Palladium-catalyzed cross-addition of triisopropylsilylacetylene to unactivated alkynes

Naofumi Tsukada‡, Satoshi Ninomiya, Yoshimi Aoyama, and Yoshio Inoue

Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan

Abstract: Selective cross-addition of triisopropylsilylacetylene (TIPSA) to unactivated alkynes is catalyzed by dinuclear and mononuclear palladium complexes supported by a multidentate ligand, N,N'-bis[2-(diphenylphosphino)phenyl]formamidine (dpfamH). While the addition reactions of TIPSA to dialkylacetylenes using palladium catalysts supported by monodentate and bidentate ligands gives dimers of TIPSA as major products, the reactions with the palladium complexes supported by dpfam affords cross-adducts selectively, in which the yields of TIPSA dimers are less than 5%. The addition of TIPSA to monoalkylacetylenes also gives cross-adducts as major products, although the selectivity and yield are moderate.

Keywords: palladium; alkyne; cross-addition; dimerization; dinuclear complex.

INTRODUCTION

Homodimerization of terminal alkynes is an efficient and highly atom-economical method for forming enynes [1], which are important precursors in organic synthesis. Various transition-metal complexes can serve as catalyst for the homodimerization, and therefore many regio- and stereo-selective reactions have been reported over the last few decades [1b,2]. For extensive utilization of the enyne formation for organic synthesis, cross-addition of two different alkynes (Scheme 1) also has been desired. However, selective cross-addition has been rather limited [3–8] probably due to difficulty of prevention of the homodimerization of alkynes. Selective cross-addition reactions of two terminal alkynes were reported by several groups. Titanium-, uranium-, and palladium-catalyzed reactions proceed with high gem-selectivity [3,4,6e], and ruthenium-catalyzed reactions give Z-isomers selectively [5]. However, no examples for cross-addition to internal alkynes were reported in these papers. Selective cross-addition to internal alkynes was studied by Trost et al. [6]. They reported that palladium acetate and tris(2,6-dimethoxyphenyl)phosphine (TDMPP) were effective for the cross-addition of terminal alkynes to internal acceptor alkynes activated by electron-withdrawing groups. Very recently, rhodium-catalyzed addition to internal arylalkynes was reported [7]. Regarding the selective addition to unactivated internal alkynes, there are only two papers, in which a few example of cross-addition to dialkylacetylenes [8] or internal alkynes having oxygen-substituent at the propargylic position [6e] are reported [9]. Herein, we describe our recent findings for selective cross-addition of a silylacetylene to unactivated internal and terminal alkynes [10], and mechanistic consideration for the reaction.

*Paper based on a presentation at the 14th International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), 2–6 August 2007, Nara, Japan. Other presentations are published in this issue, pp. 807–1194.

‡Corresponding author
CROSS-ADDITION TO UNACTIVATED INTERNAL ALKynes

During the course of our study on the reactivity of dinuclear complexes supported by a multidentate ligand, \(N,N'\)-bis[2-(diphenylphosphino)phenyl]formamidine (dpfamH, 1) [11], we reported that dinuclear complexes 2 served as catalyst for the addition of arene and alkene C–H bonds to unactivated alkynes, to which mononuclear palladium complexes were not effective (Fig. 1) [12]. Based on these findings, the addition of alkyne C–H bonds to unactivated alkynes was next investigated by using 2 as catalyst. As a result of screening of terminal alkynes in the addition to 3-hexyne, the reactions of monosilylacetylenes were found to give cross-adducts. While trimethylsilyl-, tert-butyldimethylsilyl-, and triphenylsilylacetylene did not afford satisfactory results, the reaction of trisopropylsilylacetylene (TIPSA) with several internal alkynes gave cross-adducts 3 with high stereoselectivity (Scheme 2). The addition of TIPSA to 1-phenyl-1-propyne proceeded with high regioselectivity, giving only one isomer.

![Scheme 1](image1)

Scheme 1 Transition-metal-catalyzed cross-addition of two alkynes.

CROSS-ADDITION TO UNACTIVATED TERMINAL ALKynes

The addition reaction using 2 and TIPSA can be applied to unactivated terminal alkynes. In all reactions, branched cross-adducts 4 were obtained as major products, and no regio- and stereoisomers were observed. The yields of TIPSA homodimers were less than 5 %, although dimers of the other terminal

![Scheme 2](image2)

Scheme 2 Cross-addition of TIPSA to unactivated internal alkynes.
alkynes were observed to some degree. The cross-addition is tolerant of several functional groups such as hydroxyl, cyano, and ester (Scheme 3).

ROLE OF THE MULTIDENTATE LIGAND dpfam

We started this study using dinuclear complexes 2 because the above-mentioned hydroarylation and hydroalkenylation of alkynes did not proceed with mononuclear palladium complexes. However, the cross-addition proceeded by using mononuclear complexes 5 as catalyst (Table 1, entry 1). The use of a mixture of 1 and Pd₂(dba)₃ gave a similar result (entry 2). In contrast, mononuclear palladium catalysts supported by mono- or bidentate phosphine ligands were not effective for the cross-addition reactions (entries 3–6). A special ligand such as 1 may be required for high selectivity. Various PN ligands 6–9 similar to 1 also did not give a satisfactory yield and selectivity (entries 7–14). These results show that both of two PN components in 1 are necessary.

Table 1 Reaction of TIPSA with 3-hexyne in the presence of various palladium catalysts.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yield of 3 (%)</th>
<th>TIPSA dimers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>94</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Pd₂(dba)₃ + 1</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Pd(PPh₃)₄</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)₂ + TDMPP</td>
<td>17</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)₂ + dppe</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>Pd₂(dba)₃ + dpdf</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Pd₂(dba)₃ + 6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Pd₂(dba)₃ + 7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Pd₂(dba)₃ + 8a</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Pd₂(dba)₃ + 8b</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>Pd₂(dba)₃ + 8c</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>Pd₂(dba)₃ + 8d</td>
<td>45</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Pd₂(dba)₃ + 8e</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Pd₂(dba)₃ + 9</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

aA mixture of TIPSA (0.5 mmol), 3-hexyne (0.5 mmol), and a catalyst (2 mol %) in toluene (2.0 mL) was heated at 110 °C.

© 2008 IUPAC, Pure and Applied Chemistry 80, 1161–1166
It is conceivable that a real active species has a dinuclear structure in which each PN component holds one palladium atom even if mononuclear complex 5 is used as a catalyst. Disproportionation of two molecules of 5 can give a dinuclear complex. Actually, the disproportionation was observed in the reaction of 5 with excess TIPSA. While the 31P NMR spectra of 5 exhibits two doublets (19.0 and 35.5 ppm), an unidentified complex obtained from the reaction of 5 with TIPSA exhibits one singlet at 33.9 ppm, which means that the complex has a symmetrical dinuclear structure. Treatment of 2b with excess TIPSA at 110 °C also gave the same complex.

PLAUSIBLE MECHANISMS

Although there is little evidence for the mechanistic aspects of the cross-addition reaction at the present time, one of the plausible reaction mechanisms for the addition of TIPSA to 3-hexyne is described in Scheme 4 on the assumption that the reaction intermediates have dinuclear structures. In our previous study, we proposed a hydride-bridged dinuclear complex for an intermediate in the hydroarylation and hydroalkenylation of unactivated alkenes. Similarly, the hydroalkynylation would proceed via hydride-bridged intermediates, which would be generated from the above unidentified dinuclear complex.

![Scheme 4](image-url)

TRANSFORMATION OF THE PRODUCTS

Since products 3 and 4 have a silyl group, various transformations are possible (Scheme 5). Desilylation by tetrabutylammonium fluoride (TBAF) is very easy, and the resulting terminal alkyne 14 can be further transformed by various reactions. Although arylalkynes cannot be used in the selective cross-addition, arylene 15 can be prepared by a palladium-catalyzed cross-coupling reaction. Cycloaddition with a diyne gives trisubstituted benzene 16. Preparation of a benzene ring from three different alkynes has been achieved by the combination of the cross-addition and the cycloaddition. Thus, although the selective cross-addition is limited to the reaction of TIPSA, the existence of a silyl group on TIPSA has a certain advantage for organic synthesis.

![Scheme 5 Transformation of enynes formed by the cross-addition.](image)

SUMMARY

As described above, it has been found that the palladium complexes such as 2 and 5, which are supported by dpfam, served as catalysts for the selective cross-addition of TIPSA to various unactivated internal and terminal alkynes. The use of dpfam as a ligand is essential for high selectivity. Although mononuclear complex 5 can be used as a catalyst, it seems likely that real reaction intermediates have dinuclear structures bridged by dpfam. Precise mechanistic study is expected to reveal the activation of alkynes by two palladium centers.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research (No. 17750081) from MEXT.
REFERENCES

10. Preliminary results of this work have been previously reported: N. Tsukada, S. Ninomiya, Y. Aoyama, Y. Inoue. Org. Lett. 9, 2919 (2007).