Heterophenes revisited*

Tien-Yau Luh†, Hsin-Chieh Lin, and Chih-Ming Chou

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

Abstract: By employing the furan annulation protocol, a new series of furan-containing teraryl \([n.2]\)cyclophenes \((n = 2–6 \text{ and } 12)\) are prepared. These cyclophenes exhibit charge-transfer character in the absorption spectra and unusually large Stokes shifts in the emission spectra. They have neither particularly strong electron-donating moieties nor electron-withdrawing groups, but exhibit unusual second-order nonlinear optical (NLO) properties. The \(\pi\)-systems in teraryl system and in the bridging double bond are highly twisted. Interaction between these twisted \(\pi\)-systems may account for the significant enhancement in hyperpolarizability. Thiophene analog behaved similarly. The five-membered heteroaromatic rings may not only serve as electron donors, but also may accommodate the appropriate geometry to enable the interactions between the oligoaryl systems and the double bond leading to unusual photophysical and NLO properties.

Keywords: cyclophenes; bridging double bond; furan-containing oligoaryls; twisted \(\pi\)-system; nonlinear optical properties.

INTRODUCTION

There has been increasing interest in the chemistry and applications of cyclophanes [1–3]. Incorporation of heteroaromatic ring(s) into cyclophanes apparently enriches the versatility of this class of molecules [4]. It is known that five-membered heterocycles such as furan, pyrrole, and thiophene are \(\pi\)-excessive, whereas the six-membered analogs such as pyridine and pyridazine are \(\pi\)-deficient. Indeed, the Hammet \(\sigma_p^+\)-values for 2-furyl and 2-thienyl moieties are \(-0.39\) and \(-0.43\), respectively, and \(\sigma_p^-\) for 2-pyridyl value is \(0.55\) [5]. Relatively speaking, the corresponding heterophenes constituting bridged double bond(s) have been only sporadically explored [6–11]. The first heterophene, \([2.2](2,6)\)pyridinophane-1,9-diene \(1\), was reported in 1970 [6]. Subsequently, several related compounds were synthesized [7–10]. To our surprise, only one mononuclear furan-containing \([2.2]\)cyclophene \(2\) is reported in the literature as a side-product from a synthesis of furan-containing multiheteromacrocycle [11]. On the other hand, when a five-membered heteroaromatic ring is a part of an oligoaryl moiety, the use of a double bond as a bridge to link two oligoaryl chains is well documented [12–15]. Although these compounds are structurally similar to those of heterophenes, molecules like porphycenes \(3\) [13] and related compounds [13,14] are essentially planar owing to the geometrical requisite of five-membered heteroaromatic rings and therefore are considered as annulenes [12–15]. In this account, we summarize our recent studies on oligoaryl-cyclophenes \(4\) and related compounds which exhibit extraordinary photophysical properties and second-order nonlinear optical (NLO) properties.

†Corresponding author
FURAN ANNULATION PROTOCOL

We began our research on oligoaryl-containing heterophanes by employing our new protocols for furan and pyrrole annulations [16–21]. Thus, when the propargylic dithioacetal 5 is treated with BuLi or organocuprate reagent, the nucleophile selectively attacks the sulfur atom of the propargylic dithioacetal, leading to the corresponding allenyl anion 6 or propargylic anion 7. Reaction of 6 or 7 with an aldehyde 8 yields selectively the corresponding allenylcarbinol 9, which is cyclized upon treatment with trifluoroacetic acid (TFA) to give furan 10 (Scheme 1) [18]. This procedure provides a useful entry toward the synthesis of furan-containing teraryls (10, R¹ = R³ = Ar) when appropriate substrates 5 and 8 are used.

When a dialdehyde 11 is used, bis-furan product 12 is obtained in good yield (eq. 1). Functional groups such as esters are stable under the reaction conditions. Accordingly, bidirectional iterative protocol (Scheme 2) [19] and convergent strategy (Scheme 3) [20] have been developed for the synthesis of alternating benzene-furan oligomers, oligoaryl up to 17 nm lengths having been synthesized. This strategy can also be used for the synthesis of furan-containing oligoaryls 24 without repeating unit [20].

© 2008 IUPAC, Pure and Applied Chemistry 80, 475–484
The aforementioned protocol is a general method for the synthesis of a range of tri-substituted furans. By simply modifying the procedure using mercuric acetate for the annulation step, the corresponding mercury-substituted furan is obtained. Further reaction with iodine affords the corresponding

Scheme 2

Scheme 3

The aforementioned protocol is a general method for the synthesis of a range of tri-substituted furans. By simply modifying the procedure using mercuric acetate for the annulation step, the corresponding mercury-substituted furan is obtained. Further reaction with iodine affords the corresponding

© 2008 IUPAC, Pure and Applied Chemistry 80, 475–484
iodo-substituted furan 26, which can be transformed into tetra-substituted furans 27 by cross-coupling reaction (Scheme 4) [21].

\[
\begin{align*}
\text{5} & \quad \text{1. BuLi} \\
& \quad \text{2. } R^3\text{CHO} \\
& \quad \text{3. Hg(OAc)\textsubscript{2}} \\
\text{25} & \quad \text{I}_2 \\
\text{26} & \quad \text{R}^2 \\
\text{27} & \quad \text{R}^1 \\
\end{align*}
\]

Scheme 4

FURAN-CONTAINING OLIGOARYLS AS HOLE-TRANSPORTING MATERIALS

Alternating benzene-furan oligoaryls are highly fluorescent with high quantum yield [18–20,22,23]. It is known that furan compounds are light-sensitive and can easily be oxidized by singlet oxygen. Accordingly, furan derivatives have rarely been used for materials applications [24]. On the other hand, in the absence of air, a thin film of furan-containing oligoaryls such as 28 remain intact upon irradiation with a sunlamp for 24 h. Recently, 28 was found to be a highly efficient hole-transporting material in an electroluminescent device, and the hole mobility of 28 is comparable with that of \(\alpha \)-NPD 29 [22,23].

It is noteworthy that 28 undergoes reversible one-electron redox process and the corresponding blue-colored radical cation 30 has been detected by absorption (Fig. 1) and electron spin resonance (ESR) spectra [25]. The same radical cation is also obtained by the treatment of 28 with concentrated sulfuric acid [25]. The high stability of the radical cation 30 may facilitate the electron-transfer process, and this observation is consistent with the above-mentioned results that furan-containing oligoaryls, in particular 28, are efficient hole-transporting materials in an electroluminescent sandwich device.

![Fig. 1 Absorption spectra of 28 and its radical cations 30. Dashed line: the absorption spectrum of 28; solid line: radical cation 30 generated by applying a potential of 582 mV; dotted line: radical cation 30 generated by treatment of 28 in CH\textsubscript{2}Cl\textsubscript{2} with few drops of concentrated H\textsubscript{2}SO\textsubscript{4}.](image)

The furan moieties in alternating benzene-furan oligoaryls can be selectively oxidized by electrochemical methods. Thus, potentiostatic bulk electrolyses of 28 at 700 mV gives selectively diketone 31 in 90 % yield [25]. On the other hand, when a 1100 mV potential is applied, tetraketone 32 is isolated in 92 % yield.

© 2008 IUPAC, Pure and Applied Chemistry 80, 475–484
SYNTHESIS OF FURAN-CONTAINING [n.2]CYCLOPHENES

Cyclophanes have provided useful models for the investigation of through space interaction between chromophores [26,27]. In general, the conjugation length and the orientation of the chromophores may play a distinctive role in this respect. Moreover, incorporation of a double bond in the tethering aliphatic chain(s) such as cyclophanes and cyclophanedienes may alter the geometry of the molecules which may lead to unusual photophysical properties [28–30]. In the previous sections, we have demonstrated the unique synthetic approaches and useful physical properties of alternating benzene-furan oligomers. By using a similar protocol, furan-containing teraryl cyclophane 33 and cyclophene 34a are synthesized (Scheme 5) [31]. The bridging double bond in 34 can also be generated by McMurry coupling reaction (Scheme 6), and this route has been used for the synthesis of [n.2]cyclophanes 34 [32]. Alternatively, desulfurdimerization reaction of bis-dithioacetal 38 has been employed for the synthesis of 34a (Scheme 7) [33]. Both 33 and 34a are highly fluxional, and the barriers are estimated to be less than 9 kcal mol–1 [31].
Cyclophane 33 exhibits reversible two-electron redox process electrochemically, and the two oligoaryl moieties in 33 are oxidized independently at 0.614 V with reference to ferrocene/ferrocenium ion. This observation indicates that there would be little interaction between the two teraryl moieties in 33. On the other hand, the presence of the double bond might contribute to the conjugative interactions between the two oligoaryl moieties in 34a, and two sequential oxidation potentials at 0.540 and 0.665 V are observed [31].

PHOTOPHYSICS OF [n.2]CYCLOPHENES

The absorption and fluorescence profiles of 33, 34a are compared with those of the dimethylteraryl 39 (Fig. 2). In general, linear alternating benzene-furan oligoaryls exhibit very strong emission with high quantum yield [18–20,22,23]. Interestingly, both absorption and emission spectra of 33 have similar profiles at similar wavelengths as those of the unbridged teraryl 39 (λ_{em} ca. 380 nm). However, the quantum yield of 33 (0.59) is somewhat lower than that of 39 (0.83) [31]. The observation of similar vibronic structures in 33 and 39 again suggests that there is little interaction between two teraryl moieties in 33.
The photophysical properties of furan-containing [n.2]cyclophenes 34, however, are extraordinary [31,32]. As shown in Fig. 2a, the absorption spectrum of 34a exhibits a low energy band extended from ca. 350 nm in addition to the absorption due to the teraryl chromophore around 330 nm. The emission profile of 34a is striking, large Stokes shift being observed. It seems likely that interactions between the teraryl portions and the double bond in 34a may play an important role in these interesting photophysical properties. Other cyclophenes behave similarly (Fig. 2b).

DFT/6-31G** calculations of 34a show that the electron density distribution in the highest occupied molecular orbital (HOMO) is populated on two furan moieties, whereas electron density shifts to the bridging double bond in the lowest unoccupied molecular orbital (LUMO) (Fig. 4). Such electron distributions in HOMO and LUMO of 34a may resemble donor and acceptor, respectively. Similar behavior is also found in 34b–f and thiophene derivative 40. On the other hand, the electron distributions in both HOMO and LUMO for 33 are superimposed and no charge transfer would occur (Fig. 3).

Fig. 2 (a) Absorption and emission spectra of 33 (dashed line), 34a (solid line), and 39 (dotted line) in CHCl3. (b) Absorption and emission spectra of 34a (solid line), 34c (dashed line), 34e (dotted line), and 34f (dashed–dotted line) in CHCl3.

Fig. 3 Electron density distributions of HOMO and LUMO of 34a and 33.
The photophysical properties of 34a can be rationalized by perturbation theory (Fig. 4). The absorption band around 330 nm for 34a is only slightly bathochromically shifted than those for 33 and 39. This absorption may be attributed to the excitation from the S₀ to S₂ state of 34a, which is mainly contributed from the teraryl moiety. In comparison to the S₂ state, the low-lying S₁ state in 34a may be considered mainly as a charge-transfer state. In this regard, the S₁ state for electronic excitation with charge-transfer character would have lower energy. As such, when the absorption transition takes place, the wavelength would be red-shifted, and longer wavelength tailing around 380 nm can thus be rationalized. Within this context, the emission from the S₁ state may lead to large Stokes shifts.

SECOND-ORDER NONLINEAR OPTICAL PROPERTIES OF [n.2]CYCLOPHENES

The presence of donor and acceptor moieties conjugated with the linking π-system is known to facilitate the formation of intramolecular charge transfer, which will induce second-order NLO property [34]. As mentioned in the previous section, interaction between the teraryl chromophores and the bridging double bond may take place leading to charge-transfer character. It is well known that 2-furyl or 2-thienyl moiety is an electron-rich species with σ⁺ values −0.39 and −0.43, respectively [35]. In other words, these heterocycles may serve as an electron donor in 34. In this regard, one might consider that the bridging alkene group might be an electron acceptor. Recently, it has been shown that twisted π-electron system chromophores in a biaryl system having charged donor and acceptor moieties exhibit ultralarge molecular hyperpolarizability with exceptionally high μβ values [36,37]. It is envisaged that 34 and related compounds may be second-order NLO active. The photophysical properties and the μβ values (obtained by the electric field-induced second harmonic generation, EFISH, measured in CHCl₃ at 1.91 μm) for these compounds are summarized in Table 1 [32].

As can be seen from Table 1, cyclophenes 34a–f and 40 exhibit second-order optical nonlinearity. The μβ values for 34a–e are two orders higher than that for 34f and that of 34d is fivefold larger than that of 34e. It is interesting to note that the μβ values for 34b–d are comparable with that for 41. The dipole moment for 41 is 6.6 debye [38]. Cyclophenes 34 are much less polar, and the calculated dipole moments of 34 are also outlined in Table 1. Replacement of the furan ring by a thiophene ring in 40 has the μβ value 203 × 10⁻⁴⁸ esu, which is similar to that of 34a. The contribution of the double bond to the NLO properties in 34a–f and 40 is striking. It is worth mentioning that the saturated cyclophane 33 does not exhibit any NLO behavior and was even less polar (μ = 0.27 D). These results strongly indicate that the bridging double bond may be viewed as an electron acceptor in these novel cyclophenes.

© 2008 IUPAC, Pure and Applied Chemistry 80, 475–484
Table 1 Photophysical and $\mu \beta$ values of 34 and related compounds in CHCl$_3$.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max} (nm)</th>
<th>λ_{em} (nm)</th>
<th>Φ</th>
<th>μ (D)</th>
<th>$\mu_{1.91}$ c</th>
</tr>
</thead>
<tbody>
<tr>
<td>34a</td>
<td>325</td>
<td>501</td>
<td>0.28</td>
<td>1.12</td>
<td>232</td>
</tr>
<tr>
<td>34b</td>
<td>327</td>
<td>506</td>
<td>0.32</td>
<td>1.23</td>
<td>370</td>
</tr>
<tr>
<td>34c</td>
<td>330</td>
<td>496</td>
<td>0.36</td>
<td>1.26</td>
<td>530</td>
</tr>
<tr>
<td>34d</td>
<td>330</td>
<td>498</td>
<td>0.39</td>
<td>1.29</td>
<td>502</td>
</tr>
<tr>
<td>34e</td>
<td>331</td>
<td>498</td>
<td>0.51</td>
<td>1.48</td>
<td>110</td>
</tr>
<tr>
<td>34f</td>
<td>337</td>
<td>494</td>
<td>0.57</td>
<td>1.05</td>
<td>3</td>
</tr>
<tr>
<td>40</td>
<td>314</td>
<td>494</td>
<td>0.22</td>
<td>1.14</td>
<td>203</td>
</tr>
<tr>
<td>41</td>
<td>315</td>
<td>380</td>
<td>0.59</td>
<td>0.27</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

aMeasured in EtOAc using coumarin 1 as reference.

bCalculated by DFT at 6-31G** level.

cIn 10^{-48} esu.

dRef. [38].

CONCLUSIONS

By adopting our furan annulation protocol, a series of monodispersed alternating benzene-furan molecular wires up to 15 nm can be conveniently obtained. In addition, we have synthesized a new series of furan-containing teraryl cyclophene derivatives 34 which exhibit unusually large Stokes shifts and NLO properties. These cyclophanes 34 have neither particularly strong electron-donating moieties nor electron-withdrawing groups and have relatively low polarity. Yet they exhibit exceptionally high $\mu \beta$ values, which are even comparable with that of highly polar 41. Structurally, the strained cyclophanes 34 furnish a unique feature to dictate these unusual photophysical properties. Because of strain, the π-systems in teraryl system and in the bridged double bond are twisted. Such a twisted system may thus induce significant enhancement in hyperpolarizability [36,37]. The five-membered heteroaromatic rings in 34 may not only serve as electron donors, but also accommodate the appropriate geometry to enable the interactions between the oligoaryl systems and the double bond, leading to unusual photophysical and NLO properties.

ACKNOWLEDGMENTS

We thank the National Science Council and the National Taiwan University for support. Thanks are also due to coworkers whose names are listed in the references for their invaluable contributions.

REFERENCES