | ionophore membrane<br>composition                                                                                                           | $\lg K_{\mathrm{Pb}^{2+},\mathrm{Bn+}}$                                                                                                                                                                                                                                                   | method     | primary<br>ion conc. | primary interfering<br>ion conc. ion conc. | slope<br>(mV/ | linear<br>range      | remarks                                                                                                          | ref.           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|--------------------------------------------|---------------|----------------------|------------------------------------------------------------------------------------------------------------------|----------------|
|                      |                                                                                                                                             | $ \begin{array}{l} Li^+, -0.48;  Na^+, -0.48; \\ K^+, -0.48;  NH4^+, +1.20; \\ Mg^2+, -0.75;  Ca^{2+}, -0.45; \\ Sr^{2+}, -0.7;  Ba^{2+}, -0.55; \\ Co^{2+}, -0.51;  Cu^{2+}, -0.55; \\ Zn^{2+}, -0.66;  Cd^{2+}, -0.55; \\ Hg^{2+}, -0.65;  Ag^+, -0.65; \\ Fe^{3+}, -0.61 \end{array} $ | FIM        | (W) -                | (M)<br>10.0                                |               | (W)                  | r.o.o.g.;<br>K values were<br>calculated by<br>omitting charge<br>numbers of the<br>ions, i.e.,<br>$K=a_A/a_B$ . | 3.<br>3.<br>2. |
| Pb <sup>2+</sup> -30 | <b>Pb2+.30</b> ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64 \%$ ),<br>PVC ( $w = 32 \%$ ),<br>KTpCIPB( $x_1 = 28 \%$ )                              | $\begin{array}{l} Li^+, -1.7;  Na^+, +0.0; \\ K^+, -0.6;  Mg^{2+}, -4.5; \\ Ca^{2+}, -3.2;  Fe^{2+}, -3.9; \\ Ni^{2+}, -3.6;  Cu^{2+}, -4.3; \\ Fe^{3+}, -3.4 \end{array}$                                                                                                                | FIM        | I                    | 1                                          | 28.5          | $10^{-6}$ $-10^{-3}$ | r.o.o.g.                                                                                                         | [15]           |
| Pb <sup>2+</sup> -31 | <b>Pb<sup>2+</sup>-31</b> ( $w = 3.2 \%$ ),<br>oNPOE ( $w = 64 \%$ ),<br>PVC ( $w = 32 \%$ ),<br>KTpCIPB( $x_1 = 43 \%$ )                   | $\begin{array}{l} Li^+, -1.2;  Na^+, +0.2; \\ K^+, -0.5,  Mg^{2+}, -4.5; \\ Ca^{2+}, -3.0;  Fe^{2+}, -3.0; \\ Ni^{2+}, -3.2;  Cu^{2+}, -3.2; \\ Fe^{3+}, -3.4 \end{array}$                                                                                                                | FIM        | 1                    | 1                                          | 1             | I                    | 1.0.0.g.                                                                                                         | [15]           |
| Pb <sup>2+</sup> -32 | <b>Pb<sup>2+</sup>-32</b> ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 50$ %)                         | Cd <sup>2+</sup> , -2.35<br>Ca <sup>2+</sup> , -1.1; Cu <sup>2+</sup> , -1.9;<br>Cd <sup>2+</sup> , -2.10                                                                                                                                                                                 | FIM<br>SSM | -<br>0.01            | -<br>0.01                                  | 19.9          | I                    | r.o.o.g.;<br>c <sub>dl</sub> = 10 <sup>-3.40</sup> M                                                             | [16]<br>M      |
| Pb <sup>2+-</sup> 33 | <b>Pb</b> <sup>2+</sup> .33 ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 50$ %)                       | Cd <sup>2+</sup> , -2.60<br>Ca <sup>2+</sup> , -1.4; Cu <sup>2+</sup> , -2.4;<br>Cd <sup>2+</sup> , -2.60                                                                                                                                                                                 | FIM<br>SSM | -<br>0.01            | -<br>0.01                                  | 22.3          | I                    | r.o.o.g.;<br>c <sub>dl</sub> = 10-3.75 M                                                                         | [16]<br>M      |
| Pb <sup>2+</sup> -34 | <b>Pb<sup>2+</sup>-34</b> ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 50$ %)                         | Cd <sup>2+</sup> , -2:35<br>Ca <sup>2+</sup> , -1:2; Cu <sup>2+</sup> , -2:4;<br>Cd <sup>2+</sup> , -2:45                                                                                                                                                                                 | FIM<br>SSM | _<br>0.01            | -<br>0.01                                  | 24.3          | I                    | r.o.o.g.;<br>c <sub>dl</sub> = 10 <sup>-3.5</sup> M                                                              | [16]<br>A      |
| Pb <sup>2+</sup> -35 | <b>Pb</b> <sup>2+</sup> . <b>3</b> $(w = 1 \ \%)$ ,<br>oNPOE ( $w = 65-66 \ \%$ ),<br>PVC ( $w = 33 \ \%$ ),<br>KTpCIPB ( $x_i = 50 \ \%$ ) | Cd <sup>2+</sup> , -1.65<br>Ca <sup>2+</sup> , -0.3; Cu <sup>2+</sup> , -1.0;<br>Cd <sup>2+</sup> , -1.60                                                                                                                                                                                 | FIM<br>SSM | - 0.01               | -<br>0.01                                  | I             | I                    | r.o.o.g.;<br>c <sub>dl</sub> = 10 <sup>-2.8</sup> M                                                              | [16]<br>4      |
| Pb <sup>2+</sup> -36 | <b>Pb</b> <sup>2+</sup> .36 ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_1 = 50$ %)                       | Cd <sup>2+</sup> , -2.10<br>Ca <sup>2+</sup> , -1.5; Cu <sup>2+</sup> , -1.8;<br>Cd <sup>2+</sup> , -1.95                                                                                                                                                                                 | FIM<br>SSM | -<br>0.01            | -<br>0.01                                  | 24.1          | I                    | r.o.o.g.<br>cdl = 10 <sup>-3.25</sup> M                                                                          | [16]<br>M      |

| 1 able 10:           | 1 able 10: PDz Selecuve Electrodes (Continuea)                                                                                        |                                                                                                                                                                                                                                                                                                          |            |                             |                                 |                          |                                                   |                                                                                                            |                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------------------------|--------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|
| ionophore            | membrane<br>composition                                                                                                               | $\lg K_{\mathrm{Pb}^{2+},\mathrm{B}^{\mathrm{n}+}}$                                                                                                                                                                                                                                                      | method     | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                            | remarks                                                                                                    | ref.                              |
| Pb <sup>2+</sup> -37 | <b>Ph<sup>2+</sup>-37</b> ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 50$ %)                   | Cd <sup>2+</sup> , -2.50<br>Ca <sup>2+</sup> , -1.5; Cu <sup>2+</sup> , -2.3;<br>Cd <sup>2+</sup> , -2.45                                                                                                                                                                                                | FIM<br>SSM | -<br>0.01                   | -<br>0.01                       | 22.2                     | I                                                 | r.o.o.g.;<br>cdl = 10 <sup>-3.65</sup> M                                                                   | [16]<br>M                         |
| Pb <sup>2+</sup> -38 | <b>Pb</b> <sup>2+</sup> <b>.38</b> ( $w = 1$ %),<br>oNPOE ( $w = 65-66$ %),<br>PVC ( $w = 33$ %),<br>KTpCIPB ( $x_i = 50$ %)          | Cd <sup>2+</sup> , -1.40<br>Ca <sup>2+</sup> , +0.2; Cu <sup>2+</sup> , -0.3;<br>Cd <sup>2+</sup> , -1.45                                                                                                                                                                                                | FIM<br>SSM | - 0.01                      | -<br>0.01                       | 18.0                     | I                                                 | r.o.o.g.;<br>c <sub>dl</sub> = 10 <sup>-2.6</sup> M                                                        | [16]                              |
| Pb <sup>2+</sup> .39 | <b>Pb<sup>2+</sup>-39</b> ( $w = 1.1  \%$ ),<br>DBP ( $w = 65.9  \%$ ),<br>PVC ( $w = 33.0  \%$ )                                     | Na <sup>+</sup> , +0.71; K <sup>+</sup> , +0.98;<br>Mg <sup>2+</sup> , -2.32; Ca <sup>2+</sup> , -2.56;<br>Sr <sup>2+</sup> , -2.67; Ba <sup>2+</sup> , -2.56;<br>Ni <sup>2+</sup> , -2.24; Co <sup>2+</sup> , -2.90;<br>Cu <sup>2+</sup> , -2.08; Zn <sup>2+</sup> , -2.51;<br>Cd <sup>2+</sup> , -2.43 | FIM        | I                           | 10-2                            | 30.9                     | 2.8 × 10 <sup>-6</sup><br>-9.1 × 10 <sup>-4</sup> | unbuffered [17<br>solution;<br>$c_{dl} = 2.0 \times 10^{-6} M$<br>$t_{resp} = 40 s$                        | [17]<br><sup>6</sup> M            |
|                      |                                                                                                                                       | Na <sup>+</sup> , +0.79; Mg <sup>2+</sup> , -2.62;<br>Ca <sup>2+</sup> , -2.46; Sr <sup>2+</sup> , -2.57;<br>Ba <sup>2+</sup> , -2.62; Ni <sup>2+</sup> , -2.48;<br>Co <sup>2+</sup> , -2.60; Cu <sup>2+</sup> , -1.85;<br>Zn <sup>2+</sup> , -2.62; Cd <sup>2+</sup> , -2.45                            | FIM        | 1                           | 10-2                            | 29.4                     | 3.8 × 10 <sup>-6</sup><br>-1.1 × 10 <sup>-3</sup> | $2 \times 10^{-2}$ M; [17]<br>Tris/HCl; pH = 6.0;<br>$c_{dl} = 3.0 \times 10^{-6}$ M;<br>$t_{resp} = 40$ s | [17]<br>= 6.0;<br><sup>6</sup> M; |
|                      | <b>Pb<sup>2+.39</sup></b> ( $w = 1.1 \%$ ),<br>oNPOE ( $w = 65.9 \%$ ),<br>PVC ( $w = 33.0 \%$ )                                      | Na <sup>+</sup> , +0.65; K <sup>+</sup> , +0.87;<br>Mg <sup>2+</sup> , -2.74; Ca <sup>2+</sup> , -2.57;<br>Sr <sup>2+</sup> , -2.84; Ba <sup>2+</sup> , -2.77;<br>Ni <sup>2+</sup> , -2.87; Co <sup>2+</sup> , -2.72;<br>Cu <sup>2+</sup> , -1.78; Zn <sup>2+</sup> , -2.64                              | FIM        | 1                           | 10-2                            | 30.4                     | 2.8 × 10 <sup>-6</sup><br>-4.6 × 10 <sup>-3</sup> | $2 \times 10^{-2}$ M; [17]<br>Tris/HCl; pH = 6.0;<br>$c_{dl} = 2.3 \times 10^{-6}$ M;<br>$t_{resp} = 15$ s | [17]<br>= 6.0;<br>•6 M;           |
| Pb <sup>2+</sup> -40 | <b>Pb<sup>2+</sup>-40</b> ( $w = 2$ %),<br>oNPOE ( $w \approx 65$ %),<br>PVC ( $w \approx 32$ %),<br>KTpCIPB ( $x_i = 60$ %)          | K <sup>+</sup> , -2.4; Ca <sup>2+</sup> , -3.7;<br>Cu <sup>2+</sup> , -1.7; Cd <sup>2+</sup> , -1.9                                                                                                                                                                                                      | FIM        | I                           | 0.1<br>0.01                     | I                        | I                                                 | ISFET;<br>pH = 4                                                                                           | [13]                              |
| Pb <sup>2+</sup> -41 | <b>Pb<sup>2+</sup>.41</b> ( $w = 2.1 \%$ ),<br>BBPA ( $w \approx 65 \%$ ),<br>PVC ( $w \approx 32 \%$ ),<br>KTpCIPB ( $x_i = 76 \%$ ) | K <sup>+</sup> , interferes;<br>Ca <sup>2+</sup> , -2.4; Cu <sup>2+</sup> , -2.3;<br>Cd <sup>2+</sup> , -2.7                                                                                                                                                                                             | FIM        | I                           | 0.1                             | 30                       | I                                                 | ISFET;<br>pH = 4                                                                                           | [13]                              |
| Pb <sup>2+</sup> -42 | <b>Pb<sup>2+.42</sup></b> ( $w = 2$ %),<br>BBPA ( $w \approx 65$ %),<br>PVC ( $w \approx 32$ %),<br>KTpCIPB ( $x_1 = 73$ %)           | K+, interfères;<br>Ca <sup>2+</sup> , -3.2; Cu <sup>2+</sup> , -3.0;<br>Cd <sup>2+</sup> , -3.3                                                                                                                                                                                                          | FIM        | I                           | 0.1                             | 60                       | I                                                 | ISFET;<br>pH = 4                                                                                           | [13]<br>continues on next page    |

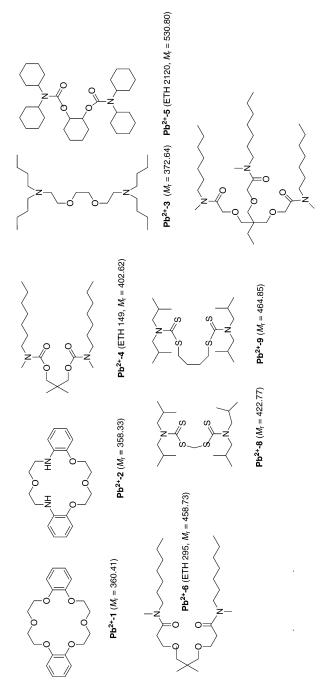
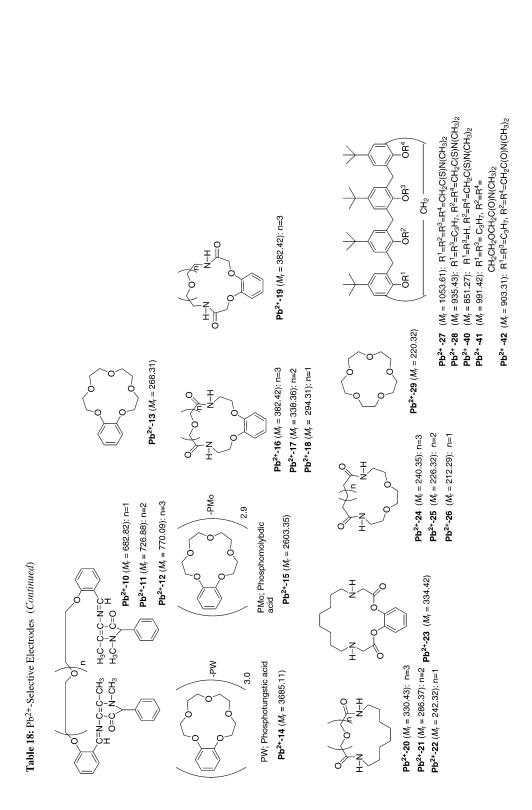
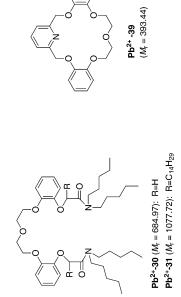
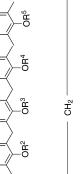

Potentiometric selectivity coefficients of ion-selective electrodes

 Table 18: Pb<sup>2+</sup>-Selective Electrodes (Continued)




- L.K. Shpigun, E.A. Novikov, Yu. A. Zolotov, J. Anal. Chem. USSR, 41, 482–486 (1986).
  E.A. Novikov, L.K. Shpigun, Yu. A. Zolotov, J. Anal. Chem. USSR, 42, 885–890 (1986).


- M. Battilotti, R. Mercuri, G. Mazzamurro, I. Giannini, M. Giongo, *Sens. Actuators*, **B1**, 438–440 (1990). A. Borraccino, L. Campanella, M.P. Sammartino, M. Tomassetti, M. Battilotti, *Sens. Actuators*, **B7**, 535–539 (1992)
  - E. Malinowska, Analyst, 115, 1085–1087 (1990).
- Kamata, K. Onoyama, Chem. Lett., 653-656 (1991).
- Kamata, K. Onoyama, Anal. Chem., **63**, 1295–1298 (1991). s.l
- E.N. Pytova, A.V. Kopytin, A. Yu. Tsivadze, E. G. Ilin, V.A. Popova, I.V. Podgomaya, Yu. A. Buslaev, J. Anal. Chem. USSR, 47, 392–395 (1992). E009090888
  - S.-R. Sheen, J.-S. Shih, Analyst, 117, 1691–1695 (1992).
- E. Malinowska, J. Jurczak, T. Stankiewicz, Electroanalysis, 5, 489–492 (1993).
- E. Malinowska, Z. Brzózka, K. Kasiura, R.J.M. Egberink, D.N. Reinhoudt, Anal. Chim. Acta, **298**, 253–258 (1994). (11)
  - W. Wróblewski, Z. Brzózka, Anal. Chim. Acta, 326, 163-168 (1996).
- L.H.M. Cobben, R.J.M. Egberink, J.G. Bomer, P. Bergved, W. Verboon, D.N. Reinhoudt, J. Am. Chem. Soc, 114, 10573–10582 (1992) Ξ 13(12)
  - S.K. Srivastava, V. Gupta, S. Jain, Analyst, 120, 495-498 (1995)  $\frac{15}{15}$
- J.S. Kim, A. Ohki, N. S. Cho, I.Y. Yu, T. Hayashita, S. Maeda, Bull. Korean Chem. Soc., 17, 953–955 (1996)
  - W. Wróblewski, Z. Brzózka, R.G. Janssen, W. Verboom, D. Reinhoudt, New. J. Chem., 20, 419–426 (1996). 130
    - N. Tavakkoli, M. Shamsipur, Anal. Lett., 29, 2269–2279 (1996)




**Pb<sup>2+</sup>-7** (ETH 227, *M*<sub>r</sub> = 641.98)









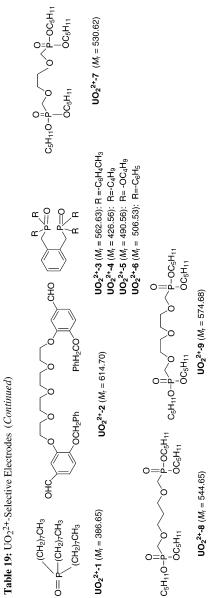
OR<sup>1</sup>

ÓР

| ref.                             | [1]<br><sup>6</sup> M;                                                                                                  | C; [2]<br>10-4 M;                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                    | ths                                                                                                                                                               | C; [2]                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| remarks                          | τ > 30 d; [1]<br>c <sub>dl</sub> = 1 × 10 <sup>-6</sup> M;<br>pH = 3.0                                                  | $25.0 \pm 0.1$ °C; [2]<br>$c_{\rm dl} = 2.5 \times 10^{-4}$ M;<br>$t_{\rm resp} < 1$ min                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    | after 5 months<br>dry storage                                                                                                                                     | $25.0 \pm 0.1$ °C; [2]<br>$c_{\rm dl} = 6.0 \times 10^{-4}$ M;<br>$t_{\rm resp} < 1$ min                                                                                                                                                                                                       |                                                                                                                                                                       |
| linear<br>range<br>(M)           | 10 <sup>-4</sup> -10 <sup>-1</sup>                                                                                      | 10-5-4-10-3                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    | I                                                                                                                                                                 | 10-5:4-10-3                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |
| slope<br>(mV/<br>decade)         | 59                                                                                                                      | 39.4                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    | I                                                                                                                                                                 | 13.2                                                                                                                                                                                                                                                                                           |                                                                                                                                                                       |
| interfering<br>ion conc.<br>(M)  | I                                                                                                                       | 10-4                                                                                                                                                                                                                                                                                                          | 10-2                                                                                                                                                                                                                                                                                               | $10^{-4}$<br>$10^{-2}$                                                                                                                                            | 10-4                                                                                                                                                                                                                                                                                           | 10-2                                                                                                                                                                  |
| primary<br>ion conc.<br>(M)      | I                                                                                                                       | 10-4                                                                                                                                                                                                                                                                                                          | 10-2                                                                                                                                                                                                                                                                                               | $10^{-4}$<br>$10^{-2}$                                                                                                                                            | 10-4                                                                                                                                                                                                                                                                                           | 10-2                                                                                                                                                                  |
| method                           | FPM<br>(pH = 2.0);<br>2.19                                                                                              | SSM<br>SSM                                                                                                                                                                                                                                                                                                    | SSM                                                                                                                                                                                                                                                                                                | SSM<br>SSM                                                                                                                                                        | SSM SSM                                                                                                                                                                                                                                                                                        | SSM .                                                                                                                                                                 |
| lgKU02 <sup>2+</sup> ,Bn+        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                    | $\begin{array}{l} Li^+, -1.00;  Na^+, -0.68; \\ K^+, -0.85;  NH_4^+, -0.92; \\ Mg^2+, -0.80;  Ca^{2+}, -0.92; \\ Sr^{2+}, -0.89;  Ba^{2+}, -1.05; \\ Mn^{2+}, -1.05;  Fe^{2+}, -1.00; \\ Fe^{3+}, +0.52;  Co^{2+}, -1.00; \\ Ni^{2+}, -0.96;  Cu^{2+}, -1.30; \\ Zn^{2+}, -1.30;  Cd^{2+}, -1.00 \end{array}$ | $\begin{array}{l} Li^+,-2.44;Na^+,-2.11;\\ K^+,-1.70;NH_4^+,-2.09;\\ Mg^2+,-2.52;Ca^2+,-2.64;\\ Sr^{2+},-2.64;Ba^{2+},-2.64;\\ Sr^{2+},-2.64;Ba^{2+},-2.10;\\ Fe^{3+},-0.23;Co^{2+},-2.10;\\ Fe^{3+},-0.23;Co^{2+},-2.77;\\ Ni^{2+},-2.04;Cu^{2+},-2.02;\\ Zn^{2+},-2.46;Cd^{2+},-2.77\end{array}$ | $\begin{array}{l} K^+, -0.77;  Mg^{2+}, -1.15; \\ Fe^{2+}, -1.10;  Fe^{3+}, +0.48 \\ K^+, -1.70;  Mg^{2+}, -2.49; \\ Fe^{2+}, -2.00;  Fe^{3+}, -0.19 \end{array}$ | $\begin{array}{l} Li^+, -5.17 \ Na^+, -1.42; \\ K^+, -3.34; \ NH_4^+, -1.39; \\ Mg^2+, -5.96; \ Ca^2+, -1.85; \\ Sr^2+, -2.24; \ Ba^2+, -1.68; \\ Mn^2+, -2.40; \ Fe^2+, -1.42; \\ Fe^3+, +0.90; \ Co^2+, -2.40; \\ Ni^2+, -1.54; \ Cu^2+, -1.39; \\ Ni^2+, -1.45; \ Cd^2+, -1.89 \end{array}$ | Li <sup>+</sup> , -4.55; Na <sup>+</sup> , -3.21;<br>K <sup>+</sup> , -4.71; NH <sub>4</sub> <sup>+</sup> , -2.66;<br>Ma <sup>2+</sup> -6.88: Ca <sup>2+</sup> -3.84. |
| membrane<br>composition          | <b>UO<sub>2</sub><sup>2+-1</sup></b> ( $w = 3$ %),<br>DBP ( $w = 12$ %),<br>PVC ( $w = 83$ %),<br>NaTPB ( $x_1 = 56$ %) | $UO_2^{2^{1-2}}(w = 1 %),$<br>oNPOE (w = 67 %),<br>PVC (w = 32 %)                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   | <b>UO2<sup>2</sup>1-2</b> ( $w = 1$ %),<br>DOPP ( $w = 67$ %),<br>PVC ( $w = 32$ %)                                                                                                                                                                                                            |                                                                                                                                                                       |
| ionophore membrane<br>compositio | U02 <sup>2+</sup> -1                                                                                                    | U0 <sub>2</sub> <sup>2+</sup> -2                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |

Potentiometric selectivity coefficients of ion-selective electrodes

| (Continuea               |
|--------------------------|
| e Electrodes             |
| 2+-Selective             |
| ole 19: UO2 <sup>2</sup> |


| Table 19: UO2 <sup>2+-</sup> Selective Electrodes (Continued)                                                                  | (pə                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                             |                                 |                          |                                    |                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|---------------------------------|--------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| ionophore membrane<br>composition                                                                                              | $\lg K_{\mathrm{UO2}^{2+},\mathrm{B}^{\mathrm{h}+}}$                                                                                                                                                                                                                                                                                                                                                                        | method | primary<br>ion conc.<br>(M) | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)             | remarks ref.                                                                                        |  |
|                                                                                                                                | Mn <sup>2+</sup> , -4.55; Fe <sup>2+</sup> , -1.22<br>Fe <sup>3+</sup> , +1.54; Co <sup>2+</sup> , -4.54;<br>Ni <sup>2+</sup> , -1.74; Cu <sup>2+</sup> , -2.64;<br>Zn <sup>2+</sup> , -2.81; Cd <sup>2+</sup> , -3.96                                                                                                                                                                                                      |        |                             |                                 |                          |                                    |                                                                                                     |  |
|                                                                                                                                | K+, -2.00; Fe <sup>2+</sup> , -1.39;<br>Fe <sup>3+</sup> , +0.93                                                                                                                                                                                                                                                                                                                                                            | SSM    | 10-4                        | 10-4                            | I                        | I                                  | after 6 months in<br>0.1 M UO <sub>2</sub> Cl <sub>2</sub>                                          |  |
|                                                                                                                                | K+, -2.02; Fe <sup>2+</sup> , -1.30;<br>Fe <sup>3+</sup> , +1.57                                                                                                                                                                                                                                                                                                                                                            | MSS    | $10^{-2}$                   | 10-2                            |                          |                                    |                                                                                                     |  |
| $UO_2^{2+.2}$ (w = 1 %),<br>DOPP (w = 67 %),<br>PVC (w = 31 %),                                                                | Li <sup>+</sup> , -1.34; Na <sup>+</sup> , -1.11;<br>K <sup>+</sup> , -0.93; NH <sub>4</sub> <sup>+</sup> , -1.62;<br>Mg <sup>2+</sup> , -1.80; Ca <sup>2+</sup> , -1.60;                                                                                                                                                                                                                                                   | SSM    | 10-4                        | 10-4                            | 22.7                     | 10-5.4-10-3                        | 25.0±0.1 °C; [2]<br>cdl = 3.0 × 10 <sup>-4</sup> M;<br>f <sub>resb</sub> < 1 min                    |  |
| NaTPB (x <sub>i</sub> = 119 %)                                                                                                 | Sr <sup>2+</sup> , -1.66; Ba <sup>2+</sup> , -1.92;<br>Mn <sup>2+</sup> , -1.31; Fe <sup>2+</sup> , -1.28;<br>Fe <sup>3+</sup> , -1.05; Co <sup>2+</sup> , -1.31;<br>Ni <sup>2+</sup> , -0.96; Cu <sup>2+</sup> , -1.12;<br>Zn <sup>2+</sup> , -0.80; Cd <sup>2+</sup> , -1.03                                                                                                                                              |        |                             |                                 |                          |                                    |                                                                                                     |  |
|                                                                                                                                | $ \begin{array}{l} \text{Li}^+, -2.44;  \text{Na}^+, -2.14; \\ \text{K}^+, -2.68;  \text{NH}_4^+, -3.96; \\ \text{Mg}^2+, -3.60;  \text{Ca}^{2+}, -3.35; \\ \text{Sr}^2+, -3.51;  \text{Ba}^{2+}, -1.92; \\ \text{Sr}^2+, -2.96;  \text{Fe}^{2+}, -3.44; \\ \text{Fe}^{3+}, -2.28;  \text{Co}^{2+}, -2.96; \\ \text{Ni}^{2+}, -2.51;  \text{Cu}^{2+}, -2.66; \\ \text{Ni}^{2+}, -2.46;  \text{Cd}^{2+}, -2.70 \end{array} $ | WSS    | 10-2                        | 10-2                            | 1                        | 1                                  |                                                                                                     |  |
|                                                                                                                                | $\begin{array}{l} K^+,-0.96; Mg^{2+},-1.64;\\ Fe^{2+},-1.20; Fe^{3+},-0.54 \end{array}$                                                                                                                                                                                                                                                                                                                                     | SSM    | 10-4                        | 10-4                            | I                        | I                                  | after 6 months<br>in 0.1 M UO <sub>2</sub> Cl <sub>2</sub>                                          |  |
|                                                                                                                                | $K^+$ , -2.92; $Mg^{2+}$ , -2.45; $Fe^{2+}$ , -1.52; $Fe^{3+}$ , -1.27                                                                                                                                                                                                                                                                                                                                                      | SSM    | $10^{-2}$                   | 10-2                            |                          |                                    |                                                                                                     |  |
| <b>UO<sub>2</sub><sup>2+.3</sup></b> , <b>UO<sub>2</sub><sup>2+.3</sup></b> , oNPOE,<br>PVC, NaTPB<br>(weight ratio not given) | $\begin{array}{l} Na^+, -4.4;  K^+, -4.7; \\ Mg^{2+}, -4.2;  Ca^{2+}, -4.2; \\ Ba^{2+}, -4.2;  Co^{2+}, -4.1; \\ Ni^{2+}, -3.0;  Cu^{2+}, -4.2; \\ Al^{3+}, -4.7;  Fe^{3+}, -3.1 \end{array}$                                                                                                                                                                                                                               | FIM    | I                           | 0.1                             | 30                       | 10 <sup>-5</sup> -10 <sup>-3</sup> | $pH = 2.70 \pm 0.05; [3]$<br>$c_{dl} = 2.5 \times 10^{-4} \text{ M};$<br>$f_{resp} < 1 \text{ min}$ |  |

| Table 19: l          | Table 19: UO2 <sup>2+</sup> -Selective Electrodes (Continued)                                                                                                                                 | ()                                                                                                                                                                                                                                                                                                              |        |                             |                                                       |                          |                        |                                                          |             |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------|----------------------------------------------------------|-------------|--|
| ionophore            | ionophore membrane<br>composition                                                                                                                                                             | lgKU022+,Bn+                                                                                                                                                                                                                                                                                                    | method | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M) | remarks                                                  | ref.        |  |
|                      | UO <sub>2</sub> <sup>2+-3</sup> ( $w = 1$ %), Na <sup>+</sup> , -0.60; K <sup>+</sup> , -0.19<br>oNPOE ( $w = 65.5$ %), PVC ( $w = 33$ %), Mg <sup>2+</sup> , -1.96; Ca <sup>2+</sup> , -1.74 | Na <sup>+</sup> , -0.60; K <sup>+</sup> , -0.19<br>),Mg <sup>2+</sup> , -1.96; Ca <sup>2+</sup> , -1.74                                                                                                                                                                                                         | FIM    | I                           | 0.1                                                   | $18 \pm 1$               | $10^{-4}$ - $10^{-1}$  | pH = 3.0; [4]<br>$c_{\rm dl} = 6.3 \times 10^{-5} \rm M$ | [4]<br>-5 M |  |
|                      | NaTpCIPB $(x_i = 59 \%)$                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                 |        |                             |                                                       |                          |                        |                                                          |             |  |
| U02 <sup>2+</sup> -4 | UO <b>2<sup>2+.4</sup></b> ( <i>w</i> = 1 %),<br>oNPOE ( <i>w</i> = 66 %),<br>PVC ( <i>w</i> = 33 %)                                                                                          | $ \begin{array}{l} Li^+, -1.24;  Na^+, -1.27; \\ K^+, -1.28;  NH_4^+, -1.46; \\ Mg^{2+}, -1.51;  Ca^{2+}, -1.60; \\ Sr^2, -1.51;  Ca^{2+}, -1.54; \\ Mn^{2+}, -1.25;  Co^{2+}, -1.32; \\ N1^{2+}, -1.20;  Cu^{2+}, -1.74; \\ Zn^{2+}, -1.15;  Cd^{2+}, -1.58; \\ Al^{3+}, -1.75;  Cd^{2+}, -1.58; \end{array} $ | FIM    | I                           | 0.1                                                   | I                        | 1                      | pH = 3.0; [4]<br>$c_{dl} = 2.8 \times 10^{-5} M$         | -5 M        |  |
|                      | UO2 <sup>2+.4</sup> ( $w = 1$ %),<br>oNPOE ( $w = 65.9$ %),<br>PVC ( $w = 33$ %),<br>NaTpCIPB ( $x_i = 9$ %)                                                                                  | $ \begin{array}{l} Li^+,-2.14; Na^+,-2.19;\\ K^+,-2.24; NH_4^+,-3.06;\\ Mg^{2+},-3.16; Ca^{2+},-3.00;\\ Sr^{2+},-2.68; Ba^{2+},-3.19;\\ Mn^{2+},-2.25; Co^{2+},-2.49;\\ Ni^{2+},-2.48; Cu^{2+},-2.49;\\ Ni^{2+},-2.32; Cd^{2+},-3.42;\\ Al^{3+},-2.39 \end{array} $                                             | FIM    | I                           | 0.1                                                   | 1                        | I                      | pH = 3.0;                                                | [4]         |  |
|                      | $UO_2^{2^{4}-4}$ (w = 1 %),<br>oND2 (w = 65.5 %),<br>PVC (w = 33 %),<br>NaTpCIPB (x <sub>i</sub> = 44 %)                                                                                      | $\begin{array}{l} Li+,-3.04; Na^+,-3.03;\\ K+,-3.00; NH_4+,-3.26;\\ Mg^{2+},-3.14; Ca^{2+},-3.12;\\ Sr^{2+},-3.70; Ba^{2+},-3.74;\\ Mn^{2+},-2.92; Co^{2+},-3.05;\\ Ni^{2+},-3.07; Cu^{2+},-2.96;\\ Ni^{2+},-2.06; Cd^{2+},-3.02;\\ Al^{3+},-2.92\end{array}$                                                   | FIM    | I                           | 0.1                                                   | 29 ± 1                   | 10-4-10-1              | pH = 3.0; [4]<br>$c_{dl} = 2.8 \times 10^{-5} M$         | [4]<br>M -5 |  |
|                      | <b>UO2<sup>2</sup><sup>2+.4</sup></b> ( $w = 1$ %),<br>oNPOE ( $w = 65$ %),<br>PVC ( $w = 33$ %),<br>NaTpCIPB ( $x_i = 89$ %)                                                                 | $ \begin{array}{l} Li^+, -1.07; Na^+, -1.13; \\ K^+, -1.07; NH4^+, -1.19; \\ Mg^{2+}, -3.13; Ca^{2+}, -2.28; \\ Sr^{2+}, -2.32; Ba^{2+}, -3.13; \\ Mn^{2+}, -2.17; Co^{2+}, -2.18; \\ Ni^{2+}, -2.28; Cu^{2+}, -2.18; \\ Ni^{2+}, -2.27; Cd^{2+}, -3.33; \\ Al^{3+}, -2.14 \end{array} $                        | FIM    | 1                           | 0.1                                                   | I                        | I                      | pH = 3.0                                                 | [4]         |  |

continues on next page

| (Continued)                                                    |
|----------------------------------------------------------------|
| <b>19:</b> UO <sub>2</sub> <sup>2+</sup> -Selective Electrodes |
| Table 1                                                        |

| ionophore                                                 | membrane<br>composition                                                                                                                                                                                                                                                                                                                                                                                                             | lgKu02 <sup>2+</sup> ,Bn+                                                                                                                                           | method                                             | primary<br>ion conc.<br>(M)              | interfering<br>ion conc.<br>(M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                        | remarks                                                                                       | ref.         |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|
|                                                           | UO2 <sup>2+.4</sup> (w = 1 %),<br>DBP (w = 65.5 %), PVC (w = 33 %),<br>NaTpCIPB (x <sub>1</sub> = 44 %)                                                                                                                                                                                                                                                                                                                             | Na <sup>+</sup> , $-0.57$ ; K <sup>+</sup> , $-0.09$ ;<br>Mg <sup>2+</sup> , $-1.68$ ; Ca <sup>2+</sup> , $-1.49$                                                   | FIM                                                | I                                        | 0.1                             | I                        | I                                             | pH = 3.0; [4]<br>$c_{\rm dl} = 2.8 \times 10^{-5} \text{ M};$<br>$\tau \approx 120 \text{ d}$ | [4]<br>-5 M; |
|                                                           | UO2 <sup>2+</sup> -4 ( <i>w</i> = 1 %),<br>DBS ( <i>w</i> = 65.5 %), PVC ( <i>w</i> = 33 %),<br>NaTpCIPB ( <i>x</i> <sub>1</sub> = 44 %)                                                                                                                                                                                                                                                                                            | Na+, -0.13; K+, +0.08;<br>Mg <sup>2+</sup> , -0.46; Ca <sup>2+</sup> , -0.39                                                                                        | FIM                                                | I                                        | 0.1                             | I                        | I                                             | pH= 3.0                                                                                       | [4]          |
| UO2 <sup>2+-5</sup>                                       | UO2 <sup>2+.5</sup> ( <i>w</i> = 1 %),<br>oNPOE ( <i>w</i> = 65.5 %),<br>PVC ( <i>w</i> = 33 %),<br>NaTpCIPB ( <i>x</i> <sub>i</sub> = 51 %)                                                                                                                                                                                                                                                                                        | Na+, -0.17; K+, -0.04;<br>Mg <sup>2+</sup> , -1.50; Ca <sup>2+</sup> , -1.17                                                                                        | FIM                                                | 1                                        | 0.1                             | 11±1                     | $10^{-3}$ - $10^{-2}$                         | pH = 3.0; [4]<br>$c_{dl} = 3.5 \times 10^{-4} M$                                              | [4]<br>-4 M  |
| U02 <sup>2+-6</sup>                                       | <b>UO<sub>2</sub><sup>2+-6</sup></b> ( <i>w</i> = 1 %),<br>oNPOE ( <i>w</i> = 65.5 %), PVC (33 %),<br>NaTpCIPB ( <i>x</i> <sub>1</sub> = 53 %)                                                                                                                                                                                                                                                                                      | $Na^{+}, -0.38; K^{+}, -0.17; \\ Mg^{2+}, -1.60; Ca^{2+}, -1.44$                                                                                                    | FIM                                                | I                                        | 0.1                             | 14±1                     | $10^{-3}$ - $10^{-2}$                         | pH = 3.0; [4]<br>$c_{\rm dl} = 1.0 \times 10^{-4} \rm M$                                      | [4]<br>-4 M  |
| UO <sub>2</sub> <sup>2+</sup> -7                          | U <b>O2<sup>2</sup>7</b> (0.1M),<br>nitrobenzene,<br>NaTPB (0.1 M)                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{l} Li^+,-3.4;Na^+,-4.5;\\ Mg^{2+},-2.4;Ca^{2+},-1.6;\\ Ba^{2+},-1.4;Cu^{2+},-2.9;\\ Cd^{2+},-2.2;Pb^{2+},-3.6;\\ Th^{2+},-0.2 \end{array} $         | SSM<br>biionic po                                  | SSM 0.01 0.0<br>biionic potential method | 0.01<br>boi                     | $29.8 \pm 1.5$           | 29.8 ± 1.5 10 <sup>-5</sup> -10 <sup>-2</sup> | 20±1 °C;<br>pH=3                                                                              | [5]          |
| UO <sub>2</sub> <sup>2+</sup> -8                          | UO2 <sup>2</sup> 3+.8 (0.1M),<br>nitrobenzene,<br>NaTPB (0.1 M)                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} Lit, -2.9; Na^+, -3.6; \\ Mg^{2+}, -2.8; Ca^{2+}, -2.3; \\ Cu^{2+}, -3.5; Cd^{2+}, -2.3; \\ Pb^{2+}, -3.4; Th^{2+}, -0.5 \end{array}$             | SSM<br>biionic po                                  | SSM 0.01 0.<br>biionic potential method  | 0.01<br>Iod                     | 27.3 ± 0.6               | $27.3 \pm 0.6 \ 10^{-5} - 10^{-2}$            | 20±1 °C;<br>pH=3                                                                              | [5]          |
| UO <sub>2</sub> <sup>2+</sup> -9                          | UO22+-9 (0.1M),<br>nitrobenzene,<br>NaTPB (0.1 M)                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{l} Li^+,-3.6;Na^+,-3.4;\\ Mg^{2+},-2.9;Ca^{2+},-2.2;\\ Ba^{2+},-0.8;Cu^{2+},-3.0;\\ Cd^{2+},-2.6;Pb^{2+},-3.5;\\ Th^{2+},-0.8;H^+,3.1 \end{array} $ | SSM<br>biionic po                                  | SSM 0.01 0.1<br>biionic potential method | 0.01<br>bol                     | 27.4 ± 1.5               | 27.4 ± 1.5 10 <sup>-5</sup> -10 <sup>-2</sup> | 20±1 °C;<br>pH=3                                                                              | [5]          |
|                                                           | $UO_2^{2^3-9}$ ( $w = 4\%$ ),<br>oNPOE ( $w = 65\%$ ),<br>PVC ( $w = 30\%$ ), NaTPB ( $x_i = 41\%$ )                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} Li^+,-3.8;Na^+,-2.8;\\ Mg^{2+},-1.9;Ca^{2+},-1.3;\\ Cu^{2+},-2.0;Cd^{2+},-1.9;\\ Pb^{2+},-1.9;Th^{2+},-0.4 \end{array}$                           | SSM                                                | 0.01                                     | 0.01                            | 27.3 ± 1.0               | 27.3 ± 1.0 10 <sup>-5</sup> -10 <sup>-2</sup> | 20±1 °C;<br>pH=3                                                                              | [5]          |
| (1) CS.<br>(2) A.C.<br>(3) S. Jot<br>(4) M.B.<br>(5) A.N. | <ul> <li>CS. Luo, FC. Chang, YC. Yeh, Anal. Chem., 54, 2333–2336 (1982).</li> <li>A.C. Stevens, H. Freiser, Anal. Chim. Acta, 248, 315–321 (1991).</li> <li>S. Johnson, G.J. Moody, J.D.R. Thomas, F.H. Kohnke, J.F. Stoddart, Analyst, 114, 1025–1028 (1989).</li> <li>M.B. Saleh, Ind. J. Chem., 31A, 12–16 (1992).</li> <li>A.N. Khramov, A.R. Garifzyanov, V.F. Toropova, J. Anal. Chem. USSR, 49, 1010–1012 (1994).</li> </ul> | ет., <b>54</b> , 2333–2336 (1982).<br><b>48</b> , 315–321 (1991).<br>Коћпке, Ј.F. Stoddart, Ала<br>).<br>ova, J. Anal. Chem. USSR,                                  | <i>dyst</i> , <b>114</b> , 1<br><b>49</b> , 1010–1 | 025–1028 (<br>.012 (1994)                | . 1989).                        |                          |                                               |                                                                                               |              |



| Table 20:                         | Table 20: Sm <sup>3+</sup> -Selective Electrodes                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                             |                                                       |                          |                                           |                                                                                                                 |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|-------------------------------------------------------|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| ionophore                         | membrane<br>composition                                                                                                                                                                              | lgK <sub>Sm</sub> 3+,Bn+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | method                     | primary<br>ion conc.<br>(M) | primary interfering<br>ion conc. ion conc.<br>(M) (M) | slope<br>(mV/<br>decade) | linear<br>range<br>(M)                    | remarks ref.                                                                                                    |  |
| Sm <sup>3+</sup> -1               | <b>Sm<sup>3+1</sup></b> ( $w = 10.2\%$ ),<br>KTpCIPB ( $x_{i} = 6\%$ ),<br>oNPOE ( $w = 60.4\%$ ),<br>PVC ( $w = 28.7\%$ )                                                                           | $\begin{split} Na^+, -3.2; \ K^+, -2.8; \\ NH4^+, -2.9; \ Mg^{24}, -2.6; \\ Ca^{2+}, -1.8; \ Ni^{2+}, -2.6; \\ Cu^{2+}, +1.2; \ Zn^{2+}, -2.7; \\ Pb^{2+}, -0.8; \ Al^{3+}, -2.3; \\ Cr^{3+}, -2.5; \ Fe^{3+}, +0.1; \\ La^{3+}, -1.5; \ Nd^{3+}, -1.6; \\ Pr^{3+}, -1.5; \ Nd^{3+}, -1.8; \\ Cd^{3+}, -1.2; \\ Nd^{3+}, -1$ | Mam                        | -2-01                       | 1                                                     | 20.0                     | $1 \times 10^{-7}$<br>$-5 \times 10^{-3}$ | coated [1,2]<br>carbon elec.;<br>$25 \pm 2$ °C;<br>4.5 < pH < 6.7;<br>$r_{resp} = 5.0$ s;<br>r = 14 d           |  |
|                                   | <b>Sm<sup>3+</sup>-1</b> ( $w = 10.2\%$ ),<br>KTpcIPB ( $x_1 = 6\%$ ),<br>FNDPE ( $w = 60.4\%$ ),<br>PVC ( $w = 28.7\%$ )                                                                            | $\begin{array}{l} Na^+, -3.3; K^+, -2.9;\\ NH_4^+, -2.9; Mg^{2+}, -2.3;\\ Ca^{2+}, -2.7; Ni^{2+}, -2.2;\\ Cu^{2+}, +1.2; Zn^{2+}, -2.3;\\ Pb^{2+}, -0.8; Al^{3+}, -2.9;\\ Cr^{3+}, -3.1; Fe^{3+}, +0.3;\\ La^{3+}, -2.05; Ce^{3+}, -1.3;\\ Pr^{3+}, -1.0; Nd^{3+}, -1.5;\\ Gd^{3+}, -1.4\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAM                        | 10-5                        | 1                                                     | 20.0                     | $1 \times 10^{-7}$<br>-5 × 10^{-3}        | coated carbon [2]<br>elec.;<br>$25 \pm 2^{\circ}$ C;<br>4.5 < pH < 6.7;<br>$f_{resp} = 5.0$ s;<br>$\tau = 14$ d |  |
| (1) T. O <sub>E</sub><br>(2) D.A. | T. Ogata, D. A. Chowdhury, S. Kamata, Y. Usui, K. Ohashi, <i>Chem. Lett.</i> , 1041-1042 (1995).<br>D.A. Chowdhury, T. Ogata, S. Kamata, K. Ohashi, <i>Anal. Chem.</i> , <b>68</b> , 366-377 (1996). | Usui, K. Ohashi, <i>Chem. Lett.</i><br>Jhashi, <i>Anal. Chem</i> , <b>68</b> , 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 1041-1042<br>5-377 (1996 | (1995).<br>).               |                                                       |                          |                                           |                                                                                                                 |  |
| v v                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                             |                                                       |                          |                                           |                                                                                                                 |  |

2082

Y. UMEZAWA et al.

**Sm<sup>3+</sup> -1** ( $M_r = 418.71$ )